On-farm Response Strategies to Drought

Inland NW Drought Forum 2013
Boise, ID Water Center
Oct 18, 2013

Howard Neibling, P.E.
Extension Water Management Engineer, University of Idaho
Response depends on:

- Water source (surface or well)
- Timing and amount of reduced water delivery
- Cropping mix that can be grown
- Irrigation systems used
- Soil depth and water holding capacity
Water Source Considerations

• Wells
 – Timing and amount of water supply is under farmer control within water right or other constraints
 – If total withdrawal is limited, farmer can still manage timing of reduced well flow

• Surface
 – Timing and amount depend on water delivery policies and system constraints – less flexibility than with wells
Timing of Crop ET and Critical Crop Stages for Magic Valley Conditions

- Winter Grain
- Spring Grain
- Dry Beans
- Potatoes
- Field Corn
- Sugar Beets
- Alfalfa

Tillering
Tillering
Boot - flower
Boot - flower
Flowering
Tuber set
Pollination
Germination, Emergence & Early Growth
Early growth
New fall seedings

Date
Timing and amount of delivery

• If limited supply can be delivered for full season at reduced rate
 – All crops can be grown but on limited area
 – Sprinkler systems can be modified to cover less area with reduced flow – then crop stress on reduced areas can still be minimized

• If limited supply must be delivered at nearly full flow until supply is gone (e.g. leaky canals)
 – Only shorter-season crops can be grown
 – Carefully schedule system turn-on (wait till water needed)
 – Fill deep soils early to minimize evaporation losses and store maximum water in crop root zone
Adjust cropping mix to fit water supply

30-yr Average Estimated Seasonal ET, Kimberly

Seasonal ET, gallons/acre

Alfalfa, Lawn, Sugar Beets, Pasture, Corn, Potatoes, Winter grain, Spring grain, Dry Beans

University of Idaho Extension
Average 30 Year Calculated ET for Typical Magic Valley Crops

Agrimet Estimated Crop ET, in/d

- Alfalfa Mean
- Corn
- Russet Potatoes
- Spring Grain
- Lawn

University of Idaho Extension
Irrigation system considerations

• Surface Irrigation: less water means more attention to set time and flow rates

• Sprinkler systems:
 – Set or set-move systems are usually designed to be able to “keep up” all season. With reduced water
 • Fix leaks (average 12% losses) and replace worn nozzles (average 13% over application)
 • Use shorter set times to avoid over-watering
 • Skip sets with lowest crop productivity
WL15 wheel line: 9/64 nozzle, 32 psi

2-month old R2000 windfighter
Impact sprinkler 7a, 50 psi, <2mph wind

CU=78%
Impact sprinkler 7a, 40 psi, <2mph wind

CU=61%
Impact sprinkler 7a, 30 psi, <2mph wind

CU=56%
Center pivot systems

• Usually designed to apply less than peak ET
• Application per revolution limited to prevent runoff
• Therefore, apply extra water before peak ET period
• When water delivery rate is reduced
 – If system is over 5 years old, replace sprinkler package (poor measured water application uniformity meant 65% of systems tested needed new sprinkler packages)
 – Shut off end gun and re-nozzle
 – Shut off end gun and outer span if necessary (outer span most prone to runoff)
 – Run system as slow as possible without runoff to minimize evaporation losses
 – Plant half to early crop and half to later crop / re-nozzle for 2nd crop
Use irrigation scheduling to best match water applied to crop need during the growing season

- Water budget with AgriMet
- Shovel or soil probe with soil feel and appearance method
- Soil sensors with in-field data loggers
- Soil sensors with data transmitted to web server and accessible from internet
Hansen AM 400 Data Logger and Watermark sensors

- Cost: about $375+$200 for wire and 6 sensors
- Records data from 6 sensors every 8 hours
- Single button display shows 5 weeks data for each sensor
- Weatherproof and can be used in the winter
- Memory stores entire season of data without downloading
- Can download at any time
- Shows change in moisture with time at selected depths
- Can be set up to show leaching events

Sensor source:
http://www.irrometer.com/sensors.html

Data logger source:
http://www.mkhansen.com/
Decagon ECH₂O Probe & Data Logger

- Capacitance probe (measures dielectric permittivity) of soil
- Output is volumetric water content
- Data logger also supports rain gage & temp sensors
- Manufactured by Decagon (Pullman, WA)

Cost of system with 4 soil moisture sensors, rain gage, radio transmitter (one set for each field): about $1300

Additional cost for receiver in pickup etc. and software (one set of this equipment serves all fields): about $770

Website: www.decagon.com/
Data from 1 or 2 probes with soil moisture measurements at 4, 8, 12, 18, 24 and 40” transmitted to JD website for user access from any web-connectable computer.

Approximate cost for components for one field:

Gateway logger / transmitter with first year installation and data plan: $$2900

1-m probe with capacitance-type sensors and 200 ft cable to connect to Gateway: $1900

Source: local John Deere dealer
Features include:

- Multiple sensors with flexible depth placement (at 10 cm increments)
- Monitoring from shallow depths (0 - 10 cm) to deep installations (> 40 metres)
- Length of probe customised to suit the application (probe length adjustable in the field)
- Up to 16 sensors on one probe (moisture or moisture/salinity)
- In-built probe orientation and depth settings to enhance sensor repeatability
- Full serviceability
- Flexible connectivity for wide range of data retrieval options

Probe Sealing

The bottom of the access tube is typically sealed using a double-ringed expandable rubber bung, providing 2 sealing points and preventing underground moisture from entering the tube. A slurry cap is also available.

The top of the access tube is sealed with 2 different top cap designs, depending on application.

EnviroSCAN Screw Cap

- Top cap protrudes above the soil surface
- Easy to find and readily accessible
- Tightly sealed with a rubber O-ring
- Simply unscrews, giving easy access to the probe for servicing

EnviroSCAN Flat Cap

- Allows for the probe to sit flush with the ground surface
- Water-tight, 3 point sealing design
- Provides ready access to the probe for servicing
- Avoids potentially costly damage from machinery
Analyze your data through graphical display

Graphical display

08-10-2012 (1:15 PM) to 09-10-2012 (1:15 PM) - America/Los_Angeles
Sensors: All, Use Interpolation: Yes, Show Zeros: No

Soil Moisture Level (inches)

Graphical display
Summary: on-farm irrigation responses

• Adjust cropping mix to match timing and rate of water delivery

• Perform needed irrigation system maintenance
 – Set & set-move systems: fix leaks, replace worn nozzles, replace worn or malfunctioning sprinkler heads
 – Center pivot /linear: replace pressure regulators & sprinkler packages older than 4-5 years

• Use an irrigation scheduling method to match water applied to crop need throughout the season
The End -- Questions?