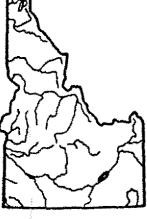

L. Compbell

GEOTHERMAL INVESTIGATIONS IN IDAHO


PART 9

POTENTIAL FOR DIRECT HEAT APPLICATION OF GEOTHERMAL RESOURCES

IDAHO DEPARTMENT OF WATER RESOURCES WATER INFORMATION BULLETIN NO. 30 **JUNE 1980**

of several geothermal wells being planned for the Capitol Mall complex in Boise where it is hoped that enough hot water will be found to heat several state buildings.

WATER INFORMATION BULLETIN NO. 30

GEOTHERMAL INVESTIGATIONS IN IDAHO

Part 9

Potential for Direct Heat Application of Geothermal Resources

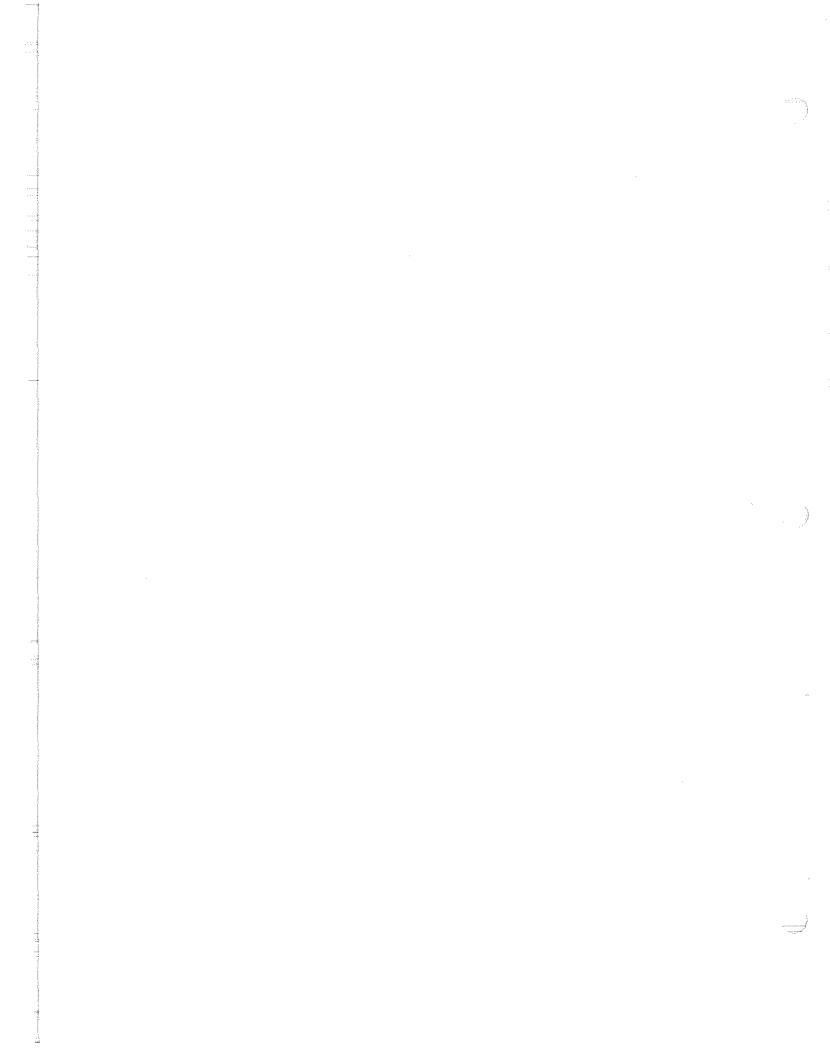
by

John C. Mitchell Linda L. Johnson John E. Anderson

With a section on Preliminary Environmental Assessment of Idaho Geothermal Resource Areas

by

Susan G. Spencer Jacquelyn F. Sullivan


Work performed under U.S. Department of Energy Contract No. DE-AS07-77ET28407 Modification No. A001 Designation UC-66-2

> Idaho Department of Water Resources Statehouse Boise, Idaho

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

The information is the result of tax-supported research and as such is not copyrightable. It may be freely reprinted with the customary crediting of the source. The Idaho Department of Water Resources would appreciate notification of any reprinting of this information.

TABLE OF CONTENTS

	Page
Preface Abstract General Introduction Purpose and Scope Well- and Spring-Numbering System Use of Metric Units Chemical Geothermometers Present and Potential Geothermal Use in Idaho Organization of Data	xiv 1 2 2 3 6 7 15
Geothermal Potential of the Northern Idaho "Panhandle" Region Shoshone County Nezperce County Geothermal Potential of the Central Idaho Region Idaho County Adams County Valley County Lemhi County	17 17 20 21 22 26 32 37
Boise County Custer County Northern Elmore County Camas County Northern Blaine County Summary of Central Idaho Region Geothermal Potential of the Snake River Plain Region Washington County	45 47 51 53 61 71 73 76
Payette County Gem County Canyon County Ada County Southern Elmore County Gooding County Jerome County	82 82 84 86 90 95 98
Northern Fremont CountyButte County	$ \begin{array}{r} 100 \\ 100 \\ 104 \\ 109 \\ 112 \\ 114 \\ 118 \end{array} $
Southeastern Idaho Eastern Cassia County Oneida County Franklin County Bear Lake County Caribou County Bannock County	121 122 127 129 134 135 144

Page

Power County	147
Bingham County	151
Bonneville County	
Madison County	
Jefferson County	
Southern Fremont County	
Clark County	
Teton County	
Summary - Basin and Range, Central Rocky Mountain	
Province, Southeastern Idaho	171
Conclusions and Recommendations	173
References	177
Appendix	199
Basic Data Table 1	201
Basic Data Table 2	223
Basic Data Table 3	243
Basic Data Table 4	249
Preliminary Environmental Assessment	
Idaho Geothermal Resource Areas	333

LIST OF TABLES

Tables Page
1. English Metric Conversion Factors
2. Geothermal Development in Idaho - Hot Water Uses 9
3. Areas in Idaho most Favorable for Power Generation Based on Surface Manifestations, Geology and Geothermometery
4. Towns and Recreational Home Areas in Central Idaho within 5 km (3 mi) of a 20°C or Higher Thermal Spring or Well
5. Cities and Towns in the Snake River Plain Region within 5 km (3 mi) of a 20°C or Higher Thermal Spring or Well 119
6. Cities and Towns in Southeast Idaho within 5 km (3 mi) of a 20 ^o C or Higher Thermal Spring or Well 172

LIST OF FIGURES

Fig	ure Page
1.	Diagram showing the well- and spring-numbering system
2.	Temperature conversion graph 5
3.	Index map of Idaho showing locations and present uses of geothermal energy
4.	Required temperatures for geothermal fluids 12
5.	Index map of Idaho showing areas most favorable for power generation based on surface manifesta- tion, geology and geothermometery
6.	Index map of Idaho showing locations of counties and subregions covered in this report
7.	Index map of Shoshone County showing locations of known thermal water occurrences with surface temperatures above 20°C 18
8.	Index map of Nez Perce County showing locations of thermal water occurrences with surface temperatures of 20°C or higher 19
9.	Thermal spring and well location map of Idaho show- ing their approximate surface temperatures, relations to curvilinear zones, linear and circular features in pocket
10.	Topographic maps showing typical central Idaho thermal spring occurrences near sharp river bends 23
11.	Index map of Idaho County showing locations of thermal water occurrences with surface temperatures of 20°C or higher
12.	Index map of Adams County showing locations of thermal water occurrences with surface temperatures of 20 ^o C or higher
	Gravity map of Council-Cambridge area, contour interval is 5 milligals 29
14.	Gravity profile near Council
15.	Index map of Idaho showing known and suspected faults

Figure

Figu	ure Pa	ıge
16.	Index map of Valley County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	33
17.	EROS false color infrared Landsat EDISE image of part of west-central Idaho and eastern Oregon show- ing selected linear features and thermal water lo- cations with surface temperatures above 20°C	35
18.	Index map of Lemhi County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	38
19.	Linear map compiled from Landsat, false color, infrared imagery. Topographic base is from Elk City AMS map (scale 1:250,000)	40
20.	Geologic map of the Big Creek Hot Spring area in Lemhi County, Idaho	42
21.	Aeromagnetic map of the study area	44
22.	Index map of Boise County showing locations of thermal water occurrences with surface tempera- tures of 20 ⁰ C or higher	46
23.	Index map of Custer County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	47
24.	EROS false color infrared Landsat EDISE image of central Idaho showing selected linear features and thermal water locations with surface tempera- tures above 20°C	49
25.	Index map of Elmore County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	52
26.	Index map of Camas County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	55
27.	Index map of Blaine County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	62
28.	Topographic map of Hailey area showing location of Hailey Hot Springs with respect to the City of Hailey	63

_:

Figure

Figu	re P	age
i	EROS false color infrared Landsat EDISE image of south-central Idaho showing selected linear features and thermal water locations with surface temperatures above 20°C	65
	Magnetic anomalies near Bald Mountain and NE of Sun Valley	67
	Idealized block diagram of Magic Reservoir Area in Camas and Blaine counties depicting theoretical structural control for Magic Hot Springs well	70
	Index map of Idaho showing the Snake River Plain and its subdivisions	74
	Index map of Washington County showing locations of thermal water occurrences with surface temperatures of 20°C or higher	77
	27-Hz apparent resistivity map (telluric line north-south), Weiser, Idaho-Vale, Oregon	79
	Map of 27-Hz apparent resistivity (telluric line east-west), Weiser, Idaho-Vale, Oregon	79
	Telluric anomaly map at 20- to 30-sec period, Vale, Oregon-Weiser, Idaho	79
	Index map of Payette and Gem counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher	83
	Index map of Canyon and Ada counties showing locations of thermal water occurrences with surface temperatures of 20 ⁰ C or higher	85
.]	EROS false color infrared Landsat EDISE image of part of southwestern Idaho and southeastern Oregon showing selected linear features and thermal water locations with surface temper- atures above 20°C	87
40.	Topographic map of west Boise Front area showing locations of potential geothermal sites	89
	Map of Boise Front area showing total conductance for transmitter 1 A array	91
	Map of Boise Front area showing total conductance for transmitter 2 A array	92

Fig		D - · · ·
гц	ule	Page
43.	Map of Boise Front area showing total conductance for transmitter 1 B array	• 93
44.	Map of Boise Front area showing total conductance for transmitter 2 B array	. 94
45.	Index map of Gooding County showing locations of thermal water occurrences with surface tempera- tures of 20 ^o C or higher	. 96
46.	Index map of Jerome and southern Minidoka counties showing locations of thermal water occurrences with surface temperatures of 20 ⁰ C or higher	. 99
47.	Index map of Owyhee County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	101
48.	Index map of Twin Falls County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	105
49.	Gravity map showing lows near Buhl, east of Jerome and near Oakley	107
50.	Aeromagnetic map showing low west of Jerome	108
51.	Index map of Fremont County showing the locations of thermal water occurrences with surface tempera- tures of 20°C or higher	110
52.	Map of rock types and 26 Hz apparent-resistivity (telluric line north-south), Island Park, Idaho	111
53.	Comparison of skin-depth pseudosections and one- dimension inverted section with gravity and magnetic data across the Island Park area	111
54.	Telluric anomaly map at 20- and 30-sec period, Island Park, Idaho	111
55.	Index map of Butte County showing locations of thermal occurrences with surface temperatures of 20°C or higher	113
56.	Index map of Cassia County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	115

Fiqu	ire	Page
-	Gravity profile near Oakley	-
57.	Gravity profile hear bakiey	110
58.	Interpreted section across the west side of the southern Raft River Valley	124
59.	Map of the Raft River Valley region, Utah and Idaho, showing major topographic features and faults	125
60.	Complete Bouguer gravity anomaly map of the southern Raft River Valley	126
61.	Index map of Oneida County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	128
62.	Index map of Franklin and Bear Lake counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher	130
63.	EROS false color infrared Landsat EDISE image of part of southeastern Idaho and northern Utah show- ing selected linear features and thermal water locations with surface temperatures above 20°C	133
64.	Gravity lows from Gem Valley, near Preston in Cache Valley, and near Bear Lake	136
65.	Gravity profile near Bear Lake	137
66.	Index map of Caribou County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	138
67.	EROS false color infrared Landsat EDISE image of part of southeastern Idaho showing selected linear features and thermal water locations with surface temperatures above 20°C	141
68.	Index map of Bannock County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	145
69.	Index map of Power County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	148
70.	Travertine deposits and associated known thermal springs in southeastern Idaho	150

ĝĝį, s

Fig	ure	Page
71.	Index map of Bingham County showing locations of thermal water occurrences with surface tempera- tures of 20 ⁰ C or higher	152
72.	Gravity lows south of Blackfoot and Swan Valley	154
73.	Gravity profile near Blackfoot	155
74.	Index map of Bonneville County showing locations of thermal water occurrences with surface temperatures of 20 ⁰ C or higher	156
75.	Index map of Madison and Jefferson counties showing locations of thermal water occurrences with surface temperatures of 20 ⁰ C or higher	158
76.	Bouguer gravity anomaly map of southeastern Idaho showing the location of the Rexburg caldera complex	159
77.	Bouguer gravity anomaly map of the Rexburg area showing the outline of the Rexburg caldera complex as inferred from the gravity data	161
78.	Residual aeromagnetic map of the area of Heise Hot Springs showing the location of the gravity high at Heise Hot Springs and a gravity low to the east	164
79.	Magnetic and gravity profiles and interpreted section across the anomalies at Heise Hot Springs .	166
80.	Index map of Clark County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	168
81.	Index map of Teton County showing locations of thermal water occurrences with surface temperatures of 20°C or higher	
82.	Index map showing known geothermal resource areas (KGRAs) and federal and state leased lands in Idaho	174

ACKNOWL EDGMENTS

Many people have contributed to this study in the hope that the information will be of benefit to the people of the State of Idaho.

The United States Department of Energy (DOE) granted financial support, while the U.S. Geological Survey (USGS) made available personnel and laboratory facilities for water quality analyses. EG&G Idaho, Inc., a prime contractor of DOE, made available laboratory facilities, personnel, and equipment for neutron-activation analyses of trace metals from thermal water samples at the Idaho National Engineering Laboratory.

Field checking of many springs and well locations was accomplished by Andres Garcia, George Denman, Mark Von Lindern and Larry Beard of the Idaho Department of Water Resources (IDWR). Compilation of the computerized data on thermal springs and wells for the two maps was the responsibility of Sharron Chapman, IDWR. Other IDWR personnel, especially Ralph Mellin, provided review assistance and many details for the report.

National Oceanic and Atmospheric Administration (NOAA) published the map Geothermal Resources of Idaho (Plate 1 in pocket) using information on thermal springs and wells supplied by IDWR, the USGS Geotherm data bank, and many other sources.

All of these cooperative efforts are gratefully acknowledged and appreciated; without such generous support, this study could not have been accomplished.

PREFACE

Geothermal energy (the natural heat energy of the earth) is receiving nationwide attention. Increasing involvement of many parties in the exploration for and development of this energy source has been accelerated by four factors:

- 1. Ecologically, geothermal energy appears to be a better alternative than other methods of power generation such as nuclear, fossil fuel or hydro-electric.
- 2. Economically, it competes favorably with hydroelectric and fossil fuel power generation and may be less expensive than nuclear methods.
- 3. Enormous reserves of geothermal resources have been identified and can be developed if the effort is made to utilize them.
- Efficient use of all energy sources is recognized as necessary if present energy shortages are to be alleviated and future shortages avoided.

Published information on the geothermal potential in Idaho consists mostly of numerous reports that briefly describe or mention thermal water occurrences in particular areas or regions of the state. Seven published reports (Stearns and others, 1937; Waring, 1956; Ross, 1971; Nichols and others, 1972; Warner, 1972 and 1975; Young and Mitchell, 1973) have been written on Idaho's geothermal potential on a Three of the reports are mainly comstatewide basis. pilations of pre-existing data collected by various investigators over an extended time interval of approximately 50 to 60 years. Waring (1965, p. 26-31) essentially updates the data of Stearns and others (1973, p. 136-151). Godwin and others (1971) classified approximately 6,075,000 hectares (15 million acres) of land in Idaho as being prospectively valuable for geothermal exploration. Ross (1971) published geologic and chemical information on about 380 thermal water occurrences, and presented brief evaluations of the geothermal potential of different regions of the state. Nichols and others (1972) identified nonpower uses and the economic impact of these uses on Idaho. Warner (1972 and 1975) dealt with Idaho's geothermal potential based on its regional geologic setting. Other reports deal with localized areas. Young and Whitehead (1975a, 1975b) wrote on the geothermal potential of the Bruneau-Grand View and Weiser areas. Mitchell (1976a, 1976b, 1976c) published information on the northern Cache Valley, Blackfoot, and Camas Prairie areas.

Wilson and others (1976) reported on geothermal investigations of the Cascade, Idaho, area. Mink and Graham (1977) reported on the geothermal potential of the west Boise area. In addition to the above published reports, there are seven unpublished open-file reports prepared by the U.S. Geological Survey (USFS) that are listed in the selected references. These are available for public review.

In Idaho, the prospects for early development of geothermal energy as an energy source appear excellent. The regional geologic setting appears favorable for the existence of large geothermal fields, although little is known of the full potential of this resource. A great deal more must be learned of geothermal occurrence and util-The Idaho Department of Water Resources (IDWR) ization. initiated a study of geothermal potential to generate interest in development of the resources and to properly perform the department's regulatory function (Water Information Bulletin No. 30. Part 1, Young and Mitchell, 1973). The study, prepared jointly with the USGS, located 25 areas in Idaho where indications of potential power development utilizing geothermal energy were found. Parts 2, 3, and 4 of Water Information Bulletin No. 30, prepared by the USGS, studied areas in southwest Idaho. Parts 5, 6, and 7, prepared by the IDWR, studied areas in south-central and southeastern Idaho. Part 8, prepared jointly by the IDWR and the Southern Methodist University, describes the heat flow regime in and around the Snake River Plain.

There are four objectives common to each of the studies: (1) to encourage the development of the resource through public knowledge of its occurrence, characteristics, origin, and properties; (2) to develop the expertise within the IDWR to properly perform its function of regulation of the resource; (3) to protect the ground and surface waters of the state from deleterious effects that might be brought about by large-scale geothermal development efforts by public or private parties; (4) to protect the geothermal resource from waste and mismanagement because of lack of knowledge of its occurrence, characteristics, and properties.

This study (Part 9 of Water Information Bulletin No. 30), prepared by IDWR, summarizes a part of the effort to obtain additional data on the properties, origin, occurrence, and characteristics of this resource in Idaho. It contains information on 899 thermal water occurrences with surface temperatures of 20°C or higher from both springs and wells. Chemical analyses of 357 of the 899 total thermal water sites are also contained herein, as well as previously published and unpublished geophysical, geological and hydrological information.

Thirty-six of the 44 counties in Idaho are discussed in separate chapters of this report. The eight counties not discussed in the report contain no known geothermal water discharges and little is known of their geothermal potential. Six of the eight counties not discussed are in northern Idaho: Bonner, Boundary, Kootenai, Benewah, Clearwater and Lewis counties. The other two (Lincoln and Minidoka counties) are within the eastern Snake River Plain aquifer, which may mask deep thermal anomalies in these counties.

ABSTRACT

a the second

There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93°C. Fifty-one cities or towns in Idaho containing 30 percent of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Poctello, and Idaho Falls.

Fourteen sites appear to have subsurface temperatures of 140°C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and the Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process.

Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

The geothermal potential in Idaho's future can be most beneficial, providing the resource is utilized in an environmental and economical manner. While some thermal waters are being used to their maximum, most heat is dissipated through irrigation practices or is discharged unused.

It appears that the greatest potential for rapid on-line industrial process heat is in the Boise, Nampa-Caldwell, Pocatello, and Weiser areas where geothermal discharges from several wells are known. Existing industry in these areas could possibly be induced to retrofit to geothermal process or space heat if sufficient temperatures and flow rates can be found.

GENERAL INTRODUCTION

PURPOSE AND SCOPE

This report was prepared in response to the many requests from Idaho's citizens and industries for authoritative information pertaining to the state's geothermal re-The report primarily outlines the characteristics, sources. occurrences, and uses (present and potential) of low temperature (<150°C) thermal waters, with minor emphasis on high temperature (>150°C) waters. The information presented in this report is designed to expand the IDWR data bank, enabling the IDWR to better serve the public and private while sector enhancing the department's regulatory responsiveness. In addition, computerized well and spring data were supplied to the National Oceanic and Atmospheric Administration for the development of the first state geothermal map (Plate 1 in pocket) and to the U.S. Geological Survey for supplementing the geotherm data bank.

The general objectives of the study and report are as follows: (1) describe, in a single reference, the thermal water chemistry and quality from existing and newly acquired data on thermal springs and wells; (2) evaluate the statewide geothermal potential from the standpoint of direct heat application; (3) pinpoint specific areas and general uses for direct heat application; (4) provide basic data on low temperature resources for potential uses; (5) give recommendations about areas of the state that could receive large benefits from detailed study.

Most locations were field checked to confirm the reported thermal discharge. Several occurrences reported in other publications were looked for but not found. These are not included in this report. Others in remote areas were not field checked but are included and labeled "not field checked" in the basic data tables in the appendix.

WELL- AND SPRING-NUMBERING SYSTEM

The numbering system used by the IDWR and the USGS in Idaho indicates the location of wells or springs within the official rectangular subdivision of the public lands, with reference to the Boise base line and meridian. The first two segments of the number designate the township and range. The third segment gives the section number, followed by three letters and a numeral, which indicate the quarter section, the 40-acre tract, the l0-acre tract, and the serial number of the well within the tract, respectively. Quarter sections are lettered a, b, c, and d in a counterclockwise order from the northeast quarter of each section (figure 1). Within the quarter sections, 40-acre and 10-acre tracts are lettered in the same manner. Well 1S-17E-23aabl is in the NW1/4 NE1/4 NE1/4 of Section 23, T.1 S, R.17 E, and was the first well inventoried in that tract. Springs are designated by the letter "S" following the last numeral; for example, 1S-13E-34bcb1S.

USE OF METRIC UNITS

The metric or International System (SI) of units are used in this report to present water chemistry and most other data. Concentrations of chemical substances dissolved in the water are given in milligrams per liter (mg/l) rather than in parts per million (ppm) as in some previous Water Information Bulletins. Numerical values for chemical concentrations are essentially equal, whether reported in mg/l or ppm for the range of values reported in this report. Water temperatures are given in degrees Celsius (^OC). Figure 2 shows the relation between degrees Celsius and degrees Fahrenheit.

Linear measurements (inches, feet, miles) are given in their corresponding metric units (millimeters, meters, kilometers). Weight and volume measurements are also given in their corresponding metric units. Area measurements are also listed in SI units. Table 1 gives conversion factors for these units.

	TABLE 1	
	ENGLISH METRIC CONVERSION FACTORS	
To Convert from	То	Multiply by
acres	hectares	0.405
inches	centimeters	2.540
feet	meters	0.305
yards	meters	0.914
miles	kilometers	1.609
sq. miles	sq. kilometers	2.589
gallons	liters	3.785
ounces	grams	28.349
hectares	acres	2.471
pounds	kilograms	0.454
tons (short)	tons (metric)	0.907
centimeters	inches	0.394
meters	feet	3.281
meters	yards	1.094
kilometers	miles	0.621
sq. kilometers	sq. miles	0.386
liters	gallons	0.264
grams	ounces	0.035
kilograms	pounds	2.205
tons (metric)	tons (short)	1.102

-3--

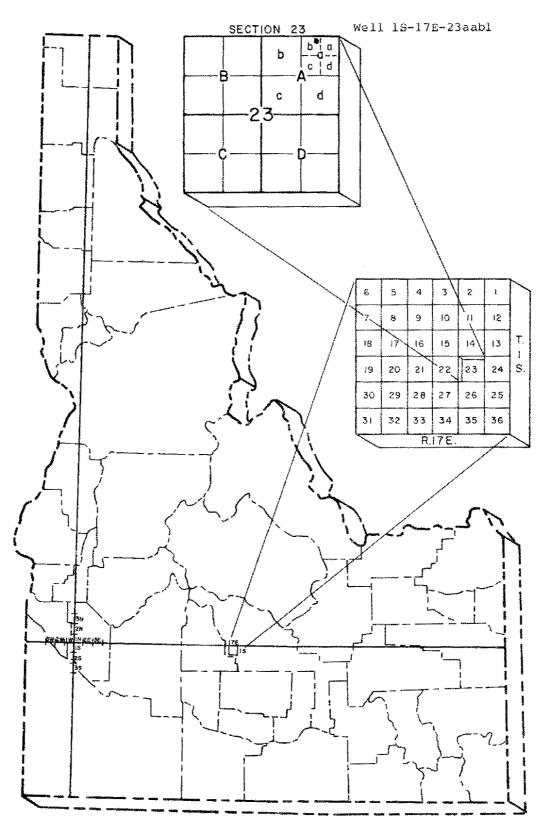
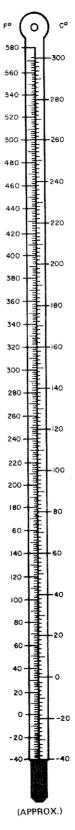
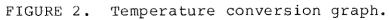




FIGURE 1. Diagram showing the well- and spring-numbering system for Idaho. (Using well 1S-17E-23aabl.)

3

-5-

.....

CHEMICAL GEOTHERMOMETERS

In this report, the geothermal potential of various areas in Idaho has been evaluated from five factors, including several chemical geothermometers, water temperature at surface, geology, geophysical, and hydrology. As the chemical geothermometers are original interpretations, they are discussed to clarify their meaning. Much of the geology, geophysics and hydrology is from published reports and is not discussed here.

Preliminary evaluations of geothermal systems are being successfully conducted using chemical geothermometers. In the Raft River Valley of southeastern Idaho, the reliability of these chemical geothermometers has been tested by deep drilling. The quartz and sodium-potassium-calcium (Na-K-Ca) estimated aquifer temperatures (Young and Mitchell, 1973) and silica mixing model calculations (Young and Mitchell, 1973, unpublished data) agreed very closely (within 10°C) with temperatures found in depth (Kunze, This proven reliability in the Raft River Valley 1975). gives some measure of confidence in applying the same methods to other similar areas of the state.

The degree of reliance to be placed on a chemical geothermometer depends on many factors. The basic assumption is that the chemical character of the water obtained by temperature dependent equilibrium reactions in the thermal aquifer is conserved from the time the water leaves the aquifer until it reaches the surface. The concentration of certain chemical constituents dissolved in the thermal waters can, therefore, be used to estimate aquifer temperatures.

Aquifer temperatures, calculated from the quartz, Na-K-Ca chemical geothermometers and mixing models as well as the atomic ratios of selected elements found in the thermal waters of Idaho, are given in basic data table 2 in the appendix. These were calculated from values of concentration found in basic data table 1.

In basic data table 2, there are 10 columns which represent aquifer temperatures. These 10 columns of basic data table 2 were derived using different assumptions as to physical controls governing dissolved chemical constituents in thermal water. In most cases, it appears that the chalcedony (column T₄) or Na-K-Ca (column T₅) chemical geothermometers may be the most accurate for thermal water in Idaho. However, in many cases these differ by as much as $20-30^{\circ}$ C. Chalcedony generally estimates temperatures somewhat higher than Na-K-Ca, particularly for high pH waters issuing from granitic terrains. It is not presently known which is closest to the actual aquifer temperature. However, as drilling has confirmed the reliability of Na-K-Ca in Raft River Valley in Cassia County and for other reasons, the authors have more confidence stating that Na-K-Ca may be the more accurate. In any case, best correlation is obtained generally between Na-K-Ca and chalcedony chemical geothermometers. In several areas where high water temperatures at the surface (>65°C) have been measured, good agreement between quartz and Na-K-Ca chemical geothermometers may be high enough for wet steam or binary cycle power generation.

PRESENT AND POTENTIAL GEOTHERMAL USE IN IDAHO

Geothermal energy has been used in Idaho for a long time. Figure 3 is a map of Idaho showing locations and current uses of geothermal energy in the state. Uses have been made ranging from electrical generation using pelton wheels to catfish farming. Present uses of geothermal energy are tabulated in table 2 (modified from Nichols, et. al., 1972).

Geothermal energy has been used for space heating in Boise since 1893 and in Ketchum. Currently several greenhouse operations are conducted near Boise for fresh and cut flowers. Other greenhouse operations using geothermal energy are located at Weiser, Grand View, White Arrow Ranch near Bliss, Banbury Hot Springs area in the Hagerman Valley, and on the South Fork Payette River and at Raft River.

Irrigation has been a long-standing use of thermal water in Idaho, although most irrigators consider hot water a nuisance as it must be cooled before being applied to crops. Some report heavier first and last cuttings of alfalfa as the growing seasons may be somewhat extended; however, the effect of the heat may be quite minor as opposed to the effect of the water from an extra early and a late season irrigation.

Stock watering in winter is another beneficial use which creates increases in weight gain on less feed with geothermally watered livestock compared to cold watered livestock.

The Department of Energy's Idaho Raft River Project is designed to gather information on various uses and applications of geothermal energy, including binary cycle power generation, reinjection of geothermal fluids, space heating, and cooling, potato processing, manure and cattle feed processing, irrigation, and aquaculture. In addition, environmental related studies of subsidence, microseismicity, flora and fauna, water quality, and groundwater levels are being made.

Many resorts using thermal water are operated in Idaho. These are listed in table 2 and locations shown in figure 3.

······

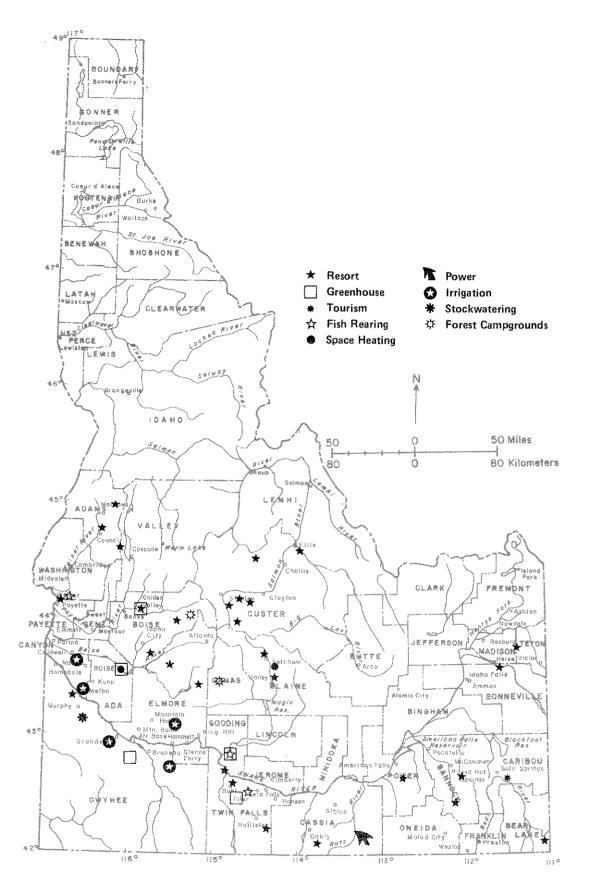


FIGURE 3. Index map of Idaho showing locations and present uses of geothermal energy.

				DAHO - HOT WATER US				(1978)
	<u> </u>		the second se	Brockway & Warnick, Approximate		Approximate	Water Su	
		Type of	pproximate Years in	Dollar Value	Length of Season	Number of	Approximate	Temper-
Name of Facility	County		Operation	1973	in Months	Employees	Discharge	ature <u>°C</u>
Warm Springs Water District	Ada	Space heating	1800's	Public supply	12	5	6400 lpm @	72
Edwards Greenhouse	Ada	Greenhouse	56	100,000	12	4	1400 lpm @	47
Hunt Brothers' Floral	Ada	Greenhouse	40	120,000	12	4	1100 lpm @	47
Zim's Resort	Adams	Resort	51	120,000	4	6	380 lpm @	63-66
Starkey H.S.	Adams	Resort	1900	70,000	4	4	490 lpm @	56
White Licks H.S.	Adams	Baths & camping		1,000	Summer		110 Ipm @	60-68
Downata H.S.	Bannock	Resort	20	120,000	Summer		1900 Ipm @	43
Lava H.S.	Bannock	Resort & health spa	75	1,500,000	12	20	5700 Ipm @	45
Bear Lake H.S.	Bear Lake	Resort	80-100	60,000	4-5	3	Q	48
Easley Store & Plunge	Blaine	Resort & camping	30	Church prop.	3	-	70 lpm 🧕	
Brandt's H.S.	Blaine	Motel & pool space heating	1800's	180,000	12	1	3800 Ipm @	70
Claredon H.S.	Blaine	Resort	40-50	100,000	12	2	380 lpm @	52
Twin Falls H.S.	Boise	Resort	40	100.000	12	-	1900 lpm @	67
Warm Springs Resort	Boise	Resort	1800's	120,000	Summer	4	1100 lpm @	42
Donlay lodge H.S.	Boise	Greenhouse	9	200,000	12	6	265 lpm @	55
Haven Lodge H.S.	Boise	Space heating & resort	20	300,000	12	2	75 (pm @	
Wards Greenhouse	Boise	Greenhouse	9	100,000	12	4	5700 lpm @	75
Terrace Lakes Resort	Boise	Space heating & resort	13	1,500,000	12	20	1900 Ipm @	75
Kirkham H.S.	Boíse	Forest campground		U.S. Forest Ser.	Summer	suur sinsi	950 lom @	65
Bonneville H.S.	Boise	Forest camparound		U.S. Forest Ser.	Summer		1375 lom @	85
Baumgartner H.S.	Camas	Forest campground		U.S. Forest Ser	Summer	~~~~	75 lpm @	
Oakley H.S.	Cassia	Resort & health spa	15	10,000	12	2	40 lpm @	
· _	Custer	Bath house		U.S. Forest Ser.	Summer	2	1700 lpm @	
Sunbeam H.S. Snake River Boy Scout Council	Custer	Camp & pool			3	****	40 lpm @	
Beardsley H.S. (Challis H.S.)	Custer	Resort & pool	92	20,000	12	3	5700 lpm @	43
Campground H.S.	Custer	Forest campground	5	10,000	Summer		330 lpm @	56
Robinson Bar	Custer	Resort	20	60,000	Summer		260 lpm @	
Middle Fork Lodge	Custer	Resort	5	270,000	Summer		260 ipm @	43
Idaho Rocky Mtn. Ranch	Custer	Resort		130,000	Summer		200 ipm @	50
Sawtooth Land Corp.	Custer	Resort		10,000	5 uninei		380 lpm @	
			50-60	100,000	Summer		950 Ipm @	
Paradise H.S.	Elmore	Resort & space heating		·			• •	
White Arrow Ranch	Gooding	Greenhouse, space heating, fish farming	10	100,000	12	15	3100 lpm @	65

-9-

			Approximate	Approximate	Length of	Approximate	Water Su	pply
Name of Facility	County	Type of Development	Years in Operation	Dollar Value 1973	Season in Months	Number of Employees	Approximate Discharge	Temper- ature °(
Heise Hot Springs, Inc.	Jefferson	Resort & pool	80	200,000	12	12	225 lpm @	49
Green Canyon Natatorium	Madison	Pool		50,000			0	44
Cooke's Greenhouse	Owyhee	Greenhouse	7	30,000	12	2	1700 lpm @	83
Given's H.S.	Owyhee	Pool	80	80,000	12	2	130 lpm @	
Jacobson's Feed Lot	Owyhee	Stock Watering	10	270,000	12	10	1700 Ipm @	
Bybee's Pool	Owyhee	Pool	20	30,000	12	2	1000 lpm @	60
Indian Springs Natatorium	Power	Resort	65	100,000	5	8	5800 lpm @	
Sligar's Resort	Twin Falls	Resort	25	100,000	8	4	450 lpm @	63
Salmon Falls H.S.	Twin Falls	Pool					2	67
Miracle H.S.	Twin Falls	Health spa	<u>_</u>	50,000	12	2	1325 lpm @	54
Banbury H.S.	Twin Falls	Resort	60	70,000	5	5	2300 lpm @	
Archibald's Greenhouse	Twin Falls	Greenhouses	5	20,000	12	****	1300 lpm @	
Lunty's Tropical Fish	Twin Falls	Test project	1				1500 lpm @	
Nat-Soo-Pah H.S.	Twin Falls	Resort	60	70,000	б	-104 -104	115 lpm @	36
Weiser H.S.	Washington	Resort & greenhous	e 1900's	130,000	12		20 lpm @	70
Midvale City Well	Washington	Pool	20	City property	Summer		7600 lpm @	

Table 2. Geothermal Development in Idaho - Hot Water Uses (continued)

مللقة ومقطات

The most famous is probably Lava Hot Springs, a state-owned natatorium and health spa.

Potential uses for geothermal energy in Idaho are many and varied. Figure 4 shows minimum temperatures necessary for agricultural and industrial uses in which geothermal energy has been used or proposed. Many of these uses are related to agriculture, forest products, or tourism--three of Idaho's principal industries. The greatest potential, as far as present knowledge of the resource in Idaho is concerned, is for space heating and greenhouse use. In rapidly growing areas, such as Nampa, Caldwell, Boise, Pocatello, and Twin Falls, thermal water of sufficient quantity might be discovered and used for space heating large buildings and new subdivisions. Groundwater heat pumps generally would give a large energy savings over present heat sources if the water temperature was less than desirable for direct space heating use. Groundwater heat pumps used both for heating and cooling also have a large potential even in areas that have a normal cool groundwater temperature.

The area of greatest potential for greenhouse operation is the Bruneau-Grand View area where high yield irrigation wells tap thermal aquifers where water temperature ranges from 20-84°C. The area is far from markets and major transportation routes but so is most other farmland in Idaho. Winter crops could conceivably be grown in this area for use in Idaho rather than shipping crops in from states with more favorable climates.

Table 3 and figure 5 show 14 areas in Idaho where potential exists for power generation where subsurface temperatures might be greater than 140°C, based on the Na-K-Ca and quartz chemical geothermometers. The Blackfoot Reservoir area was chosen on the basis of geology. The 140°C temperature was chosen as the lower limit as it appears that technology and rapidly escalating energy costs may make this limit economically attractive in the foreseeable future. Five locations appear to have aquifer temperatures high enough for wet steam generation. The highest estimated aquifer temperature expected from any of the 14 listed areas appears to be 175°C at Big Creek and Crane Creek hot springs The upper limit areas in Lemhi and Washington counties. given for Battle Creek-Squaw Hot Springs area in Franklin County may or may not be valid, because of uncertainties in interpretation due to travertine (CaCO₃) deposition at some spring vents. The Crane and Cove creeks to Weiser area have evaluation by the USGS. Blackfoot initial received Reservoir area and Battle Creek-Squaw hot springs areas have received initial evaluation by IDWR. The other areas need initial assessment work to more accurately determine their thermal potential. Many of these areas are remote and in rugged terrain. Assessment will, therefore, be somewhat

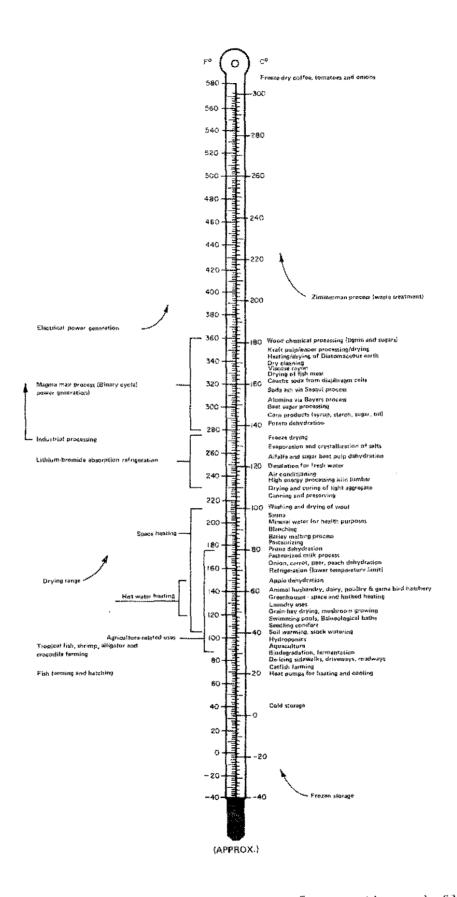


FIGURE 4. Required temperatures for geothermal fluids.

-12-

-13-

AKEAS IN IDAH	IU MUST FAVORABLE FO		IERATION BASED ON SURFACE MANI Measured			Princi-		D GEOTHERMOMETERY (1978)	
Area	Location	Te	urface mpera- ire ^o C	*Best E Subsur• Na-K-Ca		pal Land Owner	Type of Genera - tion	Area Number Figure	
Battle Creek-Squaw H.S.	158-39E-8bdc1S & 158-39E-17bcd18	Franklin	84	250	150	Private	Wet steam	1	Could be mixed water geothermometers dif- ficult to interpret.
Big Creek H.S.	23N-19E-22c1S	Lemhi	93	175	175	USFS	Wet steam	2	Ridge top discharge, silica & carbonate deposition, boiling at surface.
Blackfoot Reservoir	65-41E-19bac1	Caribou	42	?	?	Private, BLM, BIA	?	3	Picked on basis of favorable geology & geophysics.
Bonneville H.S.	10N-10E-31c1S	Bolse	85	142	137	USFS	Binary cycle	4	Used for a steam bath and bathing by campers.
Crane Creek H.S.	11N-3W-7bdb1S	Washington	92	166	176	Private	Wet steam	5	Near boiling at the surface.
Cove Creek H.S.	10N-3W-9ccc1S	Washington	74	172	152	Private	Wet steam	6	11 km southeast of Crane Creek H.S.
Deer H.S.	9N-3E-25bac1S	Boise	80	139	147	Private	Binary cycle	7	Siliceous sinter deposits.
Indian Creek H.S.	17N-11E-15acd1S	Valley	88	137	142	USFS	Binary cycle	8	ln wilderness area.
Magic Reservoir	15-17E-23aab1	Blaine-Camas	5 72	174	139	Private	Wet steam	9	Chemistry of waters somewhat similar to Raft River.
Raft River	155-26E-23bbc1	Cassia	92	147	135	BLM	Binary cycle	10	Plant under construc- tion. Geothermomete confirmed by drillin Na-K-Ca most accurat
Roystone H.S.	7N-1E-8dda1S	Gem	54	150	147	Private	Binary cycle	11	Presently a natatoriu
Vulcan H.S.	14N-6E-11bda1S	Valley	84	147	135	USFS Private	Binary cycle		·
White Licks H.S.	16N-2E-33bcc1S	Adams	65	145	145	USFS Private	Binary cycle	13	Bath houses for campers.
Weiser H.S.	11N-6W-10cca1	Washington	78	141	156	Private	Binary cycle	14	Presently a natatoriu with greenhouse oper tion.

2.01

*See first footnote in Table 4.

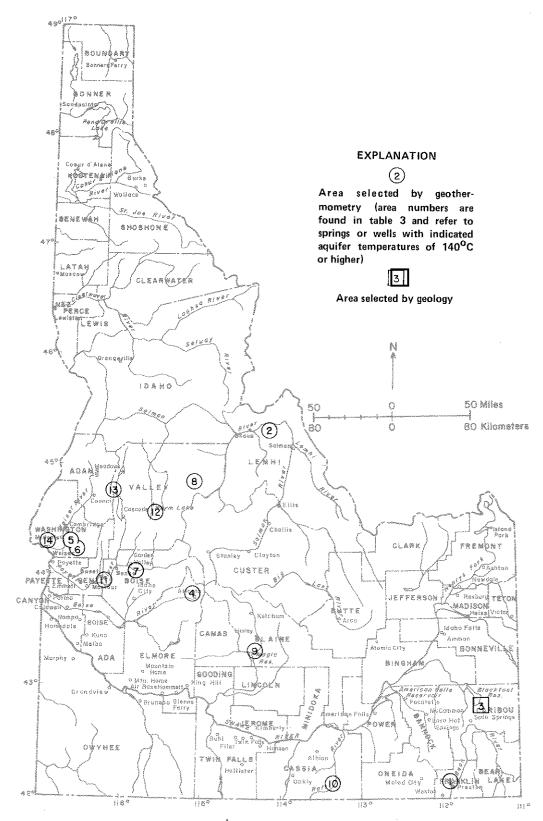
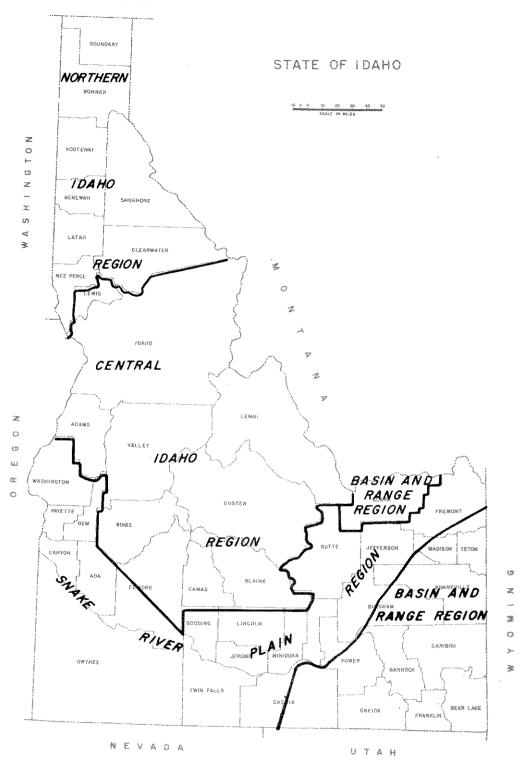


FIGURE 5. Index map of Idaho showing areas most favorable for power generation based on surface manifestation, geology and geotherometery. (Modified from Young and Mitchell, 1973.)


difficult and expensive, but if geothermal energy is going to make an impact on Idaho's electrical power base, and it appears to have potential to do so, the initial assessment will have to be made.

ORGANIZATION OF DATA

6.666.000

This report has been organized into four subregions within the state boundaries due to thermal waters in the separate subregions having different characteristics or modes of occurrence. Individual counties within a specific subregion are discussed in separate chapters. Figure 6 shows the approximate subregion boundaries and the counties they encompass.

Basic data tables containing information on the known springs and wells comprise a major section in the appendix of this report. The appendix also contains preliminary environmental assessments of several geothermal resource areas. CANADA

)

FIGURE 6. Index map of Idaho showing locations of counties and subregions covered in this report.

GEOTHERMAL POTENTIAL OF THE NORTHERN IDAHO "PANHANDLE" REGION INCLUDING SHOSHONE AND NEZ PERCE COUNTIES

There are no known thermal anomalies located in the eight counties that make up the Northern Idaho Panhandle area with the exception of some hot rock material deep in the mines in Shoshone County (figure 7) and one warm well in NezPerce County (figure 8). Generally very little is known of the geothermal potential of this area. Specific information known and relating to the geothermal potential in NezPerce and Shoshone counties follows.

SHOSHONE COUNTY

Shoshone County, located in the Panhandle area, is known for its silver, lead, and zinc deposits.

The generalized geologic framework of the area consists of Precambrian metasediments of the Belt Supergroup formations. These formations have undergone slight metamorphism and are composed primarily of quartzites, argillites, shales, and impure limestones.

The Belt metasediments (undifferentiated) consist of the Prichard, Burke, Revett, St. Regis, Wallace, and Spruce formations with the ore being mainly contained in the lower Burke and upper Prichard formations.

The structure of the area is relatively complex with two major fault trends; one trending northwest-southeast and the other trending northeast-southwest.

Mining has taken place in the Coeur d'Alene mining district since the middle 1800's. Currently the Bunker Hill, Sunshine, Crescent, Galena, and Star Morning mines are just a few of the deeper active mines located in Shoshone County. Most of the mines in the area are relatively water barren and diamond drilling and/or mining excavation has not encountered a significant geothermal anomaly. Any water needed for drilling or mining purposes is piped into these mines from surface sources.

Thermal gradient studies of the rock temperatures in the mines show temperatures increase from a normal temperature at the surface to those exceeding 40° C at deeper levels within the mines.

In the Star Morning Mine, rock temperatures were recorded to be 42° C at the 7300 ft level. In the Galena

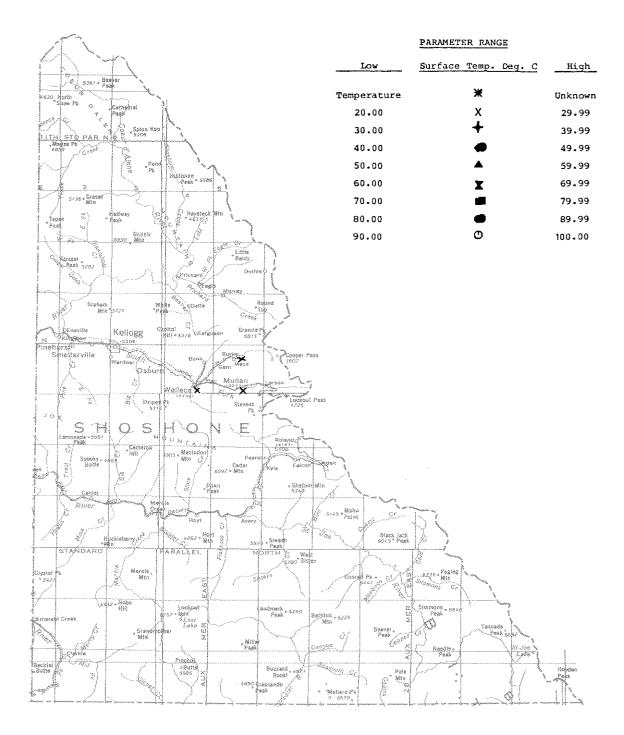
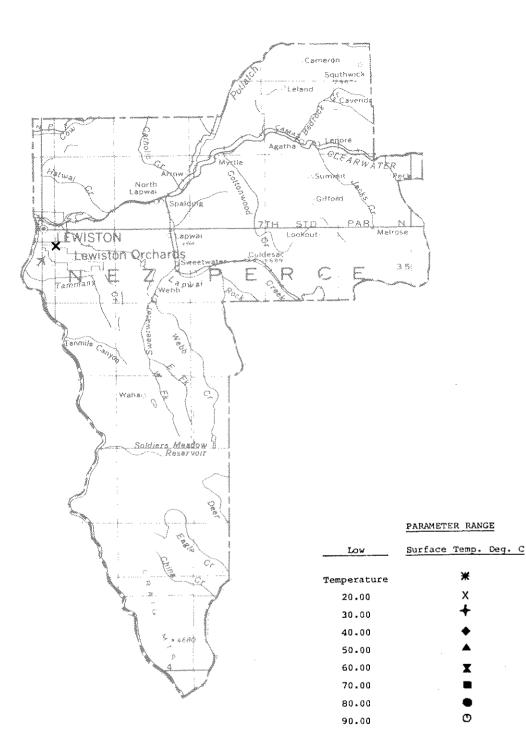



FIGURE 7. Index map of Shoshone County showing locations of known thermal water occurrences with surface temperatures above 20°C.

High

Unknown

29,99

39.99

49.99

59.99

69.99

79.99

89.99

100.00

FIGURE 8. Index map of Nez Perce County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Mine, rock temperature at the 1600 ft level is $22^{\circ}C$ and increases with depth.

Surface water brought into a mine is subsequently heated through use to the existing rock temperature at the level at which it is utilized. Excess water that accumulates is then pumped out of the mine and discharged at the surface or used in a surface facility.

For the last three years, the Bunker Hill Mine has expelled excess water at the surface at rates of 4393 liters per minute (1/m) to 7153 1/m at temperatures near 22°C. The Crescent Mine expels excess water at the rate of 719 1/m at temperatures near 37°C. The Galena Mine in 1978 pumped excess water out of the mine at the rate of 397 1/m at temperatures near 24°C. Waters expelled from the Galena Mine are very low in dissolved solids, have a pH of 7.6 \pm 0.2 and are reused in the beneficiating plant. See figure 7 for mine locations.

Certain areas of these mines at some future date may have the potential to store and naturally heat a sufficient amount of water to be used for large scale thermal space heating.

Presently, any excess water that is pumped out of the mines not being utilized in their surface facilities could possibly be utilized for local space heating.

NEZ PERCE COUNTY

Little interest has been expressed in the geothermal potential of Nez Perce County and nothing has been previously written on its potential. One thermal well, however, has been drilled near Lewiston by the city of Lewiston (figure 8). This well has a surface temperature of 20°C, discharges 4500 1/min and is 183 m deep. No chemical analysis is available for the well and, consequently, it is impossible to determine the possibility of hotter water at This well and other wells drilled in the future depth. could, however, be used at this temperature for space heating and cooling using groundwater heat pumps provided sufficient flow rates are available. A water sample from this well should be chemically analyzed and aquifer temperature estimates should be made. It is possible that more and hotter thermal water might be found in the Lewiston area.

GEOTHERMAL POTENTIAL OF THE CENTRAL IDAHO REGION INCLUDING IDAHO, ADAMS, VALLEY, LEMHI, BOISE, CUSTER, NORTHERN ELMORE, CAMAS AND NORTHERN BLAINE COUNTIES

The vast region of central Idaho, including the Idaho batholith, is discussed as a separate section due to similarities in geology, geochemistry, structurally related occurrences, and the depositional features thermal springs in this region have in common.

Most of the thermal water found in this region appears springs, which range in temperature from 20-93°C. as Locally, several wells have encountered thermal water. It is commonly known that these thermal springs and wells are located along the major and minor streams and rivers in the area. They thus emerge at the lowest possible elevation, although many are found in the upper reaches of drainages. An example are 18 thermal springs that occur along the Middle Fork of the Boise River along a 45 km stretch between Arrowrock Reservoir and Atlanta. However, a more detailed examination reveals that thermal springs in this region appear rather evenly spaced along narrow arcuate zones or trends, some of which cut across drainage divides (figure 9 in pocket). Other zones follow major drainages, as in the Boise and Payette river systems. In some cases, mostly along the longer zones, the spacing tends to increase reqularly in one direction. In some cases, where zones intersect, as at Indian Creek and Middle Fork Salmon River, two springs occur near the zone intersections. The arcuate zones range in length from 20 to 80 km and appear to be very These arcuate zones are most numerous and well narrow. defined in the central batholith region in Idaho. Well drilling and spring locations in other regions of Idaho have revealed similar zones. The regular spacing of springs along these zones appears to result from the regular spacing of linear features associated with them. Why the springs at nearly the same point on separate parallel occur lineaments is unknown but probably is the result of another lineament or structure (not visible on Landsat images) which cross the regularly spaced linears. The springs occur at the intersections.

Springs along these arcuate zones tend to occur (1) near the confluence of streams and/or rivers, such as at Pistol Creek Hot Springs (16N-10E-14dbclS) and Little Pistol Creek Hot Springs (16N-10E-14dbclS); Riggins (24N-2E-14dbdlS), Loon Creek (17N-14E-19bdblS) and Hailey Hot Springs (2N-18E-18dbblS); or (2) near where a drainage is diverted around a large promontory or rock outcropping which projects into the

Verse de la composición de la

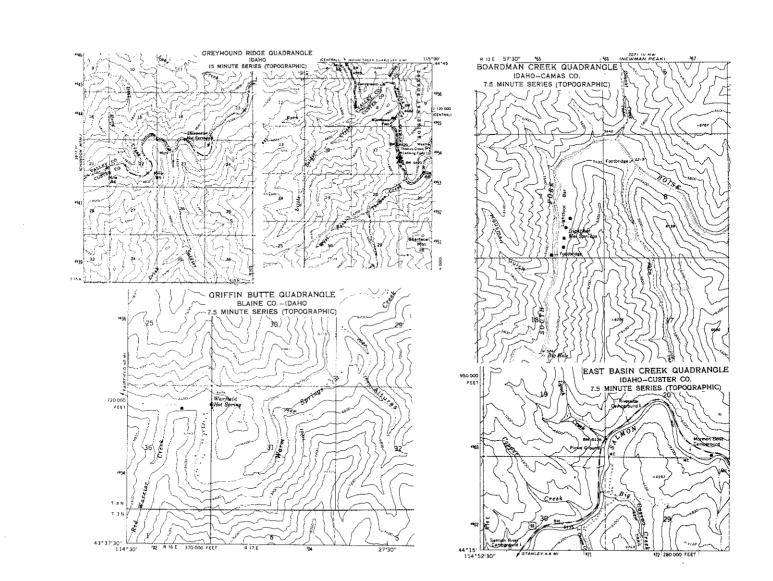
stream and around which the stream was forced to make a horseshoe or U-shaped bend. Mormon Bend (11N-14E-20aablS), Riverside (16N-12E-16cbblS), Sheepeater (15N-10E-24bbblS), Sunflower Flat (16N-12E-8bbblS), Thomas Creek Ranch (16N-12E-17dadlS), Lightfoot Hot Springs (3N-13E-7dcalS) and Warfield (4N-17E-31bbclS) Hot Springs are examples of the second type of occurrence (see figure 10). It is conceivable that many undiscovered thermal springs issue from the bottoms of river channels where the flowing water masks the thermal water.

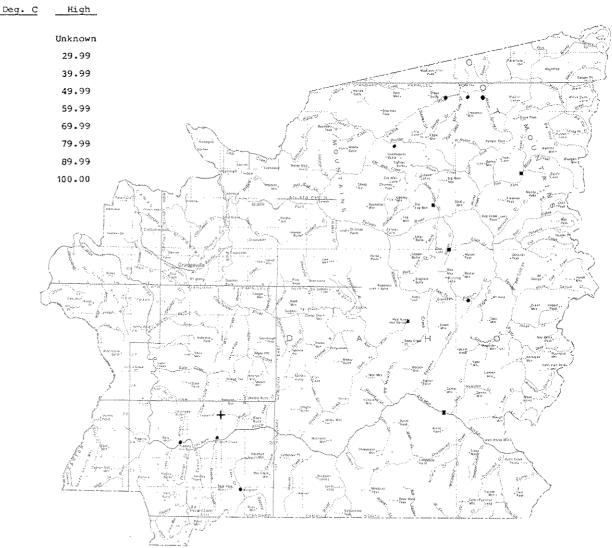
Figure 9 (in pocket) is a superposition of linears from Day (1974) and circular features of Haskett (1974) on a spring and well location map of Idaho. This figure shows that many of the thermal springs and wells are associated (found on or very near) with large linear features that are seen on high altitude U-2 and satellite photos. Few of Day's linears are found to fit the curvilinear zones defined by the spring occurrences, but data strongly suggest structural control for most thermal water in the region. A1though the exact nature of the linears is not known, they could represent joints or faults or some other type of rock fracture. One theory of the origin of these thermal springs is that they occur where ancestral joints, formed by shrinkage or contraction of deeply buried, cooling igneous or metamorphic rock complex intersects faults, or other fractures allowing circulation of meteoric (rain and snow) water to depths where the water is heated by hot rock. The hot water being less dense than the colder water rises along the same or other joints, faults or fractures to form a thermal spring. Thus, most of the thermal springs in this region of Idaho probably represent deep circulation of meteoric waters to depths where the water is heated by contact with hot rock in a region or along zones of above normal geothermal gradient or heat flow.

These types of occurrences appear typical. Perhaps the localized geothermal anomalies--those associated with high intensity shallow seated heat sources (intrusions)--might be those which are not associated with arcuate belts or zones. Alternatively, at least some of the zones could represent fractures or other structures into which magma has intruded to shallow depths producing high intensity shallow seated heat sources.

IDAHO COUNTY

Thirteen thermal springs are known to occur in Idaho County (figure 11). They are fairly uniform in temperature, ranging from 41 to 59°C. They are not limited to any one locality or rock type, but are found sparsely distributed over a large area. Four springs, Wier Creek (36N-11E-13bcclS), Colgate Licks (36N-12E-15abdlS), Jerry Johnson




FIGURE 10. Topographic maps showing typical central Idaho thermal spring occurrences near sharp river bends. Black dots indicate spring locations.

-23-

FIGURE 11. Index map of Idaho County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

	PARAMETER RANGE				
Low	Surface Temp. Deg. C	High			
Temperature	*	Unknown			
20.00	х	29.99			
30.00	+	39.99			
40.00	\$	49.99			
50.00	<u>A</u> .	59.99			
60.00	X	69.99			
70.00	12	79.99			
80.00	*	89.99			
90.00	C	100.00			
30.00 40.00 50.00 60.00 70.00 80.00	-∲- -∲- -▲- 	39.99 49.99 59.99 69.99 79.99 89.99			

(36N-13E-18add1S), and an unnamed spring occur within a small area in northeastern Idaho County on or near the Lochsa River. Most of the other springs are in remote locations, wilderness or recreational areas, accessible only by pack trail. This, along with restricted use of these areas, precludes large scale development. Riggins (24N-2E-14dbd1S), Burgdorf (22N-4E-1bdc1S), and Red River Hot Springs (25N-12E-3ddd1S) are popular resort areas and boast improvements, although the Red River Resort recently burned down and the Burgdorf Resort pools have been officially closed by the district health officials. Jerry Johnson Hot Springs is used for informal bathing by campers and backpackers.

Most thermal springs in Idaho County occur within granitic rocks or near contacts of other rock types with granitic rocks. All are associated with known faults or linear features. The best defined arcuate trend in the region is represented by Stanley (34N-10E-6caalS), Stewart (32N-11E-4caalS), Martin (31N-11E-24dcdlS) hot springs and Running Springs (29N-12E-14abblS) in east-central Idaho County (figure 9 in pocket).

Water quality chemical data from thermal water occurrences in Idaho County are given in basic data table 1. These analyses provide a chemical comparison of thermal water in the area and were used to calculate selected chemical-constituent ratios and to estimate aquifer temperatures.

Chemical analyses are available for only six of the fourteen hot springs found in Idaho County. All of the analyzed springs are low in total dissolved solids, ranging from 582 mg/l at Riggins Hot Springs to 133 mg/l at Wier Creek Hot Springs. The pH of these waters is alkaline, ranging from 8.1 to 9.0, except for Red River Hot Springs. These springs have a flouride content of 23 mg/l whereas other sampled springs in the county have a flouride content of less than 6 mg/l. Typically, the waters in Idaho County are similar to most other thermal waters throughout central and southwestern Idaho that issue from granitic rock or areas thought to be underlain by granitic type rocks.

Aquifer temperatures calculated from the silicia and Na-K-Ca chemical geothermometers and mixing models, as well as selected atomic ratios, are given in basic data table 2. Maximum subsurface temperature expected from wells drilled in the area of springs for which chemical analyses are available probably would not exceed 100° C and may be most closely approximated by the chalcedony or Na-K-Ca temperature, columns T₄ and T₅, basic data table 2.

ADAMS COUNTY

Seven thermal springs and two wells are known in Adams County with measured surface temperatures exceeding 20°C The two wells are located near the town of (figure 12). Council. Both are fairly low temperature at 22°C. Several other wells in the Council area have above normal tem-17°C of to (10⁰C above mean annual peratures up Well 16N-1W-15bacl is 35 m deep and was temperature). drilled within 0.4 km of the Hornet Creek-Weiser River confluence. The other well, 16N-1W-llacdl, was drilled to a depth of 64 m near the valley-mountain boundary fault zone near Grossen Canyon. No chemical analyses are available from these wells. Samples should be collected to help determine their geothermal potential.

Starkey Hot Springs (18N-1W-34dbblS), an attractive resort area, discharges 500 l/min of 56°C water near the confluence of Warm Springs Creek and Weiser River where the Weiser River bends north and abruptly turns south again in the steep-walled canyon surrounding Fort Hall Hill. Starkey Hot Springs appears structurally typical of the thermal spring occurrences in central Idaho. Aquifer temperatures indicated by Na-K-Ca and chalcedony chemical geothermometers are 70 and 77°C, respectively. These temperatures could have uses up to and including the lower temperature limit of refrigeration (see figure 4). Dissolved solids and flouride concentration are low, being 348 mg/l and less than 1 mg/l, respectively. The pH is 8.6. The chemistry of the water suggests a source rock not similar in chemical or mineralogical constituents to granitic rocks.

Council Mountain Hot Springs (15N-1E-2bdblS) is located 2.5 km up Warm Springs Creek from its confluence with the Middle Fork Weiser River southeast of Council. It issues at 68°C and 190 l/min from Quaternary alluvium near granitic rock. No other information is available on this thermal spring. Its location appears atypical of most springs in central Idaho.

White Licks Hot Springs (16N-2E-33bcclS) is located in the Middle Fork Weiser River drainage and issues from Quaternary alluvium near Miocene basalt and Cretaceous granitic rocks. Ross (1971, p. 9) reported that White Licks Hot Springs occurred on a relatively short north trending fault and had an abnormally high mineral content. Water issues from numerous spring vents at 63 to $65^{\circ}C$ (Young and Mitchell, 1973, p. 9) and has a slight sulfur odor. The quartz and Na-K-Ca chemical geothermometers estimate aquifer temperatures of 142 to $145^{\circ}C$, the lower limit of binary cycle power generation, might be found in the area by deep drilling.

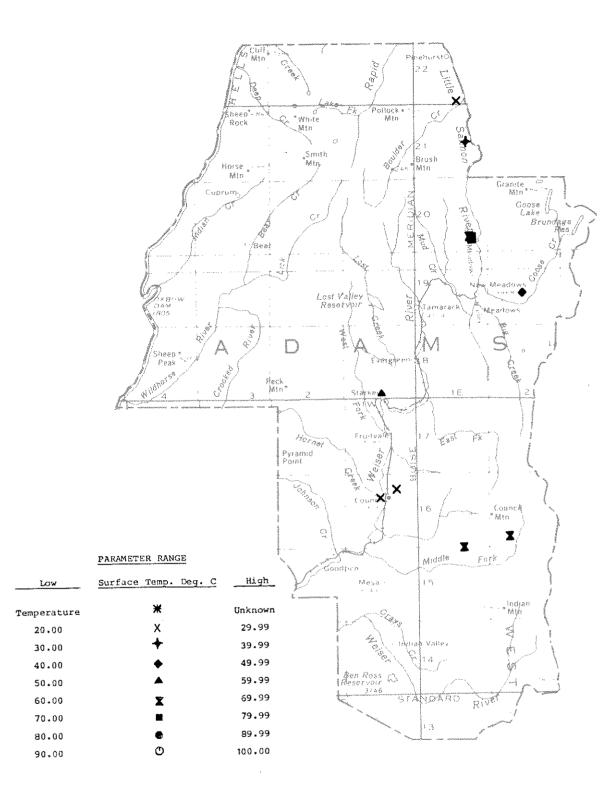


FIGURE 12. Index map of Adams County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Zims Resort (20N-1E-26ddalS) issues at 65° C and about 380 l/min from alluvial fill near the fault contact between Tertiary basalt and Cretaceous granitic rock. Dissolved solids are fairly low for this part of Idaho at 666 mg/l and the flouride content is 2.3 mg/l. Good agreement between Na-K-Ca and chalcedony chemical geothermometers indicate aquifer temperature may be about 83 to 84° C.

Krigbaum Hot Springs (19N-2E-22ccalS) near Meadows, issues from a northeast trending normal fault in Cretaceous granitic rocks near Miocene basalt from two separate spring vents at 40 and 42° C at 150 l/min. The chalcedony and Na-K-Ca chemical geothermometers indicate subsurface temperatures of 91 and 96°C, respectively.

The other springs are located on the Little Salmon River north of Meadows Valley (22N-1E-34dadlS and 21N-1E-23abalS). The springs have fairly low temperatures (26 and 30°C) and low discharges.

The chalcedony and Na-K-Ca chemical geothermometers seem to be more consistent in Adams County (at least for springs and wells for which analyses are currently available) than anywhere else in the state.

The geophysics which have been done in Adams County are reported on by Donaldson and Applegate (1979). They reported that:

... the preliminary map (figure 13) of southern Idaho shows the Council-Cambridge area being dominated by a distinct gravity high with a residual magnitude of nearly 40 mgal (milligal) near Council (figure 14). The gradient of the anomaly is enhanced to the east where the dense basalts lie adjacent to relatively low density intrusives. This steep gradient indicates a sharp contact between basalt and batholith rocks and a faulted contact is certainly possible. The gravity profile as a whole indicates that these plateau basalts are considerably thickened in this area. The anomaly may represent a local embayment on the plateau-basalt depositional surface or perhaps subsidence and filling during the volcanic activity.

Bond (1975) shows many faults in this area and Witkind (1975) classifies several faults as active (figure 15). The faulting patterns (Bond, 1978) suggest that alluvial-filled river cut valleys in this area may be fault controlled. Unfortunately, the gravity data is very sparse and does not define the valley margins or allow any estimation of their depths or structural controls.

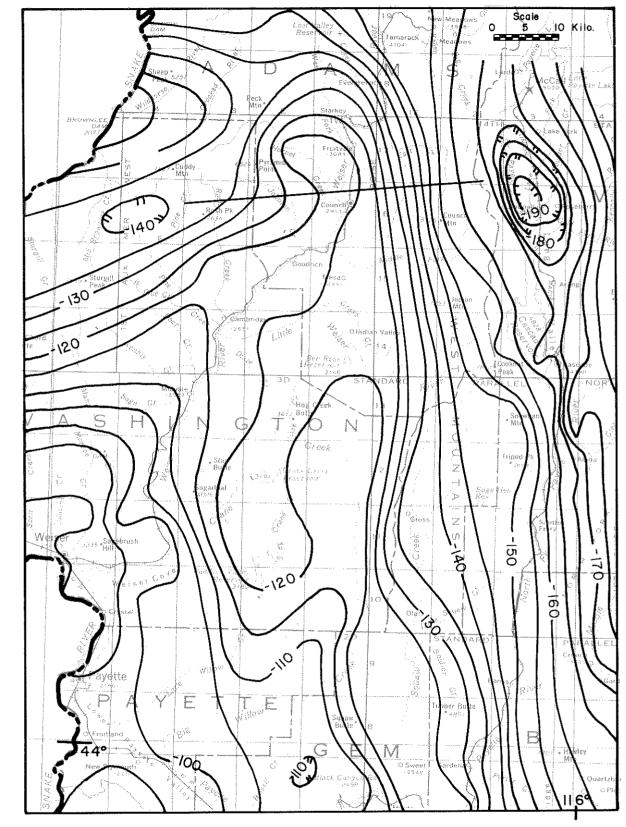


FIGURE 13. Gravity map of Council-Cambridge area, contour interval is 5 milligals. (Mabey, Peterson, and Wilson, 1974).

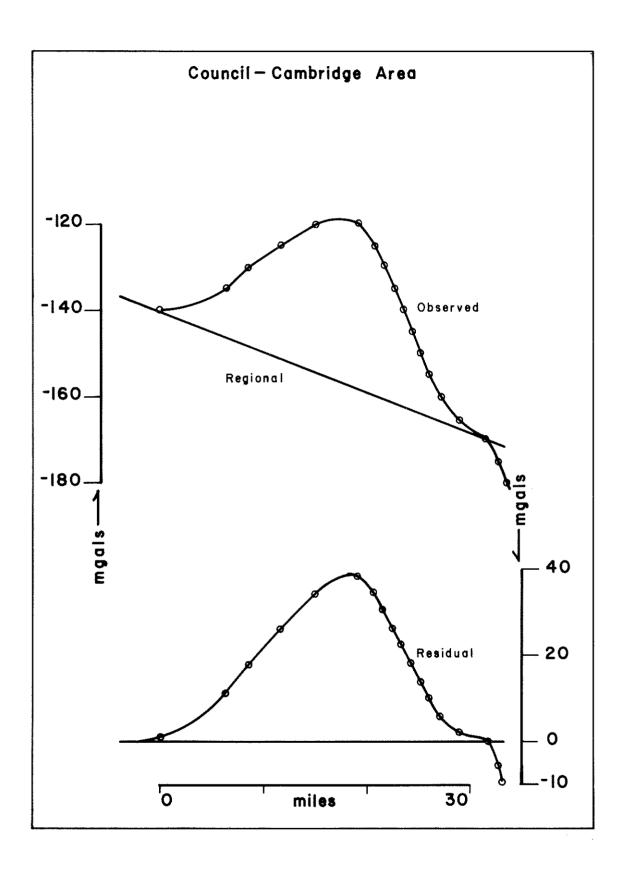


FIGURE 14. Gravity Profile near Council (from Donaldson and Applegate, 1979).

-30-

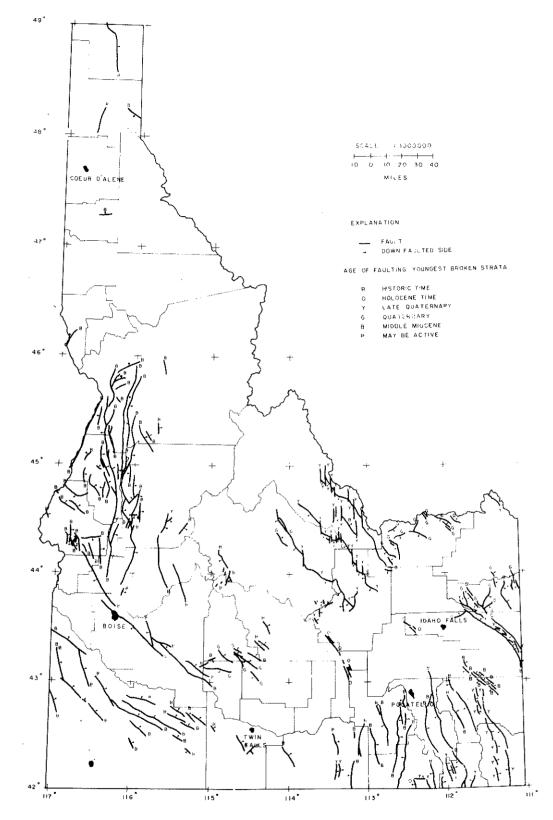
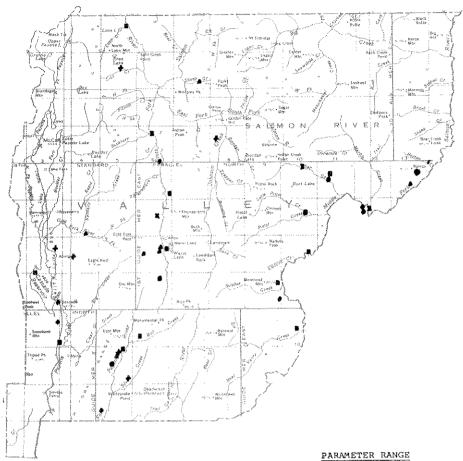


FIGURE 15. Index map of Idaho showing known and suspected active faults. (Modified from Witkind, 1975.)

-31-

VALLEY COUNTY

Occurrences of thermal springs in Valley County are similar to occurrences in Idaho County but they appear to be more numerous (figure 16). Many are accessible by graded and drained gravel roads in the more remote locations and some occur near major transportation routes. Others are in wilderness areas accessible only by pack trail or river travel. Many are used by game animals as salt licks due to minor amounts of sodium (Na) and chlorine (Cl) ions in the water.


Chemical analyses are available for only 20 of the 41 known thermal water occurrences in Valley County. Temperatures range from 20°C at Dollar Creek Warm Springs (16N-6E-14ccclS) to 88°C at Indian Creek Hot Springs (17N-11E-21blS) in the Idaho wilderness area. Dissolved solids are very low, the highest being 412 mg/1 and the lowest reported to be 192 mg/1. The waters may be classed as sodium carbonate or sodium bicarbonate type waters according to the dominant chemical species dissolved in the water.

Two areas in Valley County that might be candidates for power generation sites are Indian Creek Hot Springs and Vulcan Hot Springs (14N-6E-11bdalS), provided quartz is the mineral controlling silica content in the thermal waters. As Indian Creek Hot Springs is in the Idaho wilderness area, however, it is not likely to be developed. The two springs exhibit very similar chemical qualities. Subsurface temperatures appear to be in the 135°C range, according to the Na-K-Ca chemical geothermometer and may be as high as 145-150°C, according to the quartz chemical geothermometer (columns T₅ and T₁, basic data table 2.)

Another noteworthy thermal spring is Boiling Springs (12N-5E-22bbclS) on the Middle Fork of the Payette River. This spring, according to Ross (1971, p. 10), is perhaps the best studied thermal spring in Idaho. The water contains several metallic ions, including mercury. Ross (1971, p. 10) stated that:

Boiling Springs is only one of eight thermal springs in this area. All flow from granitic rocks along shear zones paralleling the river. Springs along the Middle Fork of the Payette River seem to be along an extension of the same fault that acts as a conduit for springs along the South Fork of the Salmon River.

Although called Boiling Springs, surface temperature is only 85°C. Subsurface temperatures appear to be not much higher, only 89°C according to the chemical geothermometer.

Low	Surface Temp. Deg. C	High
Temperature	*	Unknown
20.00	Х	29.99
30.00	+	39.99
40.00	ب	49.99
50.00	A	59.99
60.00	X	69.99
70.00		79.99
80.00		89.99
90.00	C	100.00

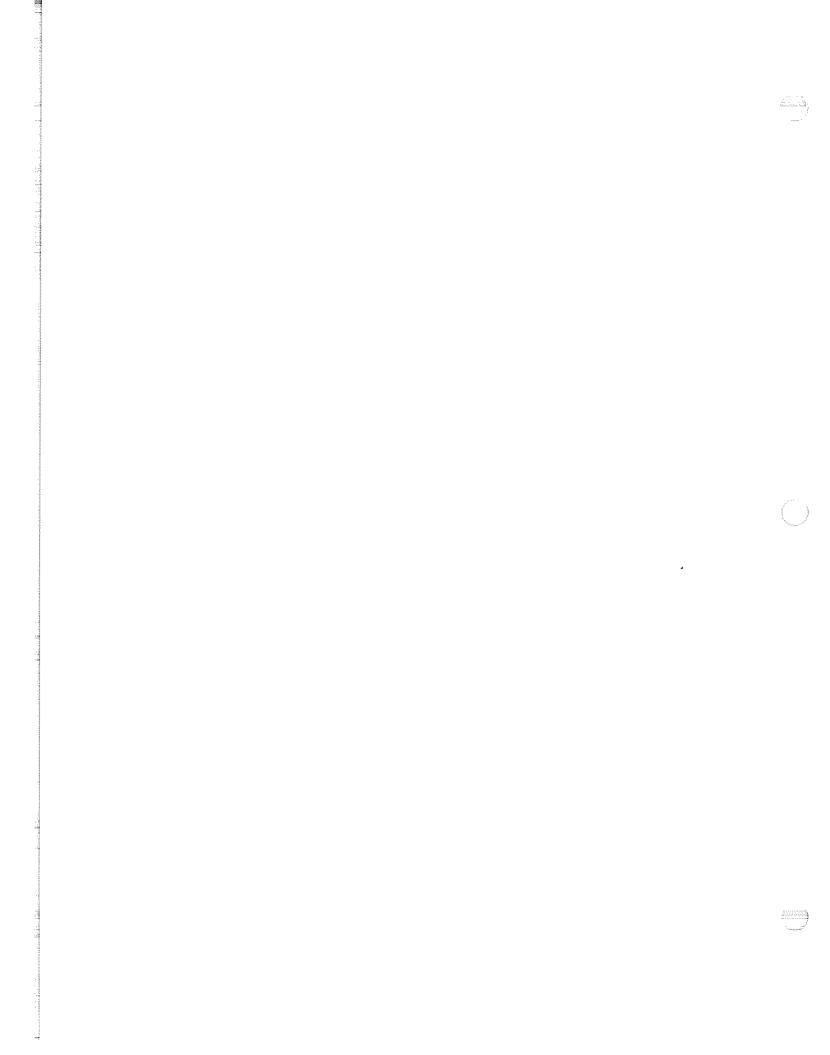
FIGURE 16. Index map of Valley County showing locations of thermal water occurrences with surface tempera-tures of 20°C or higher.

Cater and others (1973 p. 383-389) discussed the thermal springs in Valley and Custer counties along the Middle Fork of the Salmon River and stated:

Thermal springs in the Idaho primitive area are in an area of ...volcanics and tectonic activity. Most rocks are Cretaceous Idaho batholith, Eocene Challis volcanics and Eocene granite. Rock types do not appear to influence the distribution of the springs. Tertitary mafic dikes near the thermal springs indicate a possible mutual relationship to deep-seated heat sources.

The igneous rocks are not porous, but numerous surface fractures and faults are apparently extensive, providing the channel ways for convective systems that permit surface waters to reach deep-seated heat sources and return to the surface at greatly elevated temperatures. All springs are on numerous small faults and fractures within a few feet of major streams along probable faults. Most faults and fractures strike N. 45° W; dips are normally greater than 45° .

With the exception of Indian Creek Hot Springs, subsurface temperature in the Middle Fork Salmon River area probably will not exceed boiling as shown by the chalcedony and Na-K-Ca chemical geothermometers (basic data table 2, columns T_4 and T_5). Wilderness area classification precludes large scale development of any of these thermal springs.


Wilson and others (1976) studied the geothermal potential of the Cascade area in Valley County. They stated:

Field and laboratory investigations show the existence of a geothermal resource in the Cascade area of west-central Idaho which may have development potential for non-electrical uses. Numerous high angle faults cut the Idaho batholith in this area; displacements on some of these faults are as great as 3050 m and many of them have associated alteration zones. X-ray analyses of samples collected from these zones indicate substantial hydrothermal alteration. Fault controlled hot springs have temperatures at the surface of up to 71°C.

Microseismic monitoring in the area suggests that east-west trending faults are active, supporting the plausibility of an accessible geothermal resource.

FIGURE 17. EROS false color infrared Landsat EDISE image of part of west-central Idaho and eastern Oregon showing selected linear features and thermal water locations with surface temperatures above 20°C. Note: Linear features occur between the black lines.

The domestic groundwater supply for most of the area is from very shallow wells, most of which are developed in the upper 200 feet of the valley floors and derive their water from joints rather than from fault systems. Preliminary data indicate no connection between the thermal systems and the water supply for the area.

The Na-K-Ca and chalcedony chemical geothermometers suggest aquifer temperatures may be as high as 46 to 66°C near the city of Cascade.

Thermal water is associated mostly with granitic rocks of the Idaho batholith.

Earth Resources Observation Systems (EROS) digital image enhancement system satellite image (figure 17) of the Cascade-Long Valley area shows that Cascade lies near the intersection of major linear features. These may control the occurrence of thermal water in the area. Other thermal water occurrences in west-central Idaho and selected linear features associated with them are also shown on the image.

LEMHI COUNTY

Eleven thermal springs have presently been documented in Lemhi County (figure 18). About half are in remote (primitive or recreation) areas which precludes development. Chemical data have been collected for only four of the eleven thermal springs located in Lemhi County.

The hottest thermal spring in the county and one of the hottest in Idaho is Big Creek Hot Springs (23N-18E-22cadlS) which has a surface temperature of 93°C (boiling). It is located high in the Hot Springs Creek drainage (over 330 m above the Salmon River, the major drainage in the area) near Panther Creek at the top of a divide (ridge top discharge). Quartz and Na-K-Ca chemical geothermometers both indicate subsurface temperatures are 160-175°C. Both siliceous and carbonate deposition is found near active vents. Water is presently used by big game hunters as a steam bath. Big Creek Hot Springs appears from available data to date to be one of the best prospects in Idaho for power generation.

Bennett (1977) reported on the geology and geochemistry of the Blackbird Mountain-Panther Creek region in Lemhi County, Idaho. He stated (p. 4):

The Panther Creek region is located in the Salmon River Mountains. The area is characterized by flattopped mountains and moderate to steep V-shaped canyons. This entire section of Idaho is quite striking from the air as concordant elevations give

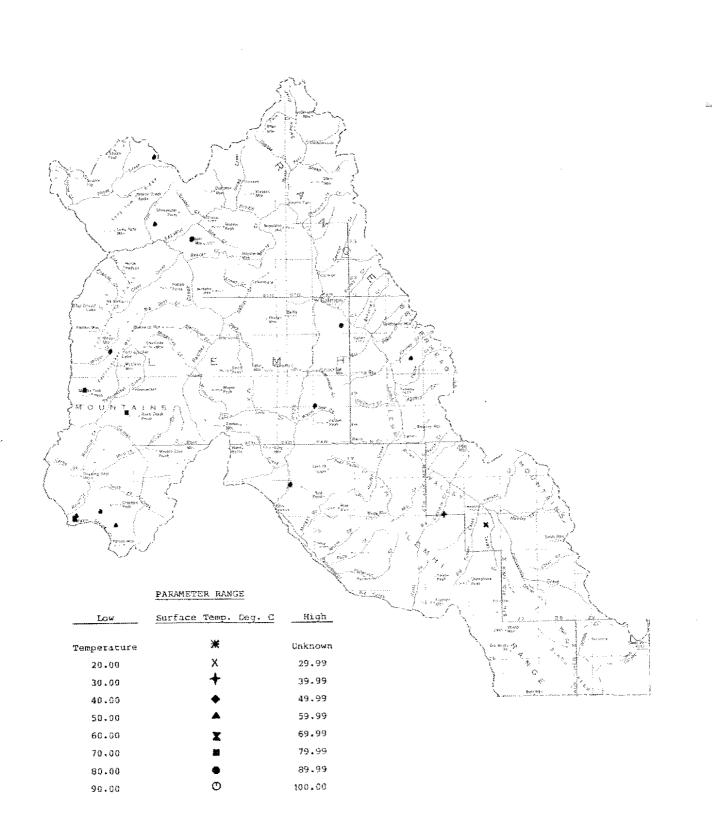


FIGURE 18. Index map of Lemhi County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

den hillig

ř

the appearance of a flat plain stretching from the Bighorn Crags (Tertiary pluton) which rise above the general remnant surfaces. Elevations range from 976 m in the Salmon River Canyon to over 2,700 m in the western part of the study area.

Bennett further stated (p. 8):

The rocks in the Blackbird Mountain guadrangle are, for the most part, Precambrian metasediments and intrusives which have undergone several episodes of folding and faulting. Large scale thrust faulting, block faulting, and Tertiary igneous activity (both and extrusive) have added intrusive to the Lack of good stratigraphic control complexity. greatly complicates the interpretation of the geology; indeed, even the gross ages of the main units remains questionable.

Bennett's linear map of the area is included here as figure 19. He noted five major trends:

- a. There are three prominent sets of linears, a northwest set, a northeast set and a northnorthwest set.
- b. A set of linears which outlines the eastern edge of the Crags pluton may represent a curvilinear fracture system associated with emplacement of the pluton. These linears trend northwest along Roaring Creek, northsouth just east of Cathedral Rock and northnortheast along Yellowjacket Creek.
- c. Many of the major drainages appear to coincide with linear segments such as the Panther Creek-Napias Creek lineament.
- d. Linears appear more concentrated in the area of Blackbird Creek, Musgrove Creek and Porphyry Creek. In this area, the intersection of northeast and northwest linears forms a boxwork pattern. Several of the northeast linears are confined to a belt bordered by the Panther Creek-Napias lineament to the east and the headwaters of Blackbird Creek, Musgrove Creek and Porphyry Creek to the west.
- e. Comparison of figures 20 and 21 shows that the -150 gamma contour, which may represent the western limit of the Leesburg stock, coincides with linear segments just east of

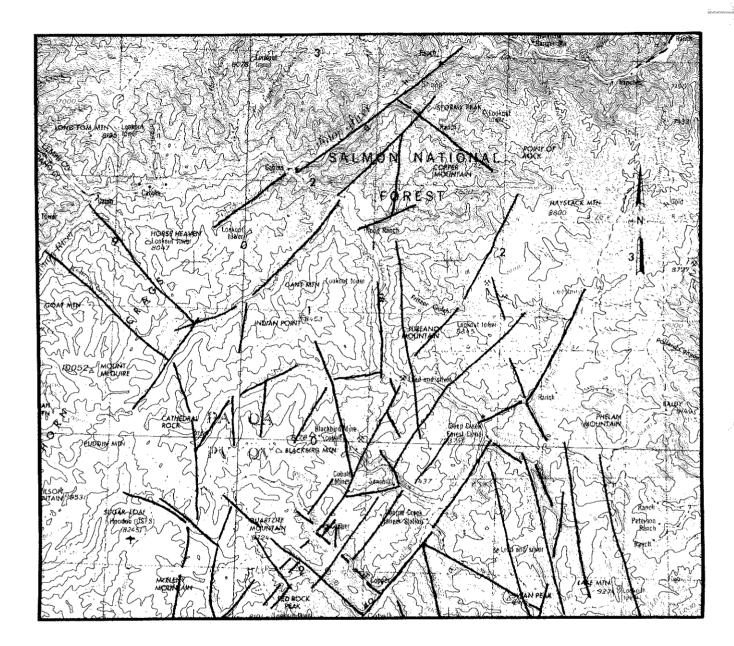


FIGURE 19. Linear map compiled from Landsat, false color, infrared imagery. Topographic base is from Elk City AMS map (scale 1:250,000). From Bennett, 1977, p. 33.

the Panther Creek and along Napias Creek and Moccasin Creek.

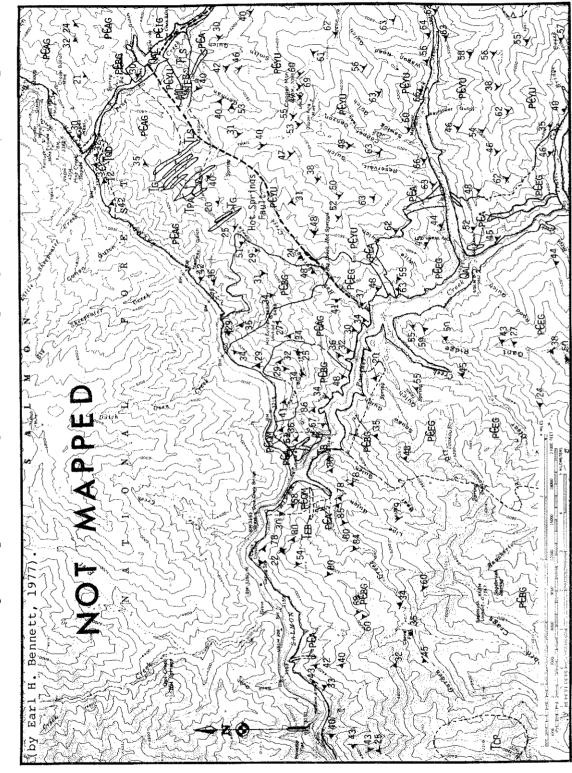
Of interest to this study are the linears that intersect in the vicinity of Big Creek Hot Springs. The Hot Springs Creek part of the Clear Creek-Hot Springs Creek lineament has been mapped as a fault (figure 19). The north trending lineament approximately follows the Augen-Greiss-Yellowjacket Formation (figures 19 and 20).

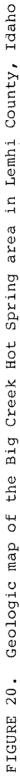
Of interest to this report is Bennett's aeromagnetic map of the area as shown in figure 21. Bennett reported that:

A positive magnetic anomaly (maximum +150 gamma) is expressed northwest of Leesburg on Camp Creek.

Bennett believed this represented the magnetic expression of the Leesburg Stock. Bennett reported that:

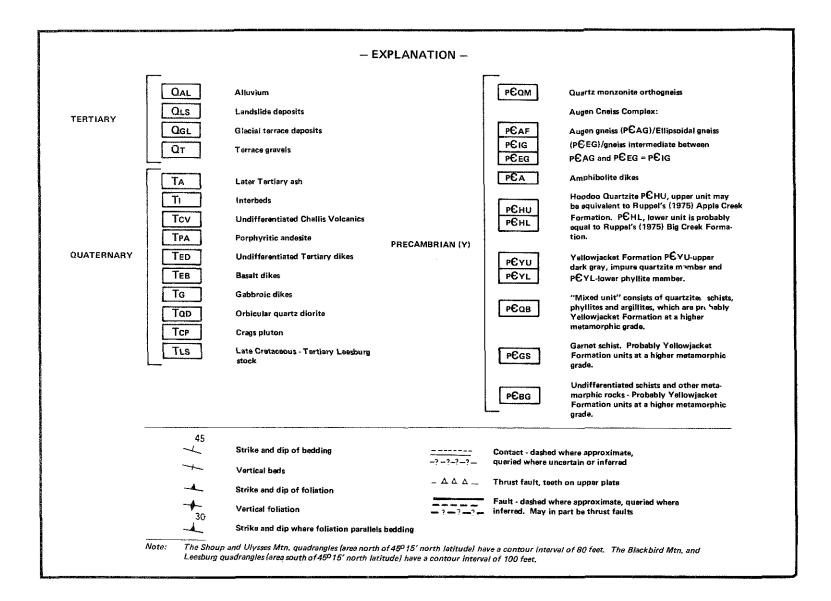
The small part of the stock exposed along Arnett Creek extends from the +50 gamma contour across the O gamma contour. The -100 gamma line which surrounds the +150 line (south of Haystack Mountain) marks the western limit of silver, lead and molybdenum anomalies which are probably related to the stock. The -150 gamma contour near Jureano Mountain extends along the Leesburg fault and may mark the western limit of the stock in the subsurface.


The area enclosed by the -210 gamma line over Gant Mountain and the surrounding -200 gamma line are most likely expressions of the augen/ellipsoidal gneiss unit and its subsurface extension to the northwest beneath the undifferentiated metamorphic rocks. In fact, most of the area which is less than -150 gammas, within the study area, appears to be related to the outcrop patterns of the augen gneiss.


Big Creek Hot Springs lies on the -170 to -200 gamma trough. This trough follows the general trend of the Hot Springs fault.

The land is administered by the U.S. Forest Service (USFS). Until leases are issued, prospects such as Big Creek Hot Springs cannot contribute to our energy supply. The area is remote but not roadless. The nearest sizable market for electricity would be Missoula, Montana; however, recent electric wheeling legislation could allow development by utilities located out of the area.

Salmon Hot Springs (20N-22E-3abd1S), 10 km south of Salmon, has a surface temperature of 45°C, and is the


(2,2,2,1,2)

-42--

)

-43-

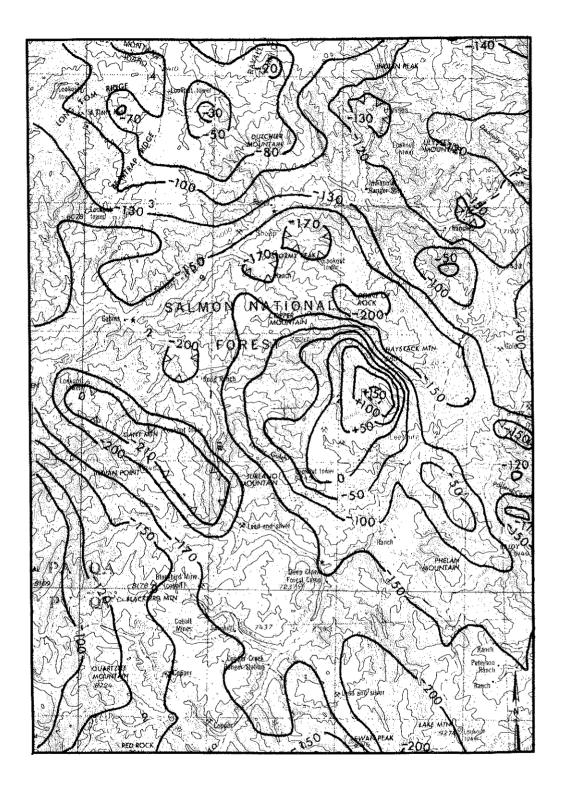
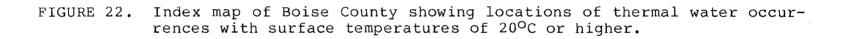


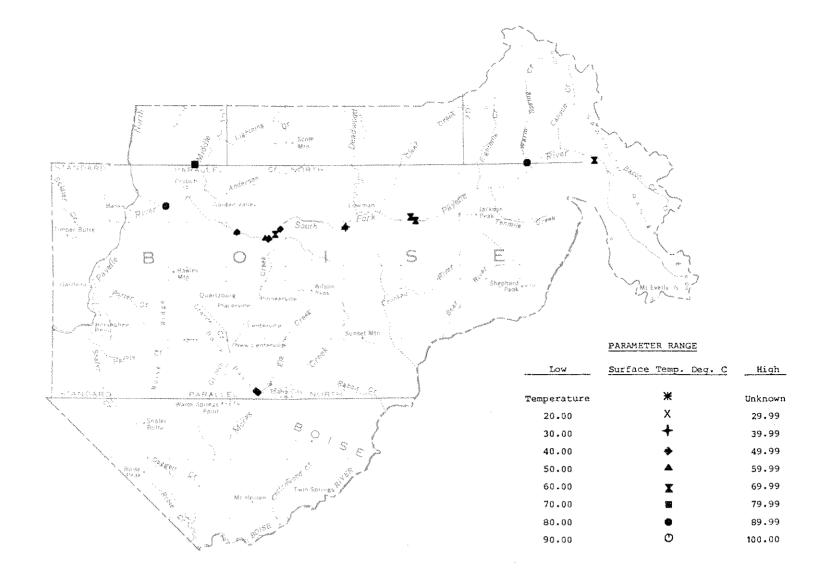
FIGURE 21. Aeromagnetic map of the study area (modified from U.S.G.S., 1975). Map is drawn with a 6.17 gamma/mile north and a 3.92 gamma/mile east regional trend removed. Magnetic contours are overlain on topography from the Elk City AMS map (scale 1:250,000). From Bennett, 1977, p.28.

nearest of any thermal springs in Lemhi County to a meaningful population center. Aquifer temperatures at Salmon Hot Springs appear to be only 50° C by the chalcedony chemical geothermometers (basic data table 2) although the Na-K-Ca chemical geothermometer indicated temperatures may be as high as 204°C. This discrepancy could be caused by mixing of hot and cold water or precipitation of calcium in the subsurface. There is excess travertine deposition by the spring. This site might have potential for space heating in or near Salmon.

Sharkey Hot Springs (20N-24E-34ccclS) issues from Oligocene silicic volcanic rocks along a northwest trending fault. It is actively depositing small quantities of carbonate material and apparently formerly deposited silica. It discharges 30 1/min. Measured surface temperature is 52°C. Maximum subsurface temperature is thought to be best represented by the chalcedony chemical geothermometers at 104°C. Sharkey Hot Springs is somewhat removed from population centers but is accessible by an improved road.

A spring (16N-21E-18adclS) located on the Salmon River discharges 25 l/min and has a surface temperature of 46° C. It issues from the alluvial material probably overlying Precambrian quartzite. This spring deposits small quantities of carbonate material locally. Subsurface temperatures may best be represented by the chalcedony chemical geothermometer at 57° C.


BOISE COUNTY


100000)

Thermal springs in Boise County are most numerous along the South Fork of the Payette River (figure 22). Garden Valley lies at the confluence of the South and Middle Forks of the Payette River and is popular as a summer home resort area. Several thermal springs and at least one thermal well are in the Garden Valley area. Two thermal springs exist near Idaho City. One, Stope Warm Springs (6N-5E-33abclS), occurs in an abandoned mine adit. The other, Warm Springs (6N-5E-33adclS), has been developed into a popular resort. Idaho City is also a popular summer home area where use could be made of thermal water for space heating.

Little is known of the characteristics of thermal water as only six chemical analyses are available from 19 known thermal occurrences in Boise County. More sampling of thermal water occurrences should be undertaken to more fully assess the area's geothermal potential.

In general, the dissolved solids are low except for flouride and sulfate concentrations in those thermal waters sampled; generally, the water is a sodium bicarbonate type.

Bonneville Hot Springs (10N-10E-31bcclS) is the hottest thermal water in Boise County at 85°C and has a 1400 1/m discharge issuing from a fault in granite (Ross 1971). Bonneville Hot Springs may have potential for binary cycle power generation, as the quartz and Na-K-Ca chemical geothermometers estimate temperatures of 137 and 142°C.

Deer Hot Springs (9N-3E-25baclS) might also have potential for binary cycle power, as quartz and Na-K-Ca chemical geothermometers estimate temperatures of 147 and 134°C. Deer Hot Springs has a surface temperature of 80°C and discharges 76 1/min.

Other thermal springs are much cooler having surface temperatures between 46 and 67° C and subsurface temperatures between 60 and 104° C, according to the Na-K-Ca and chalced-ony chemical geothermometers. The Na-K-Ca chemical geothermometer indicates subsurface temperatures cool in a fairly systematic way from a high of 142° C at Bonneville Hot Springs in the upper reaches of the South Fork Payette River to a low of 63° C near Danskin Creek Hot Springs (8N-5E-lbcclS).

Sacajawea Hot Springs (10N-11E-31aad1S) in the upper reaches of the South Fork Payette River drainage has not been sampled, but has a surface temperature of 68°C and reported discharge of 380 1/min.

Twin Springs (4N-6E-24bcblS), a developed resort, is so named because a thermal and nonthermal spring occur in close proximity and is located in the lower reaches of the Middle Fork of the Boise River above Arrowrock Reservoir. The thermal spring discharges water at 67°C. Subsurface temperatures may be as high as 104° C, according to the chalcedony chemical geothermometer. The Na-K-Ca chemical geothermometer predicts 60° C, unexplainedly 7° C below measured surface temperatures.

CUSTER COUNTY

Thermal springs in Custer County (figure 23) are similar in occurrence to springs in most of the rest of northcentral Idaho occurring near drainage confluences or near ridge points that protrude into the stream. The thermal waters are generally low in dissolved solids and have high pH values. About half are on lands administered by the USFS and many could be developed for recreational uses. One, Stanley Hot Springs (10N-13E-3cablS), has now been covered over.

Generalities on thermal spring occurrences along the Middle Fork of the Salmon River were given earlier in the section on Valley County. These are in remote areas, so

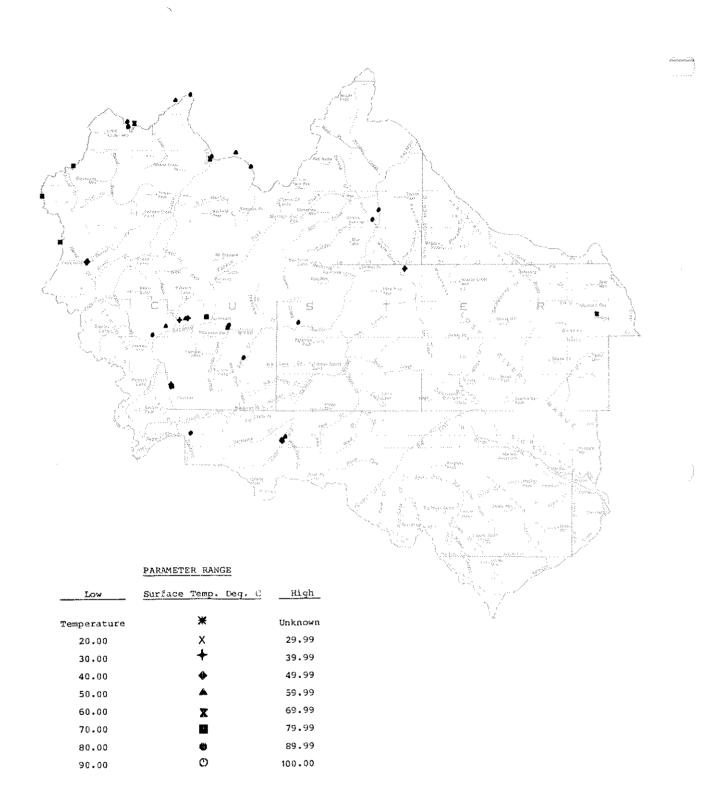


FIGURE 23. Index map of Custer County showing locations of thermal water occurrences with surface tempera-tures of 20°C or higher.

FIGURE 24. EROS false color infrared Landsat EDISE image of central Idaho showing selected linear features and thermal water locations with surface temperatures above 20°C.

large scale development for industrial purposes is not Springs along the main Salmon River between Smiley likelv. Creek and Salmon generally lie within recreation area boundaries on both private land and land administered by the USFS. Some of these springs have potential for recreational uses. Several are presently used as such and others have been previously used for such purposes. In areas that are being developed for recreational home sites, springs could be utilized for space heating. Some of these springs might be used similar to the way springs in Boise County are used by the Idaho Department of Fish and Game as a heat source for game bird production, particularly wild turkeys and As most of the area is far from markets and few grouse. good transportation facilities exist, most other uses appear to be excluded, although locally small scale uses, such as greenhouse operations, might be feasible.

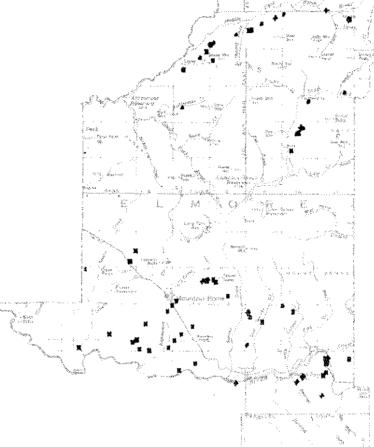
Figure 24 is an enhanced Landsat false color infrared image of part of Central Idaho showing locations of selected thermal water discharges and linear features. The common occurrence of springs and lineaments is not striking on the figure. Nevertheless, several major linear features are shown near the thermal springs or wells. The chemical geothermometers are highly variable for Custer County. Highest aquifer temperatures appear to be near 104°C in the area of Basin Creek, Mormon Bend and Sunbeam Hot Springs.

NORTHERN ELMORE COUNTY

(ereieff)

Thermal springs in northern Elmore County (figure 25) are distributed along the major drainages -- the North, Middle, and South Forks of the Boise River. These occurrences along the drainages are similar to other springs in central Idaho.

Ross (1971, p. 13 and 14) states that:


More than a dozen thermal springs occur along the lineament that marks the main Boise River and its Middle Fork tributary. All the springs issue from granite, in areas transected by granitic and mafic dikes. Between Twin Springs (4N-6E-24bcblS) in Boise County and Weatherby Mill well (6N-9E-35acal) springs average one every 2 miles. A single spring (6N-11E-35dcalS) is northeast of Altanta along the same lineament.

The 29°C water from the flowing well at Weatherby Mill is considered by local residents too mineralized to drink, although total dissolved solids are similar to those in the other springs.

Approximately a dozen thermal anomalies (figure 25) occur along the upper reaches of the South Fork of

PARAMETER RANGE

Low	Surface Temp. Deg. C	<u> Hìgh </u>	
Temperature	×	Unknown	
20.00	x	29.99	
30.00	+	39.99	
40.00	*	49.99	
50.00	▲	59, 99	
60.00	x	69.99	2
70.00	#	79,99	
80.00	٠	89.99	and the second se
90.00	O	100.00	Martin Constanting of

100000000000

FIGURE 25. Index map of Elmore County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

the Boise River and its tributaries. All are in granitic rock, much of which is cut by mafic and pegmatitic dikes.

Paradise Hot Springs (3N-10E-33bdblS) utilizes 60°C water in a swimming pool at a resort. A míle south, Bridge Hot Spring (2N-10E-5acalS) anđ related seeps flow more than 150 gpm, also at 60°C. A warm spring (3N-10E-10abalS) and several warm wells are at Featherville. The 46°C water at Baumgartner Hot Spring (3N-12E-7dcd1S) is used for bathing facilities at a Forest Service campground. Lightfoot Hot Spring (3N-13E-7dcalS) apparently was used at one time for domestic heating and for irrigation of a small meadow. Maximum temperature is 62°C.

Highest temperatures along the South Fork of the Boise River are at the east and west extremities of the regions.

The chemical geothermometers indicate some of the hotter of the low temperature thermal water in Idaho might be found in northern Elmore County. The Na-K-Ca and quartz chemical geothermometers indicate temperatures as high as 126°C might be found by drilling at Neinmeyer Hot Springs At Latty Hot Springs (3S-10E-31ddblS), (5N-7E-24bddls). temperatures might be as high as 137°C. Most of the other springs in the area show subsurface temperatures below 80° C, according to the Na-K-Ca chemical geothermometer.

Most of these thermal springs are on lands administered by the USFS and several more probably could be developed by the USFS for recreation purposes. Those that occur near vacation homesites (table 4) could probably be developed for space heating, provided flows could be augmented by drilling. Some of them could be used by the Idaho Department of Fish and Game as a heat source for game bird production.

CAMAS COUNTY

Camas County (figure 26) contains several thermal springs and wells. Many are in the unpopulated Soldier Mountain area to the north of Camas Prairie. These occurrences are similar to the rest of the thermal springs in central Idaho. They are limited to the South Fork of the Boise River and its tributaries in northern Camas County. Located here are Worswick (3N-14E-28caalS), Preis (3N-14E-19daclS), Wardrop (1N-13E-32abblS) and Lightfoot (3N-13E-7dcalS) hot springs. Worswick Hot Springs is probably the most extensive thermal spring in Idaho covering more than 10 acres and having dozens of vents, according to Ross (1971).

					TABL	E 4				00 MELL (1978)
Тоwл	County		Spring or Well Surface empera- ture ^o C	Est Subs	IDAHO WITHIN Best imated surface ature ^O C Max. Chalcedony	<u>5 KM (3 MI)</u> Total Dissolved Solids	OF A 20°C OR H Present Water Use		Surface	UN WELL
			<u>, , , , , , , , , , , , , , , , , , , </u>	na-N-Ca	charcedony	301105	Use	Population	Owner	Remarks
Atlanta	Elmore	5N-11E-3		Mill and						No chemical anal- yses available, summer home sites.
Cascade	Valley	14N-3E-36abd1	43	46	66	193	Municipal pool	916	City of Cascade	
Challis	Custer	14N-19E-23ddd1S	5 40	60	68		Natatorium	850	Private	Summer home sites.
Clayton	Custer	11N-17E-275dd1S	5 41	58	99**	640	Natatorium Recreation	41	Private	Summer home sites.
Council	Adams	16N-1W-15bac1	22				Irrigation	923	Private	
Ellis	Custer	16N-2E-18adc1S	46							Springs in Lemhi County.
Feather- ville	Elmore	3N-10E-10aba1	43				Space heating		Private	Summer home sites.
Garden Valley	Boise	8N-5E-10bdd1S	55	74	80	237	Space heating, private swim- ming		Private	Summer home sites.
Hailey	Blaine	2N-18E-18dbb1S	59	83	100	272	Space heating	1,840	Private	Heated Hiawatha Hotel.
Idaho City	Boise	6N-5E-30acd1S	41				Natatorium	194	Private	No chemical anal- yses available, summer home sites.
Ketchum	Blaine	4N-17E-15aac1S	71	88	101	324	Space heating	1,780	Private	Heats several con- dominiums.
Meadows	Adams	19N-2E-22cca1S	43	91	96**	489	Unused			Public water sup- ply.
Stanley	Custer	10N-13E-3cab1S	41	47	76	210	Unused	52	Private	Bath house & pool.
Warm Lake	Valley	15N-6E-14cdb1S	55	62	83	258	Unused			Near summer home

1.13

: 8

sites.

*Minimum and maximum subsurface temperatures are based on the chemical geothermometers from basic data table 2. Both are given to call the reader's attention to the uncertainties involved in their interpretation. Maximum temperatures should be viewed with some skepticism. The geothermometers are useful in initial assessment of geothermal areas to establish priorities for further work in these areas.

**Minimum temperature is chalcedony temperature. Maximum temperature is Na-K-Ca temperature.

-54-

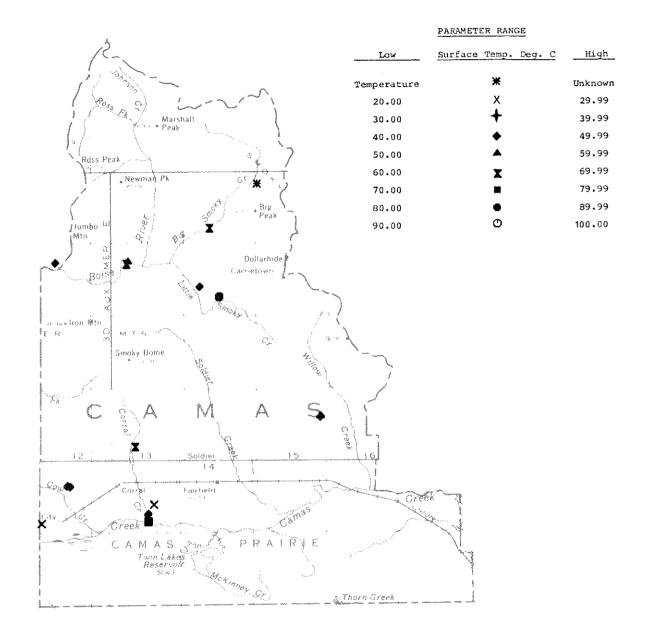


FIGURE 26. Index map of Camas County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Most flow at temperatures near 76° C. Total discharge from the entire spring is over 1500 l/min. Ross (1971, p. 14) reported that the entire area, which is brecciated, bleached, and silicified, was the probable intersection of several fault zones.

Mitchell (1976c) reported on the geothermal potential of southern Camas County and described the geochemistry of the thermal springs in this area. He reported (p. 15) that:

Thermal water occurrences in the Camas Prairie area are not limited to any one locality or rock type but are found sparsely distributed over a large area (figure 26). The occurrences seem more abundant, however, in the western reaches where Hot (1N-13E-32abclS), Springs Ranch Barron's Hot (1S-13E-34bcb1S),Spring No. (1S - 12E -Springs 16cbalS-cablS) and several warm artesian wells are located. These springs issue from alluvial valley fill deposits. The wells were drilled into valley fill alluvium.

Elk Creek Hot Springs (1N-15E-14adalS) are located in the eastern part of the study area and issue from fractures in Cretaceous granitic rocks near Eocene(?) to Miocene(?) Challis volcanic rocks.

Several other reported thermal waters (notably warm artesian wells) were not flowing at the time they were visited and samples could not be collected for analysis. Thermal water deposits were absent at all visited springs and wells except for very minor evaporative incrustations around discharge pipes of some of the wells. Discharges of the various sampled springs and most wells were low. Measured surface temperatures range from 26 to 72°C and average 53°C. In general, groundwaters in this area are about 10°C above mean annual temperature.

Mitchell further stated (p. 17):

In general, the thermal waters of the Camas Prairie area can be classified as sodium bicarbonate (NaHCO₃) type waters although the dominant element found in Hot Springs Ranch (IN-13E-32abclS) water is silica rather than sodium. With the exception of Magic Hot Springs well (IS-17E-23aabl) these thermal waters are typified by:

 High silica contents (50-90 mg/l) compared to low total dissolved solids of less than 365 mg/l;

- 2. High pH (7.8-9.2);
- High carbonate compared to most thermal water in Idaho;
- 4. High fluoride contents compared to most thermal and cold groundwaters in Idaho;
- Low calcium (Ca), magnesium (Mg), potassium (K), and chloride (Cl) contents.

Typically, these thermal waters are chemically similar to thermal waters found discharging from Cretaceous granitic rocks, or areas believed to be underlain by these type rocks elsewhere in Idaho (Ross, 1971, p. 23), (Young and Mitchell, 1972, unpublished data, and Young and Whitehead, 1975a, p. 30).

The cause of this chemical "fingerprint" for these waters is not well understood. At least three hypotheses might explain some of the observations.

- Abundance of certain elements may reflect the 1. availability of the elements in various minerals found in the granitic rocks and the minerals' solubility in heated water or steam. For example, the high fluoride content might be traced to the abundance of fluorite or fluoraits solubility at patite, and reservoir temperature, and pH, or to fluoride, concealed in interlattice silicate structures of hydroxyl bearing minerals such as the micas or amphiboles, which are found in the granitic rocks.
- 2. High fluoride waters may reflect an appreciable quantity of magmatic waters or volcanic gasses. Observations of gasses from volcanoes indicate magmatic waters should generally be high in volatiles such as fluoride, ammonia and boron.
- 3. High fluoride waters might be explained by enrichment of fluoride in a steam phase separated from water having a lower fluoride content (volatile enrichment).

The first explanation of the high fluoride content is considered by this author to be the best hypothesis because of:

1. The widespread occurrence of fluoride-rich thermal waters in Idaho;

- Their close association with granitic rocks or areas believed to be underlain by granitic rocks;
- 3. Lack of fumarolic, geyser, and related geothermal activity (which would indicate volatile enrichment processes are actively taking place);
- 4. Low concentrations of other volatiles, i.e., ammonia and boron, chemical constituents found in volcanic gasses, and which are also capable of enrichment in separated steam. In nearly all geothermal systems investigated to date, isotopic studies have not revealed any magmatic or juvenile water contributions to these systems.
- 5. Thermodynamic calculations indicate that thermal waters from Elk Creek Hot Springs (1N-15El4adalS), which issue directly from fractures in granitic rocks, are in equilibrium with fluorite at the measured spring temperatures. Fluorite is known as an accessory mineral in certain granitic rocks in Idaho.
- 6. In general, granitic rocks are known to contain relatively much fluoride, mostly in fluroapatite, but, in some cases, a fluoride concealed in interlattice spaces of hydroxyl bearing minerals such as the micas or amphiboles where it substitues for hydroxide due to size and charge similarities.

The geochemical data suggested to Mitchell (1976c, p. 22) that the thermal waters in the Camas Prairie area are from low temperature systems.

The chalcedony equilibrium chemical geothermometer $(T_4, basic data table 2)$ or Na-K-Ca chemical geothermometer $(T_5, basic data table 2)$ are considered the most reliable and representative of actual aquifer temperatures in most cases because of these considerations:

1. Thermal waters issuing from granitic terrains are generally considered to be supersaturated with silica with respect to quartz (Holland 1967, p. 393). Therefore, the quartz equilibrium chemical geothermometer (T_1 and T_2) and mixing models (T_9 and T_{10}) may not be valid because of excess silica in many of these springs and wells.

0.000

- 2. In no case does amorphous silica control silica concentration in the thermal water. The belowmeasured surface temperatures and in some cases below-zero temperatures predicted by the amorphous silica chemical geothermometer indicate that the thermal waters are considerably undersaturated with silica with respect to this phase. No exceptions to this generalization were noted from basic data table 2 in the Camas Prairie area.
- 3. No unusual conditions are suggestive of mixed hot and cold waters, such as cold spring seeps in the vicinity of the hot springs or wells, were observed.
- 4. Discharges were, in general, very low throughout the area, indicating little, if any, mixing of hot and cold waters. Exceptions to the low discharges are found only in drilled holes.
- 5. The low Na-K-Ca predicted aquifer temperatures are in general agreement with measured surface temperatures, indicating little mixing of hot and cold water, or that equilibrium conditions have been maintained since the waters have left the thermal aquifer. The low predicted Na-K-Ca aquifer temperatures show fair agreement with the chalcedony equilibrium aquifer temperatures.
- 6. The low chloride and certain other element concentrations found in these thermal waters could be the result of mixing. However, mixing would dilute certain other chemical constituents found in relatively high concentrations such as fluoride and carbonate.
- 7. Walton (1962, table 2, p. 35) reported higher calcium concentrations in cold groundwaters in the area than were found in the thermal waters. Dilution of thermal waters with cold groundwaters would mean the premixed thermal waters would have to be nearly devoid of calcium in order for the mixed water to show the calcium concentration found in the thermal waters. Thermal water devoid of calcium from granitic rocks is considered unlikely.
- 8. The extremely widespread geographical area in which these type waters are found would make it highly unlikely that such uniform mixing conditions could exist as to recognize these

waters by merely looking at unsynthesized geochemical data.

- 9. Arnórsson (1970, p. 537, 1975, p. 763) found that chalcedony generally controls silica concentration in Icelandic thermal waters when aquifer temperatures are below 100-110°C. Chalcedony equilibrium aquifer temperatures are below Arnórsson's upper limit. Chalcedony equilibrium is, therefore, indicated if this criterion is applicable to the Camas Prairie.
- 10. The depths postulated as necessary to give rise to the measured surface temperature are reasonable for the origin of these waters.

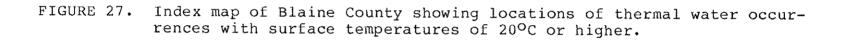
Mitchell (1976c, p. 25) concluded:

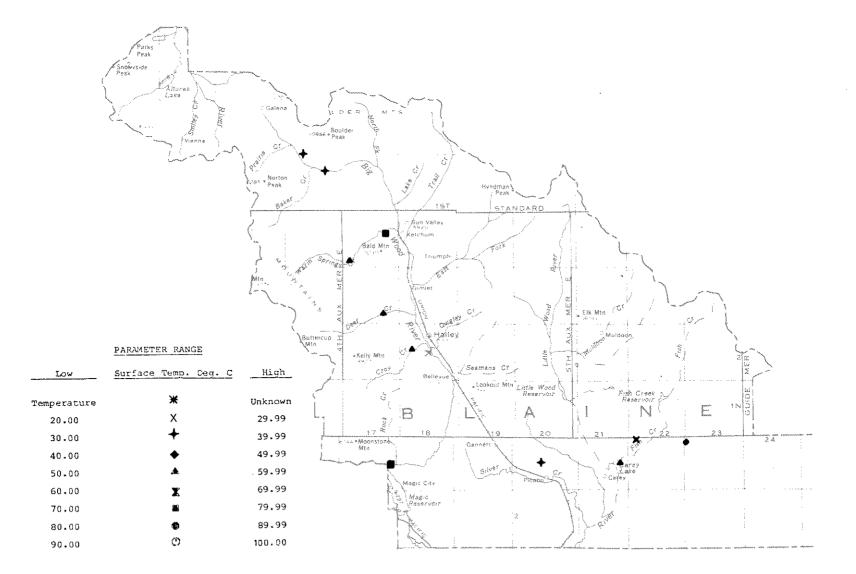
The Camas Prairie thermal waters are probably meteroic waters circulating to shallow (approximately 1,200 m) depths along fractures or fissures within the granitic rocks underlying and along the margins of the Prairie. Heated waters are discharging upward into the sediments of the Prairie, perhaps through faults or fissures within the underlying granite concealed by valley fill. Some water subsequently discharges to the surface, forming springs. The source of the heat related to the granitic rocks is unknown.

The possibility of a large thermal aquifer or reservoir within the sediments filling the basin is negligible due to the apparent shallow depth of the valley fill materials as shown by the two wells penetrating the entire thickness of sediments near the basin center. Any possibility of a large thermal reservoir could lie in large faults in highly fractured granitic rock underlying the Prairie. Fracture permeability may allow sufficient circulation and recharge to allow large volumes of water to be withdrawn if the fault system could be penetrated by drilling. Hot and cold groundwaters at depth probably are not mixing to any apparent degree. The thermal waters ascending from shallow depths could be cooling by conduction during their ascent to the surface.

Maximum temperatures encountered in drilling to 900 to 1,500 m are probably only about 100°C. Temperatures of this magnitude would be sufficient to have some industrial applications. These industrial applications and approximate temperatures necessary for them are shown in figure 4.

NORTHERN BLAINE COUNTY


Northern Blaine County (figure 27) is another region in Idaho where geothermal resources have been an energy source of long standing. Fifteen thermal springs are known in northern Blaine County. Several wells have been drilled near some of the thermal springs that yield hot water as at Magic Hot Springs (1S-17E-23aabl), Hailey Hot Springs (2N-18E-18dbblS), Clarendon Hot Springs (3N-17E-27dcblS), Guyer Hot Springs (4N-17E-15aaclS) and Easley Hot Springs (5N-16E-10dbclS).


Easley Hot Springs is being used as a natatorium. The drilling of a well at Magic Hot Springs increased the temperature by 36° C from 38 to 74° C. These waters have been used to space heat small cabins. At Magic Hot Springs Landing, chemical geothermometers indicate aquifer temperature could be near 175° C, which would make this area a candidate for power generation using methods similar to those planned for Raft River in Cassia County. Even a small power plant at this site could furnish much of the power needs for this rural area of Idaho. Cascading uses could be made of the power plant effluent.

In Blaine County three warm water wells occur near the northern margin of the eastern Snake River Plain near Carey, and three more occur 3 km northwest of Picabo. Condie Hot Springs (1S-21E-14ddclS) occurs near Carey Lake.

The Hailey area is located in south-central Idaho on the Big Wood River drainage. The geologic framework of the area consists of undifferentiated Paleozoic and Mesozoic marine sedimentary rocks. Hailey Hot Springs is located about 3 km from Hailey (population 1,840, 1976) on Democrat Gulch, a tributary to Croy Creek which in turn is a tributary to the Big Wood River with confluence at Hailey (figure 28). Sufficient thermal water might possibly be withdrawn from near Hailey Hot Springs to space heat the entire town of Hailey. The surface temperature of the spring is 59°C. The chemical geothermometers suggest a temperature of 78 to 97°C might be encountered by deeper drilling. It is not known at what depth this temperature might be encountered, but it may be as deep as 900 to 1200 m.

Hailey Hot Springs' structural setting is typical of the hot springs in central Idaho; that is, many do occur near the confluence of streams, indicating fault or similar structural control. Fault controlled geothermal systems may provide a significant resource in Idaho for local use, as has been found at Raft River and Boise. Hailey Hot Springs occurs on the curvilinear zone connecting Clarendon Hot Springs, Warfield Hot Springs, and Easley Hot Springs (see

3 32' 30' 32'30' 2 N 7.2 Quiale ر من 100 Crew. 1.500 18 . 13 Haile 679.000 FEE 43°30' 114°15 BELLEVUE HOAHO 23 2.8 TWIN FALLS 63 MI 43"30" /21 BELLEVUE 1.62 500 17'30" EARPEIELO TO MI 410 000 FEET R17F 6.18E SCALE 1 24 000 Mapped, edited, and published by the Geological Survey ROAD CLASSIFICATION MILLE Control by USGS and USC&GS 7000 FEE1 Light-duty Heave-duty Topography by photogrammetric methods from aerial photographs taken 1966. Field checked 1967 Unimproved dat ... End have a second of the second of the Polyconic projection. 1927 North American datum 10,000-foot grid based on Idaho coardinate system. CONTOUR INTERVAL 40 FEET OUTIED LINES REPRESENT 20 FOOT CONTOURS DATUM IS MEAN SEA LEVEL 😳 U.S. Route 175) 11 Ma S 120 81.3 central zone 1000/meter Universal Transverse Mercator grid ticks, zone 11, shown in blue HAILEY, IDAHO UTH GRID AND 1967 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET DUADRANCLE LOCATION Fine red dashed lines indicate selected fence lines N4330-W11415/7.5 THIS MAP COMPLIES WITH NATIONAL MAP ACCURACT STANDARDS FOR SALE BY U.S. GEOLOGICAL SUMVEY, DENVER, DOLORADO 80225, OR WASHINGTON, D. C. 20242 A FOLDER DESCRIBUTIO FORGARAMIC MARS AND SYMBOLS IS ANALABLE ON REQUEST 1967 AMS 3171 III SE-SERIES V893

FIGURE 28. Topographic map of Hailey area showing location of Hailey Hot Springs with respect to the City of Hailey.

-63-

figure 9 in pocket and figure 29). Hailey Hot Springs was formerly used to heat the Hailey Hiawatha Hotel, an approximately 560 m^2 (square meter) structure which recently burned.

It is not known at present which structure or structures control the occurrence of thermal water at Hailey Hot Springs (Big Wood structure, Croy Creek-Quigley Creek structure, or Democrat Gulch structure). To confirm the size and exact location of the geothermal reservoir for space heating the town's buildings and residences, it will be advisable to evaluate, in some detail, reservoir characteristics and determine the amount and characteristics of geothermal water which could be withdrawn for use. This would be done by drilling observation wells, running well tests and perhaps drilling exploration holes to see if existing water flows could be augmented, or a new source found closer to Hailey.

Donaldson and Applegate (1979), reporting on geophysics in the Hailey-Ketchum area, stated:

Gravity in the Ketchum-Hailey area is dominated by a strong regional gradient controlled by the transition from the Snake River Plain gravity high to the gravity low over the Idaho batholith. Any detailed interpretation from gravity in this area would necessarily involve increasing the amount of data and carefully removing the strong regional gradient.

Witkind (1975) (figure 15) has identified an active fault in the lower Wood River Valley which is terminated about 7 km north of Hailey. Distortions in the regional gradient contours are, however, suggestive of faulting further up the valley and faults are indicated on the Idaho State Geologic Map (Bond, 1978).

A relatively small-amplitude, low-frequency magnetic high roughly centered over Bald Mountain and an associated low to the north may be indicative of a buried igneous unit (see figure 30). A strong elongate high and associated low centered about 15 miles NE of Sun Valley appears to be a near surface phenomena.

Guyer Hot Springs (4N-17E-15aaclS) near Ketchum on Warm Springs Creek is another area where thermal water is presently being used for space heating. Guyer Hot Springs occurrence is very similar to that at Hailey Hot Springs and lies along a suspected curvilinear zone connecting Hailey, Clarendon, Guyer and Easley hot springs. Warfield Hot

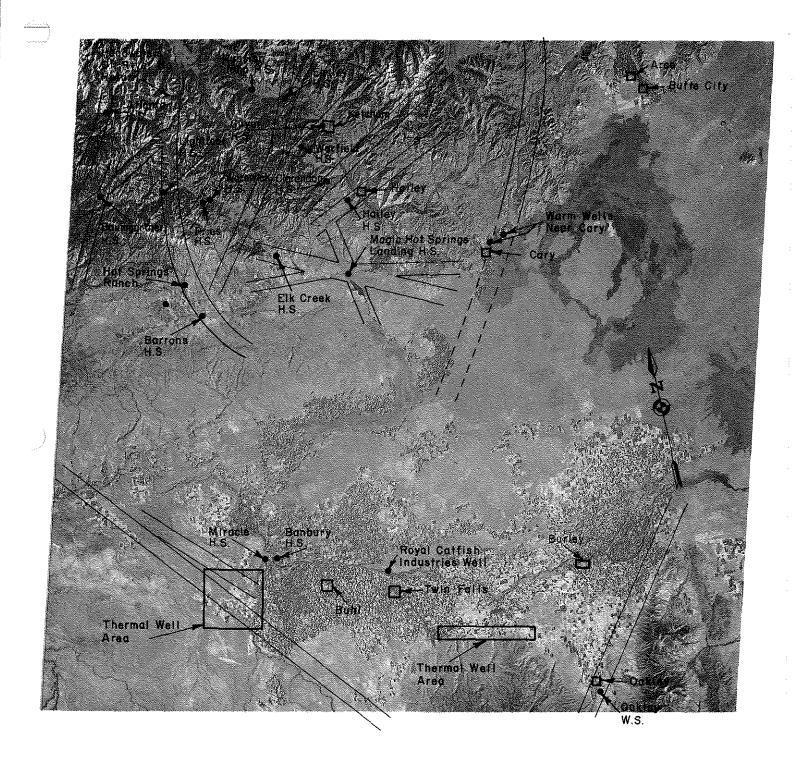
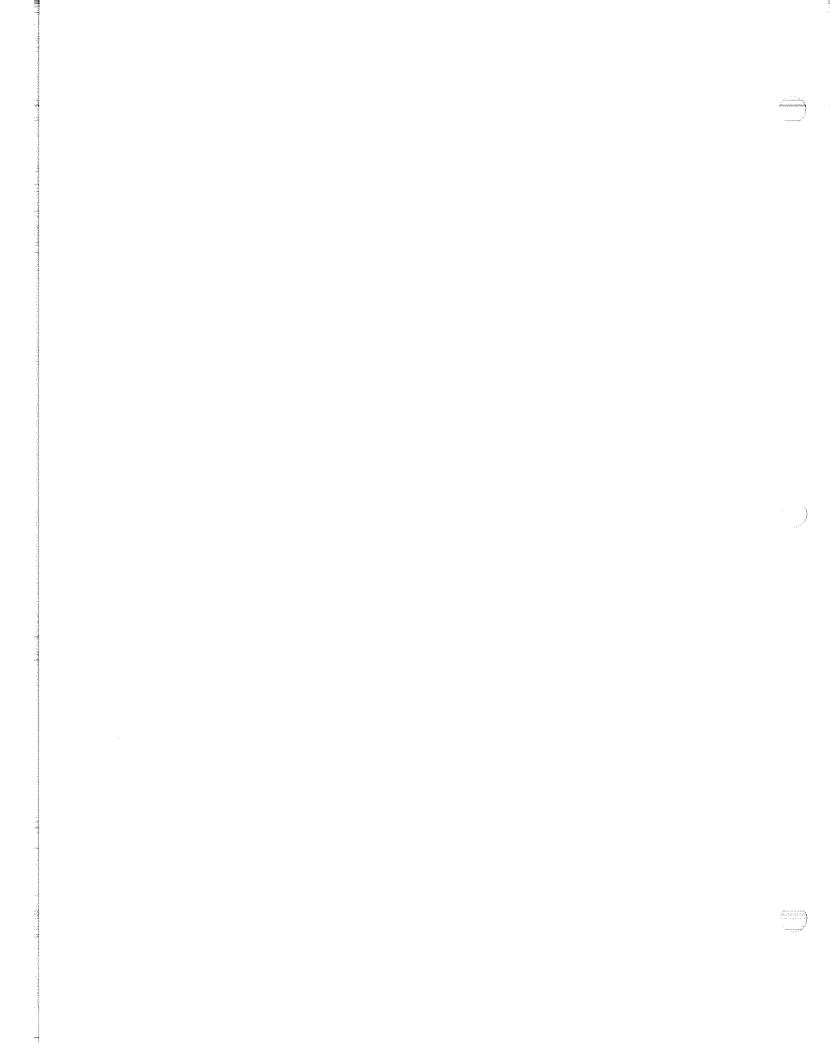



FIGURE 29. EROS false color infrared Landsat EDISE image of southcentral Idaho showing selected linear features and thermal water locations with surface temperature above 20°C.

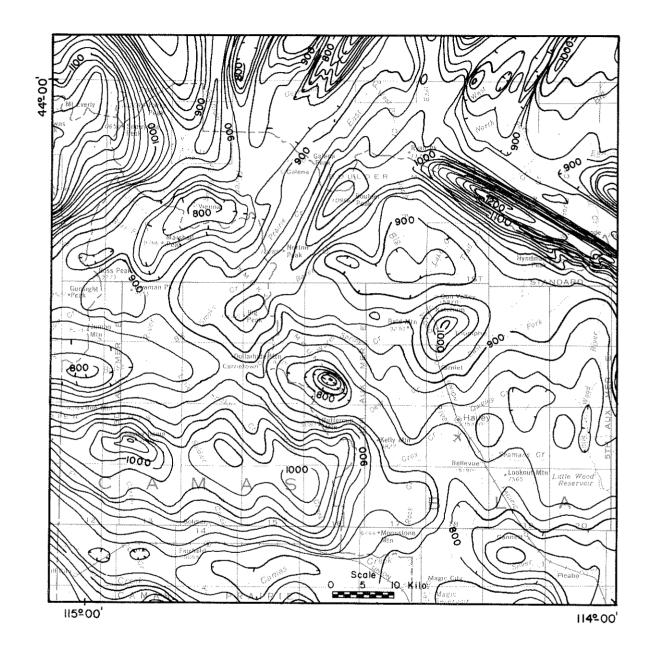


FIGURE 30. Magnetic anomalies near Bald Mountain (right of center) and NE of Sun Valley (upper right) (U.S. Geological Survey, 1971).

(the set of the set of

Springs is further up Warm Springs Creek from Guyer and will probably be used to heat vacation homes near Ketchum in the future.

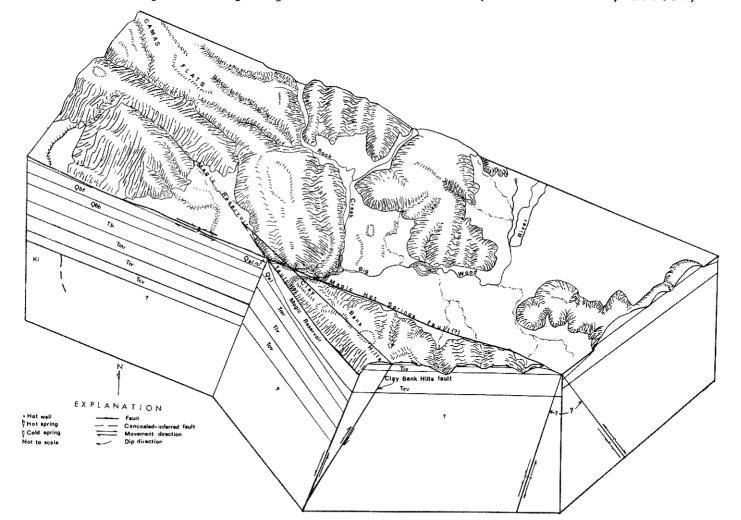
Magic Hot Springs Landing was reported on by Mitchell (1977) who stated that water from Magic Hot Springs well (1S-17E-23aabl) near the north shore of Magic Reservoir contained 978 mg/l dissolved solids, 105 mg/l silica, and was higher in chloride than other thermal water in the area. Mitchell stated (p. 23):

This well was drilled in 1965 above the site of a warm spring which subsequently ceased to flow. Surface temperature of the spring water before drilling of the well was 36° C (Ross 1971, p. 56). When measured in the fall of 1973 the well had a surface temperature of 72° C. In 1975, during attempts to cap this well, artesian pressures reached 30 psig (pounds per square inch gauge), then started dropping. The owners were in fear of losing the well and removed the newly installed valve. These efforts increased surface temperature by 2° C to 74° C and discharge to approximately 250 liters per min.

The indicated disequilibrium conditions (Na-K-Ca chemical geothermometer differs from measured surface temperatures by more than 20°C) could mean a possibility of mixing of the thermal with nonthermal groundwaters. The proximity of the well to Magic Reservoir leads one to suspect that cold water leakage from Magic Reservoir could he entering the thermal water conduit system that supplies Magic Hot Springs well. Mixing model calculations indicate that the hot water component of this mixed (?) water may have reached temperatures as high as 200°C with cold water making up about 70% of total water. Even if mixing is not taking place the 150-175°C temperatures predicted by the other chemical geothermometers are close to that temperature now considered necessary for a binary cycle geothermal power plant. The high chloride content (greater than 50 mg/1) would indicate that this system would probably be a hot water rather than a dry steam system.

The marked difference in chemistry between Magic Hot Springs well waters and other thermal waters in the Camas Prairie area would indicate: (1) Magic Hot Springs well waters have been at higher temperatures than the other thermal waters in the area, and/or (2) the aquifer or reservoir rocks for Magic Hot Springs well waters are mineralogically

0.000


and/or chemically different from the aquifer or reservoir rock for the rest of the Prairie area. Although in many instances it is possible, using geochemical methods, to determine the aquifer or rock type from which thermal waters are in equilibrium, available data does not indicate which rock type could constitute an aquifer. The geology of the area would, however, suggest the aquifer to be either Quaternary alluvium, Middle Pliocene basalts of the Idaho Group, Lower Pliocene Idavada volcanic rocks, Eocene or Miocene Challis volcanic rocks, Cretaceous granitic rocks, or perhaps a combination of two or more of these.

The heat source for these waters could either be (1) an intruded sill or stock, related perhaps to the Holocene basalt flows found south of Magic Reservoir, or (2) a regionally high geothermal gradient and heat flow. Brott and others (1976) have determined that geothermal gradients and heat flow along the margins of the Snake River Plain are higher (about 3 HFU) than the regional norm which would indicate a regional heat source rather than a localized anomaly.

Mitchell (1976) further stated (p. 15) that Magic Hot Springs:

... well was drilled near the intersection of two curvilinear features that are probably faults. These faults may represent the controlling structure for the occurrence of thermal water in this particular part of the study area. Landsat false color infrared satellite imagery shows one of these lineaments as extending northwesterly, from near the southern tip of Magic Reservoir, along its eastern shoreline, and into the Soldier Mountains as the northern margin of the study area. The other feature extends at a slight northwesterly angle along the northern margin of the Claybank Hills and into the Soldier Mountains. (Malde and others, 1963, show a fault lying somewhat east of and nearly parallel to the Magic Reservoir (?) fault. Their mapped fault passes through the Claybank Hills and lies very near Magic Hot Springs well.) A hypothetical block diagram showing the possible control of Magic Hot Springs well is shown in figure 31.

FIGURE 31. Idealized block diagram of Magic Reservoir Area in Camas and Blaine counties depicting theoretical structural control for Magic Hot Springs well. In reality, the faults depicted may represent more broadly defined zones of faulting rather than single plane surfaces as represented on paper. The trend of these features are fairly well known, but the direction of movement of the Magic Hot Springs fault is unknown. (From Mitchell, 1976c.)

SUMMARY OF CENTRAL IDAHO REGION

Most thermal water in central Idaho occurs as springs, although several well drillers have accidentally discovered thermal water while drilling for cold water. Most of these springs appear to be fault controlled, therefore, prospecting for new thermal water areas would probably be most profitable along the major drainages near large river bends, near stream confluences, near gaps in suspected curvilinear zones connecting existing known thermal springs or along major lineaments. Significant amounts of thermal water may yet be undiscovered as it may be discharging directly into river bottoms where it cannot be observed. A thermal scanner could conceivably be used for river bottom prospecting.

Several of the larger towns, notably Cascade, Hailey, Ketchum and Council, occur within 5 km of a thermal water discharge. These towns should probably receive first priority in initial assessment surveys, as they contain the greater population concentration (see table 4 for a complete listing). Many of these and smaller communities could heat public buildings and schools with geothermal water. Some may have small industries that could utilize geothermal fluids. Geothermal water could also be used for space heating in recreational home areas. Recreational uses could be increased, particularly by the USFS. Game bird hatcheries might be established at some sites by the Idaho Department of Fish and Game.

haven

(:::::)

GEOTHERMAL POTENTIAL OF THE SNAKE RIVER PLAIN REGION INCLUDING WASHINGTON, PAYETTE, GEM, CANYON, ADA, SOUTHERN ELMORE, GOODING, JEROME, MINIDOKA, OWYHEE, TWIN FALLS, NORTHERN FREMONT, BUTTE AND WESTERN CASSIA COUNTIES

The Snake River Plain region of Idaho is endowed with certain geologic features that favor the occurrence of geothermal energy. The Snake River Plain is one of the largest and possibly least studied (in terms of origin) structural features of the North American continent. It extends some 480 km in a broad arcuate plain from Weiser near the west-central border of Idaho, southeastward to Burley, thence northeastward to its abrupt termination with the western rim of the Island Park caldera in eastern Idaho adjacent to Yellowstone Park. In width, the plain varies from 32 km in the west to 90 km in the east (see figure 32).

The Snake River Plain is generally divided according to surface and shallow subsurface geology into the northwestward-trending western Snake River Plain and a northeasterntrending eastern Snake River Plain for purposes of discussion. The dividing line between the two subregions, is approximated by the Salmon Falls Creek-Snake River area in western Twin Falls and Gooding counties. Elevations vary uniformly from a low of 700 m near Weiser to a high of 1,830 m near the Island Park caldera rim. The gently undulating plain is flanked on the east, southeast, and northeast by transverse mountain ranges and valleys. Other structural features, faulting, lineament, and joint patterns surrounding the plain are generally parallel to (in the western Snake River Plain) or transverse to (in eastern Snake River Plain) the borders of the plain.

The Snake River enters the plain from the southeast through a mountain valley in the eastern part of Idaho. The Snake River flows along the southern margin of the plain until it reaches the western border of Idaho, then abruptly swings across the plain, exiting through Hells Canyon. Smaller streams and rivers enter the plain from adjacent mountains and valleys.

The plain proper represents the surface of a thick sequence of silicic, andesitic, and basaltic lava flows interlayered with volcanic ash, tuff and sedimentary material. Estimates of the thickness of this sequence varies from 3,000 to 9,000 m. Volcanic cinder cones and buttes puncture the thick pile of volcanic and sedimentary material throughout the entire plain in many places. Many of these volcanic and sedimentary units are water saturated.

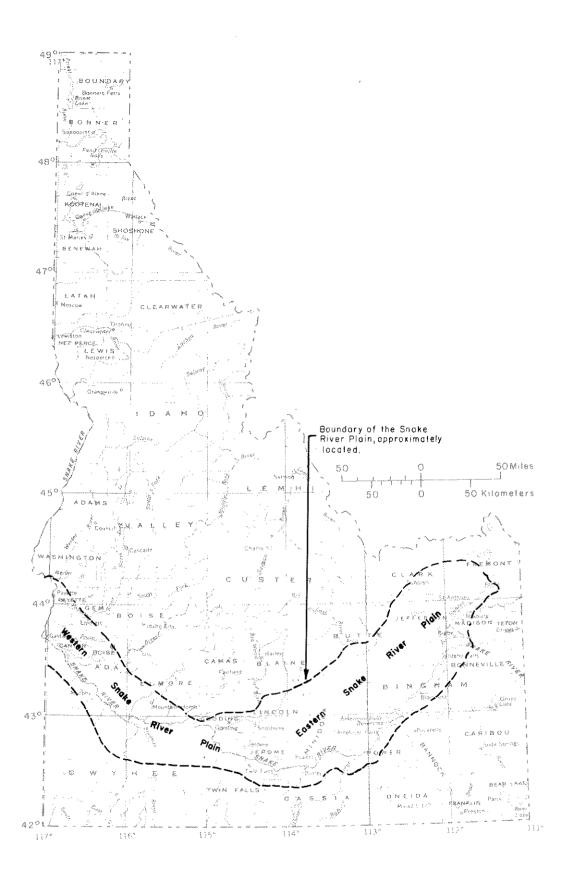


FIGURE 32. Index map of Idaho showing the Snake River Plain and its subdivisions.

One of the largest fresh groundwater bodies known, the Snake Plain aquifer with more than 1.2×10^9 cubic meters of water withdrawn annually, underlies a large portion of the eastern Snake River Plain.

The Snake River Plain is also one of the more youthful geologic features in Idaho. It apparently had its inception in Pliocene time some 3-15 million years ago. Volcanism has continued sporadically through Holocene time (the present epoch). This volcanism and associated deformation has apparently migrated from west to east, as age dating of volcanic rocks by Armstrong and others (1975) has shown decreasing ages of rocks from west to east. This widespread deformation and volcanism, both rhyolitic and basaltic, are fundamental features of geothermal provinces.

Brott and others (1976) determined that heat flow throughout the Snake River Plain is consistently 0.5 to 3 HFU (heat flow units) higher than in areas of normal heat The higher values are found along the margins of the flow. Although few heat flow measurements could be plain. obtained above the Snake Plain aquifer due to the aquifer's masking effect, Brott and others (1978) showed that elevation changes from west to east in the plain could be due to thermal expansion of underlying hot rocks. Consequently, the rocks beneath the eastern Snake River Plain where elevations are highest should be much hotter than those beneath the western Snake River Plain. This concept is strengthened by Armstrong's rock age dates.

Although the eastern Snake River Plain may ultimately have higher geothermal potential than the western Snake River Plain, most thermal water wells have been drilled in the western Snake River Plain. These wells extend in a belt some 65 km wide and 270 km long, which stretches from Raft River in the extreme south-central part of Idaho, northwestward to Weiser in the west-central part of Idaho (Plate 1 in pocket). Another, shorter and narrower belt, about 80 km long and 15 km wide, extends northwestward from Weiser through the Council-Cambridge area to Meadows. This belt contains numerous wells with surface water temperatures exceeding mean annual temperature by $5-10^{\circ}$ C and several up to 20°C (see map, Plate 1). Thermal springs generally seem confined to the margins of the Snake River Plain as do thermal wells in the eastern Snake River Plain, or are found along the Snake River.

Three areas in Idaho where thermal aquifers may exist are located within the large western Snake River Plain thermal zone. These are the Lake Lowell-Nampa-Caldwell area, the Blue Gulch area west of Buhl, and the Bruneau-Grand View area in northern Owyhee County. Others may exist, but well drilling has not revealed their extent to date. Some evidence indicates these aquifers may be recharged through large faults in the subsurface.

Discussion of the geothermal resources in the western Snake River Plain region follows on a county basis. No geothermal resource was found in Lincoln County.

WASHINGTON COUNTY

Washington County contains several areas where there are thermal water discharges (see figure 33). Weiser Hot Springs (llN-6W-l0acblS), northwest of Weiser, has long been utilized for swimming, balneological bathing, and greenhouse operations as well as small scale space heating. Several small diameter wells yield enough water at the site of a former hot spring to carry on the above operations. Another location which indicates promise of electrical generation capability is the Crane Creek Hot Springs (llN-3W-7bcblS) area northeast of Weiser.

Young and Whitehead (1975, p. 31-32) summarized the geothermal potential of these areas.

The Weiser area comprises about 518 sq km in southwestern Washington County and includes two subareas having thermal water: the Crane Creek subarea, which is about 19 km east of Weiser, and the Weiser Hot Springs subarea, which is about 8 km northwest of Weiser.

Although the surficial geology of the Crane Creek and Weiser Hot Springs geothermal subareas is somewhat different, the general stratigraphy is similar. Volcanic and sedimentary rocks of Permian and younger age, granite of Cretaceous age, or the older basalts of the Columbia River Group of Miocene and Pliocene age may underlie the Weiser However, the scant data available indicate area. that the reservoir rock is most likely composed of the older basalts of the Columbia River Group. Miocene and Pliocene (?) sedimentary rocks, termed the Payette Formation, overlie older basalts and are, in turn, overlain by a younger sequence of basalts of the Columbia River Group. For the most part, sedimentary rocks of the Idaho Group of Pliocene and Pleistocene age overlie the younger basalts. Alluvium and colluvium of Pleistocene and Holocene age cover much of the older rock units, particularly in the lowlands and valleys.

Gravity surveys indicate that the Weiser area is at the northwest end of a large regional gravity high that is associated with the western Snake River

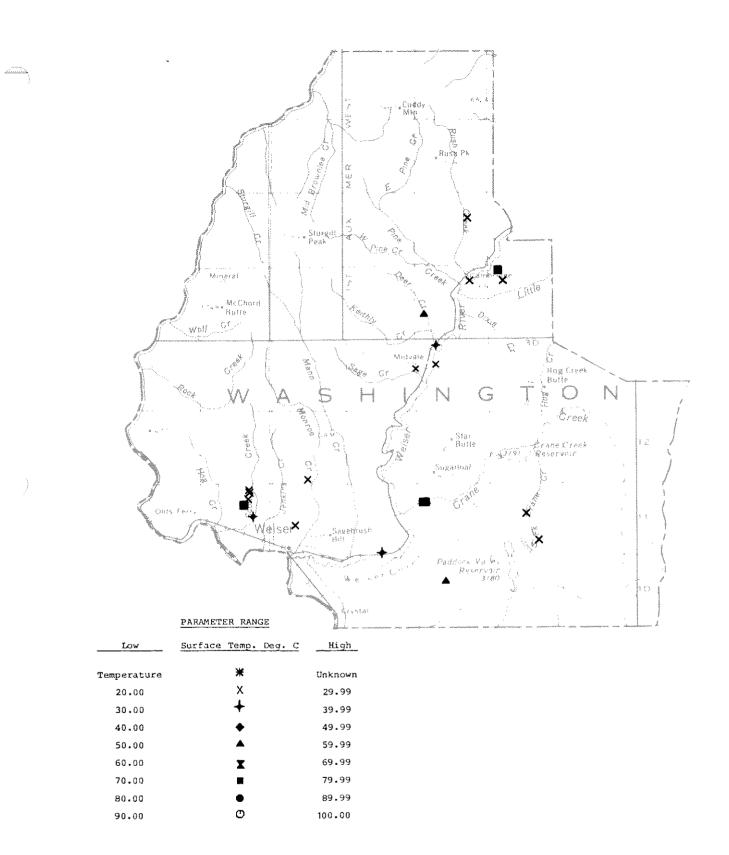
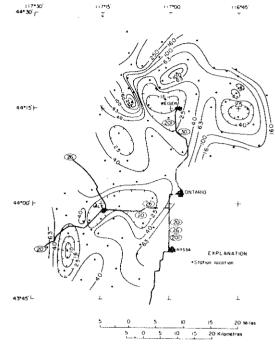


FIGURE 33. Index map of Washington County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.


Plain. The Crane Creek subarea is characterized by an extensive gravity low. A low-amplitude gravity high indicates that a dense, anomalous, nearsurface mass may underlie the Weiser Hot Springs subarea. Magnetic lows are found in both the Crane Creek and Weiser Hot Springs subareas. Preliminary audio-magnetotelluric soundings suggest that an anomalous conductive zone is present at shallow depths in both subareas.

Hoover and Long (1975) reported on these audiomagnetotelluric (AMT) soundings and stated:

A small region near Vale, Oregon, has been classed as a KGRA (known geothermal resource area). Hotspring activity occurs at the town of Vale and at two locations near the neighboring town of Weiser, Idaho. This area is in the Snake River basin (Newton and Corcoran, 1963) which is on the western edge of the Snake River Plain, The basin is underlain by a section, at least 1.5 km and possibly $4.\overline{6}$ km thick, of principally nonmarine Cenozoic sediments. The area shown in figures 34 and 35 is covered almost completely by the Idaho group of Pliocene and Pleistocene age made up of gravel, sand, silt, clay, and ash. In the middle of the basin, which is centered in the mapped area, the Idaho group is at least 1.2 km to 1.5 km (5000 ft) thick, as shown by a number of gas wells drilled within the basin. Older Tertiary rocks crop out around the edges of this region with the principal one being the Columbia River basalt group. Structural trends south of Vale are principally north-south, bending more to the northwest in the vicinity of Weiser.

Figures 34 and 35 show the two 27-Hz AMT maps obtained in the basin. At the Crane Creek Hot Springs northeast of Weiser, one of the lowest apparent resistivities was measured, 0.5 ohm-m, at 8 Hz. The maps in the Weiser region show rather complex structures and evidence of much lateral change. The higher resistivities in the northern part of the area are associated with older rocks at the edge of the Idaho batholith.

Within the basin proper, the principal trend in the electrical data is northeast. A resistivity low runs through Vale and extends about 20 km to the southwest. Extension of this trend northeast runs into the low at Crane Creek about 20 km northeast of Weiser. A local high of about 16 ohm-m just northeast of Vale, apparent only in figure 34 is

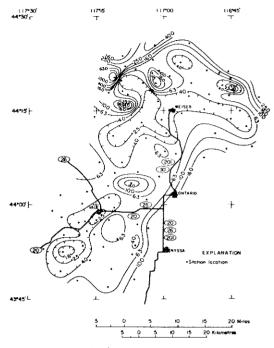


FIGURE 34. 27-Hz apparent-resistivity map (telluric line northsouth), Weiser, Idaho–Vale, Oregon, Contours in ohm meters.

FIGURE 35. Map of 27-Hz apparent resistivity (telluric line east-west), Weiser, Idaho–Vale, Oregon. Contours in ohm-me-ters.

(Hoover and Long, 1975.)

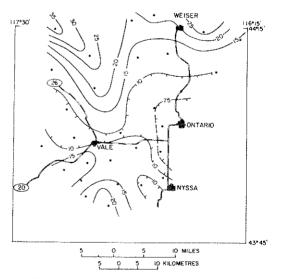


FIGURE 36. Telluric anomaly map at 20- to 30-sec period, Vale, Oregon–Weiser, Idaho. Contour interval $2K = 10 \sqrt{J}$.

also on the same trend. This high is related to the rocks comprising Malheur Butte, next to which the sounding was made. This is a small prominent plug whose emplacement may be structurally related to this same northeast trend.

Because of the low resistivities in the basin, the depth of AMT exploration does not extend below the sediments in most places. We attribute the anomalies to hot, saline waters and alteration within the sedimentary section. It is interesting that the electrical trends do not coincide with the surface structural trends. Leakage of the geothermal system to the surface, however, is probably along in the sedimentary section. This same faults observation has been made in other regions - most clearly in the Surprise Valley, California KGRA where north-trending basin-and-range faulting is prominent, yet the trend of the data relating to the geothermal system implies a northwest direction.

A telluric survey was made in the Vale, Oregon, area and the data are shown in figure 36. The correlation of this map with the AMT data is not as direct as in Island Park, which might be expected. The AMT survey is sampling principally the young basin sediments, while the telluric data sample a larger part of the crust and may be reflecting basement topography. A low saddle in the telluric data, however, is seen just north of Vale with a trend to the east and northeast. The lowest values on the telluric map are on the eastern edge near the towns of Ontario and Nyssa.

Young and Whitehead (1975, p. 31-32) stated further that:

A ground-temperature survey made in the Weiser Hot Springs subarea apparently outlines an area of high heat flow centered or near the Weiser Hot Springs, and it also correlates very well with high boron concentrations measured in water samples collected in the area of the survey.

Most of the thermal waters sampled in the Weiser area are of a sodium chloride sulfate or sodium sulfate type. Dissolved-solids concentrations ranged from 1,070 to 1,140 mg/l for thermal water in the Crane Creek subarea and from 225 to 852 mg/l in the Weiser Hot Springs subarea. Thermal water sampled in the Crane Creek subarea had noticeably higher concentrations of chloride and boron than did thermal water sampled in the Weiser Hot Springs subarea.

Measured groundwater temperatures ranged from 13.0 to 92.0° C, and were highest at a spring in the Crane Creek subarea. Estimated aquifer temperatures, using the silica and the sodiumpotassium-calcium chemical geothermometers, ranged from 153 to 177°C in the Crane Creek subarea and from 3 to 157°C in the Weiser Hot Springs subarea. Estimated aquifer temperatures for samples from wells at the Weiser Hot Springs ranged from 141 to In the Crane Creek and Weiser hot springs 157°C. subareas, respectively, estimated maximum temperatures at depth, using the mixed water method, ranged from 212 to 270°C and from 200 to 242°C with percentages of cold water ranging from 67 to 76 percent from 70 to 97 percent.

Analyses of hot-spring deposits from active and inactive-spring vents indicated that, although the mineral constituents in samples from both subareas are similar, the deposits in the Crane Creek subarea contain much greater amounts of sinter than those from the Weiser Hot Springs subarea. This indicates that the water depositing this material was at temperatures in excess of 180°C at depth.

The source of the heat for the thermal water in the Weiser area is believed to be a cooling young intrusive implanted at shallow depth in late Miocene or early Pleistocene time, or above-normal heat flow caused by the high temperatures at relatively shallow depth resulting from a general thinning of the earth's upper crust in this area.

Aside from the power generation possibilities in the Crane Creek area, the Weiser and Crane Creek hot springs represent areas where geothermal energy could be harnessed for agricultural use as well. The Weiser area is on the Union Pacific Railroad Mainline with a spur branch extending into the Crane Creek subarea to very near the springs. The entire Vale, Ontario-Weiser area is a rich, agricultural area where approximately one-third of the nation's onions are grown. Much of Idaho's fruit and sugar beets are also grown in this area. Uses such as onion, beet pulp, and fruit drying suggest themselves. Meat packers could make use of the thermal water for refrigeration.

Thermal waters also extend northeastward, in a belt from Vale, Oregon, through Weiser to Council-Cambridge in Washington County to the Meadows area in Adams County (see Plate 1 in pocket). Little is known about the Council-Cambridge area geothermally except that there are approximately eight wells ranging in temperatures from 20 to 30°C and one hot spring at 69°C. Discharge of wells ranges from 379 to 1500 l/m. The wells range in depth from 56 to 283 meters. Chemical analyses of discharge water from these wells should be made to establish priorities for further work in this area.

PAYETTE COUNTY

Little is known of the geothermal potential of Payette County. Nine thermal wells are known to have been drilled there and all are relatively cool, between 20 to 29°C (figure 37). Four are in the southwestern corner of Payette County north of Parma. Two more are up Little Willow Creek about 13 km northeast of Fruitland. Two occur about 5 km east of Fruitland and one occurs .4 km east of Payette.

Highest surface temperatures were measured up Little Willow Creek at 25 and 29° C from wells 9N-3W-21bdcl and 9N-3W-19ddal. Well head temperatures of 20° C have been measured from wells 9N-5W-35ccbl near Payette and 8N-4W-7ccdl near Fruitland.

No chemical analyses are available from any thermal wells in Payette County. Assessment of the resource should begin with sampling the hottest ones and those near Fruitland and Payette. It is possible that more and hotter water could be found in the Fruitland-Payette-Ontario area where several food processing plants are located.

GEM COUNTY

Four thermal anomalies are known in Gem County (see figure 37). Roystone Hot Springs (7N-1E-8ddalS) may have potential for binary cycle power generation. Roystone occurs near the intersection of a prominent north trending lineament that connects with the Dry Valley thermal anomaly north of Boise and a less pronounced northeast trending lineament (figure 17). These are visible on enhanced false color composite satellite images of the area. Surface temperature at Roystone Hot Springs is 55°C and discharge is 75 l/m. As estimated by the quartz and Na-K-Ca chemical geothermometers, subsurface temperature is 147 and 150°C, respectively.

A spring (7N-1E-9cdclS) about .4 km from Roystone Hot Springs has a 45° C surface temperature and may have an aquifer temperature between 84 and 106° C according to the Na-K-Ca and chalcedony chemical geothermometers.

A well 9.5 m deep has been drilled recently near Emmett in Gem County. This well has a surface temperature of 24°C which is sufficient for space heating if groundwater heat pumps are used. No other data are presently available for this well, but its presence suggests that the Emmett area

, αιτο (λιτή

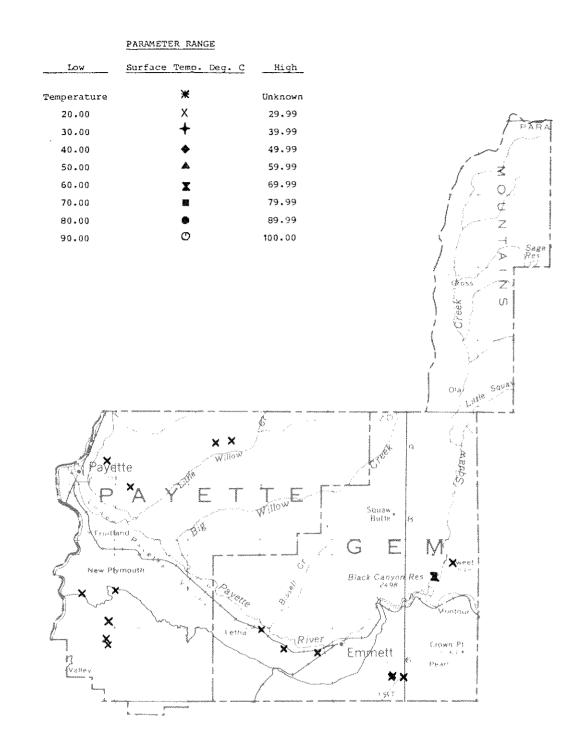


FIGURE 37. Index map of Payette and Gem counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

may have potential for low temperature geothermal energy. A chemical analysis should be obtained from the well to see if subsurface temperatures might be substantially higher before other work is undertaken in this area.

CANYON COUNTY

Little is known of the potential in Canyon County for low temperature geothermal use. Numerous low temperature (20-41°C) thermal wells occur in Canyon County. In a large area south and southeast of Lake Lowell, numerous 20-30°C wells have been drilled (figure 38) and are mostly used for irrigation. Water for the municipal swimming pool in Nampa is 31°C. A thermal well exists near the municipal pool in Caldwell (4N-3W-28aabl presently flowing and unused). The city of Caldwell owns at least one more well (4N-3W-35abd1) which provides 20° C water. A warm well (41°C) near the Simplot feedlot (4N-3W-19adc1) 3 km south of Caldwell provides water for cattle. This well was drilled as an oil and exploration well and reportedly produced "very hot qas water," but was perforated at 900 m to provide cooler Other warm wells exist near drinking water for cattle. (5N-5W-9adbl and 5N-5W-4dcdls) and Melba Parma (1N-2W-36caal) (24°C) owned by the respective cities and operated as municipal wells.

Figure 38 shows northeast-southwest alignment of thermal wells stretching from Parma to Nampa, passing through Caldwell, which might indicate a geologic structure of some length. This linear trend of wells has been mapped as a fault between Nampa and Caldwell (Bond, 1978). Due to obscuring cultural features, it is difficult to identify a lineament from the satellite photos, although one might possibly exist on or near the wells (figure 39). Several closely spaced wells in central Ada County fall along this trend (Plate 1, figure 9 and figure 38).

As Canyon County is a hub of industrial activity, primarily food processing, this area should be assessed early for low temperature geothermal resources. As the thermal water appears to be related to faulting in the area, structures that might control distribution of thermal water should be sought. Geologic mapping, gravity and magnetic surveys, and hydrologic studies of the area should be accomplished first to determine gross structural patterns. Reflective seismic and resistivity surveys could be designed and run from the previously mentioned data base to site several drill holes in promising areas near Nampa or (This has been started through the purchase of Caldwell. exploration survey data as part of the IDWR-DOE oil Nampa-Caldwell area study.) From here, stepout surveys or drilling should be undertaken in other parts of the western Snake River Plain to uncover other favorable geologic struc-

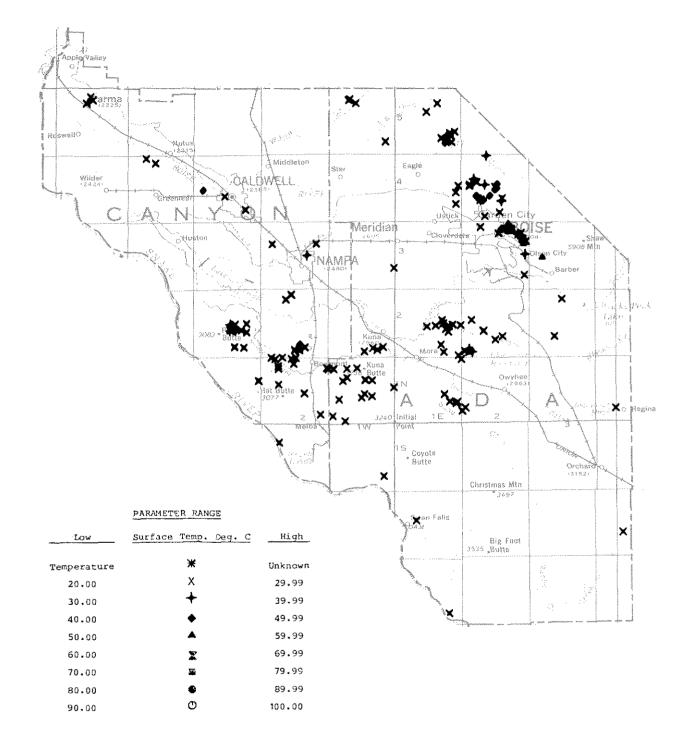


FIGURE 38. Index map of Canyon and Ada counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

tures where thermal water may be found. These types of exploration could lead to discovery of many valuable energy resources in this section of Idaho.

ADA COUNTY

People in Ada County have long used geothermal energy. Several geothermal installations of note are currently operating in Boise. The Idaho Department of Transportation heats and air conditions its main office building on State Street using a groundwater heat pump system. The Idaho State Health Laboratory is currently using geothermal energy obtained from the Warm Springs Water District wells. Approximately 185 homes on and near Warm Springs Avenue have used geothermal energy (well head temperature 74°C) for their heat source since the turn of the century. Several greenhouses for cut and potted plants derive their heat from geothermal wells (well head temperature 47°C). Several domestic wells provide heat throughout the Boise Front area to individual homes. Plans for expansion of geothermal heating by the city of Boise are being made. The Capital Mall Complex is being looked at for possible conversion of state and federal buildings to geothermal energy for space heating and cooling.

There are 119 wells (well head temperatures greater than 20°C) known in Ada County (figure 38). The hottest ones are near the Boise Front, where they are associated with extensive, large displacement faulting. Wells drilled by Boise State University Geology Department, funded by DOE for the Boise City Project, were sited to hit the intersection of several known faults and lineaments at depth. These wells were highly successful. Preliminary tests by DOE indicate a sufficient resource for the anticipated development in downtown Boise. Another area of thermal water also lies near fault and lineament intersections. This is the Spring Valley-Dry Valley area northwest of Boise where thermal wells are located. Here, the Drv several Valley-Roystone Hot Springs lineament intersects the Dry Valley fault system. Other wells are located in the several gulches which cut the Boise Front at nearly right angles. Mink and Graham, 1977, in their study of the geothermal potential of the west Boise area, sited five areas along the Boise Front that they considered to have potential for low temperature geothermal use. These areas are shown in figure 40. In addition to these areas, others where thermal water is found near Boise are: Strawberry Glen Road area, Garden City area, Capitol Mall area, Old State Penitentary area, and Glenwood Street-Chinden Boulevard area.

Donaldson and Applegate (1979) have conducted reconnaissance level resistivity surveys along the Boise Front to determine thermal water locations. They state:

FIGURE 39. EROS false color infrared Landsat EDISE image of part of southwestern Idaho and southeastern Oregon showing selected linear features and thermal water locations with surface temperatures above 20°C.

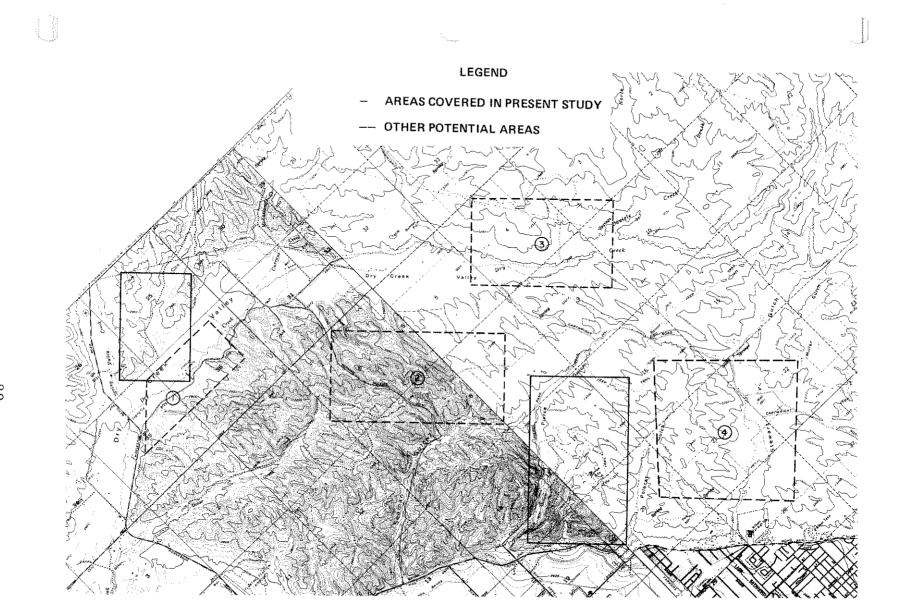
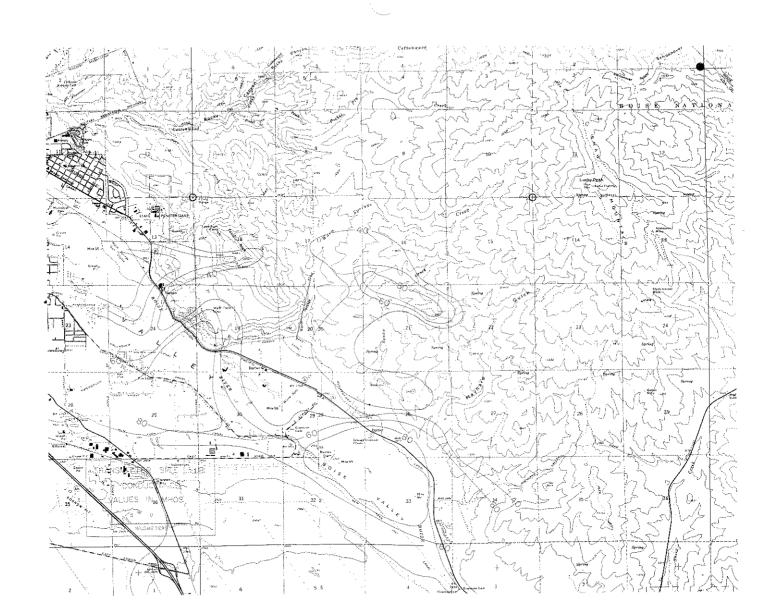


FIGURE 40. Topographic map of west Boise Front area showing locations of potential geothermal sites. (Modified from Mink and Graham, 1977.)

Of direct interest are the resistivity surveys (figures 41, 42, 43, and 44) which have outlined several anomalously conductive areas. The steep resistivity gradients associated with these anomalies probably reflect the presence of faults intersecting the major Boise Front fault at high angles. Such fault intersections, where they are proven to exist, offer very attractive geothermal prospects.

A large number of irrigation wells occur in central Ada County in the vicinity of Eight and Ten Mile creeks where well head temperatures in this part of Ada County are between 20 and 25°C. Another group occurs near Kuna in west central Ada County. There are several large linears that apparently extend from the Middle Fork Boise River drainage and appear to cross the Snake River Plain in the Eight and A long, more pronounced linear runs Tenmile creeks area. northwest-southeast up the axis of the western Snake River Plain and intersects the other linears south of Tenmile Creek. Knowledge of the type of geologic features these linears represent appears to be fundamental to obtaining much more information on geothermal occurrences in the western Snake River Plain region. A speculation is that they represent surface expressions of basement or other faults or rock fractures. They may act as conduits for Recharge of these systems could be anywhere thermal water. There could even be interbasin transfer of along them. groundwater along some of the regional linears and transfer could take place anywhere from one kilometer or less to tens of kilometers or more. Any holes drilled for the purpose of obtaining thermal water would have to be very carefully targeted to intersect faults or rock fractures where thermal water may be circulating. In the alluvium and valley fill sediments away from the mountain front faults, thermal water conduits would be difficult to locate. Analysis of large scale enhanced false color Landsat images may allow some of these faults to be found. A systematic program of reflective seismic profiling across the western Snake River Plain is highly recommended to determine the location and depth of any faulting in the area.

SOUTHERN ELMORE COUNTY


Numerous thermal wells and several thermal springs are known in southern Elmore County. Springs are scattered widely but are principally located along the northern margin of the western Snake River Plain northeast and east of Mountain Home. Some wells are located just west of Mountain Home and Mountain Home Air Force Base and several kilometers to the east of Mountain Home Air Force Base (see figure 25). The wells near Mountain Home and the Air Base are the coolest, being 20 to 25°C at the surface. Several wells in southern Elmore County are located near the Snake River.

156 SITE TER. $\sqrt[n]{1}$ 5.5

FIGURE 41. Map of Boise Front area showing total conductance for transmitter 1 A array (Donaldson and Applegate, 1979, modified).

FIGURE 42. Map of Boise Front area showing total conductance for transmitter 2 A array (Donaldson and Applegate, 1979, modified).

.

FIGURE 43. Map of Boise Front area showing total conductance for transmitter 1 B array (Donaldson and Applegate, 1979, modified).

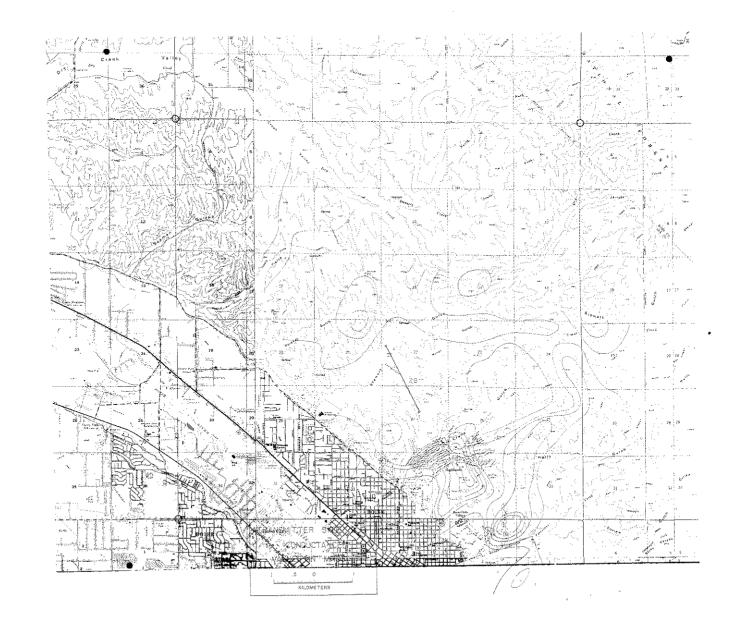
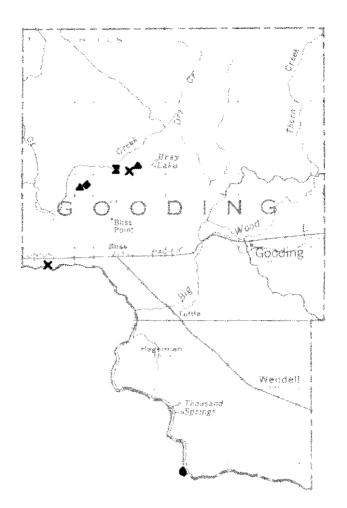


FIGURE 44. Map of Boise Front area showing total conductance for transmitter 2 B array (Donaldson and Applegate, 1979, modified).

Some of the wells drilled near Mountain Home and east of the Air Base form linear patterns that could reveal structural control for the thermal water occurrence. The alignment is transverse to the western Snake Plain axis and, as in Ada and Canyon counties, thermal water occurrences could be at least partially controlled by faulting running across the However, the springs and wells that occur along the plain. plain margin seem to be influenced by structures running western Snake Plain axis parallel to the or northwest-southeast.

Mountain Home and Mountain Home Air Force Base are the two principal population centers in southern Elmore County where thermal water occurs and where greatest use could probably be made for it. Other towns are King Hill and Glenns Ferry. Low temperature $(20 - 30^{\circ}C)$ thermal wells are located within 5 km of the above sites. Prospecting for more thermal water in each of these areas might prove fruitful, and the prospect of hotter water at depth is possible. These areas should be further investigated to determine their full potential, beginning with chemical analyses of existing thermal well waters so an estimate can be made of the maximum water temperature through the use of chemical geothermometers.


GOODING COUNTY

Seven thermal anomalies occur in Gooding County (figure 45). Four wells and a spring occur along Clover Creek near the foot of the Mount Bennett Hills and another occurs near the Snake River. All are in western Gooding County and far removed from most population centers.

Chemical analyses are available on three of the seven thermal sites in Gooding County. White Arrow Hot Springs (4S-13E-30adblS) is the hottest at 65°C. Agreement between the chalcedony and Na-K-Ca chemical geothermometers (108°C and 112°C, respectively) indicates subsurface temperatures are probably in this range. However, in drilling the well at White Arrow Hot Springs, the owner reports blue quartz was found in the hole. The quartz chemical geothermometer predicts temperature of 135°C. White Arrow is presently the scene of private agricultural research and commercial production of tomatoes in geothermally heated greenhouses. Idaho Image (May-June, 1975) reported the following activities at White Arrow Ranch by Bob Erkins:

Tomatoes are harvested at the White Arrow Ranch at Bliss from September through July, when temperatures range from 38 to -2° C.

Tomato plants are very sensitive to extremes of temperatures; however, the secret at White Arrow

PARAMETER RANGE

Low	Surface Temp. Deg. C	<u> </u>
Temperature	*	Unknown
20.00	Х	29.99
30.00	+	39.99
40.00	٠	49.99
50.00	۸	59,99
60.00	X	69.99
70.00		79.99
80.00	•	89.99
90.00	O	100.00

FIGURE 45. Index map of Gooding County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Ranch is that they use a large natural hot spring to maintain optimum growing temperature during the winter in their two 12 by 40 m hothouses.

The water which comes from the ground at a temperature of 65°C flows into heat exchangers at the end of the building. Air is blown across them and through large plastic pipes and carried the length of the building. Hot water is also carried through some 3 km of black plastic pipe which provides further radiant heat.

In hot weather, the south end of the building can be opened and ventilation provided by six large exhaust fans. The temperature is further controlled by blowing air through large cooling pads through which cold water is dripped.

Throughout the year, according to owner Robert A. Erkins, the temperature can easily be maintained at between 18° and 28°C. Production is stopped in the summer months not by the weather, but because that is the season when there are plenty of tomatoes already on the market from growers using more conventional methods.

Just getting out of the experimental stage and into full production, White Arrow Ranch has been shipping about 600 pounds of tomatoes per week but, within the next month or two, expects to be shipping around 4,000 pounds per week. Erkins projects a crop of up to 30 tons of tomatoes annually from a quarter acre of space.

Some 3,000 Manapal tomato plants were planted for the first crop. Erkins said it was one of several hothouse varieties that could have been used.

Future plans include cucumbers and potted house plants. Land is already cleared and piping in for 12 more hothouse buildings, although their construction will not be completed until they are needed.

The key to the system is a free-flowing hot spring which provides heated water at a rate of 3800 l/min, much more than needed for any projected expansion. Erkins said his electric bill is not high, but dependable power supply is important to proper operation of the system. In the two existing buildings some 18 electric fans are used for heating and cooling. In addition, three electric pumps move the well and spring water used to water the tomato plants. (Water from the hot spring is not used for this purpose.)

Erkins requires only one employee to operate the first building. One of his most important functions is to walk through the structure three times a day with a gasoline-powered blower strapped on his back to pollinate the plants. Tomatoes are normally pollinated by wind, but there is none in the buildings.

One of the biggest problems, according to Erkins, was a lack of data. There have been other hothouses using natural hot water, but no one seemed to be able to provide much really expert information, so much had to be learned by experimentation.

Erkins and his wife have been in the trout farming business in Idaho for 23 years, but it is their first venture in tomato growing. White Arrow Ranch was originally settled in the 1800's, but had been deserted for some time before being purchased by the Erkins. It was named for an Indian tribe that had camped at the site and which was noted for making white arrowheads.

A well in Gooding County (4S-13E-28abb1) is $47^{\circ}C$ at the surface, with the Na-K-Ca and chalcedony chemical geothermometers indicating temperatures of $98-105^{\circ}C$ at depth. Uses similar to that of White Arrow could probably be made with this water. Another well (5S-12E-3aaa1) is $57^{\circ}C$ at the well head; the Na-K-Ca and chalcedony chemical geothermometers predict maximum subsurface temperatures from $70-83^{\circ}C$ might be found in this area.

Little information is available from the other wells in Gooding County.

JEROME COUNTY

Royal Catfish Industries has used geothermal water to raise catfish in Jerome County (figure 46). The operation is now closed. Thermal water at 43°C is discharged from a thermal well (95-17E-29dbbl) located along the Snake River north of Twin Falls to supply water to the facility which 30 fish rearing ponds. Subsurface temperatures had chalcedony and by the Na-K-Ca chemical predicted geothermometers are 89 and 93°C respectively. No other thermal water is known in Jerome County and the potential for further prospects is unknown.

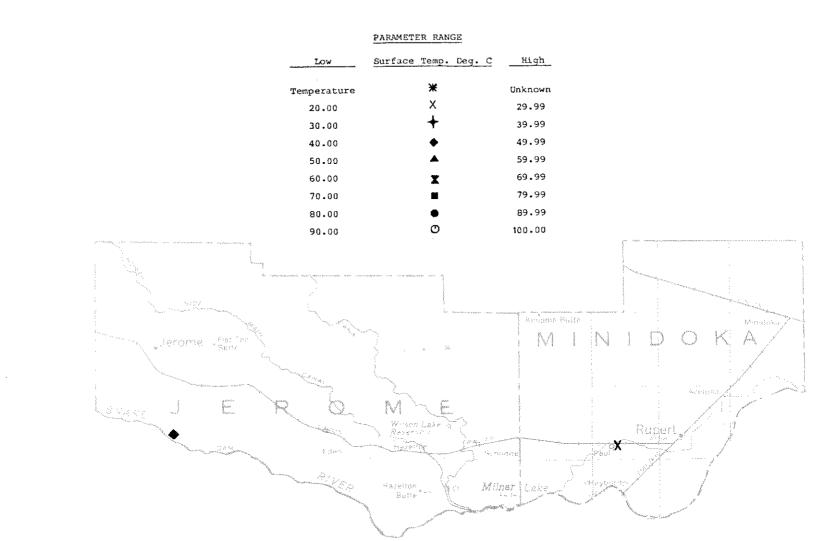


FIGURE 46. Index map of Jerome and southern Minidoka counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

-99-

MINIDOKA COUNTY

Little information on the geothermal potential of Minidoka County is available. The area is underlain by the Snake Plain aquifer, which may mask thermal occurrences throughout the eastern Snake River Plain. A single thermal well (9S-23E-28ccal) (figure 46), drilled for the city of Paul, encountered Pliocene and Pleistocene basaltic lava flows to a total depth of 137 m, discharges 22°C at 7570 l/min. Its occurrence suggests more and possibly hotter water might be found in the area. No chemical analysis is available, therefore, speculation about possible subsurface temperatures cannot be made. Uses up to and including groundwater heat pump space heating and cooling could be made of the thermal water at existing discharge temperatures. A chemical analysis of the well waters should be made to ascertain the possibilities of obtaining hotter water in the area through deeper drilling.

OWYHEE COUNTY

The Bruneau-Grand View thermal anomaly zone (figure 47) in southwest Idaho is the largest geothermal area in the western United States, rivaled in size only by the geopressured zones in the Texas-Louisiana Gulf Coast region. Renner and others (1975, p. 39) estimate that 1100 x 10^{18} joules of heat (above 15° C to 10 km of depth) are contained in rocks and water beneath an estimated 2250 sq. km Thermal water ranging in temperature from 20 of land area. to 84°C is extracted from more than 100 domestic, stock, and irrigation wells from two different types of aquifers sedimentary and volcanic rock. Many of the wells are artesian and range from 150 to nearly 1100 m deep. They are concentrated mostly in four areas - Bruneau River Valley, Little Valley, Grand View, and Oreana where farmland is available for agricultural use. Young and Whitehead's (1975, p. 44-45) assessment of the resource in this area is summarized.

The rocks in the Bruneau-Grand View area range in age from Late Cretaceous to Holocene. Rocks of the Cenozoic Era have been subdivided in four groups: (1) an unnamed sequence of rhyolitic and related rocks, (2) the Idavada Volcanics, (3) the Idaho Group, and (4) the Snake River Group. For convenience, these rocks units have been divided into two major groups according to their hydrologic properties: (1) the volcanic-rock aquifers that include the Idavada Volcanics, the Banbury Basalt of the Idaho Group and undifferentiated silicic volcanic rocks; (2) the sedimentary-rock aquifers, which include chiefly sedimentary units of the Idaho and Snake River Groups.

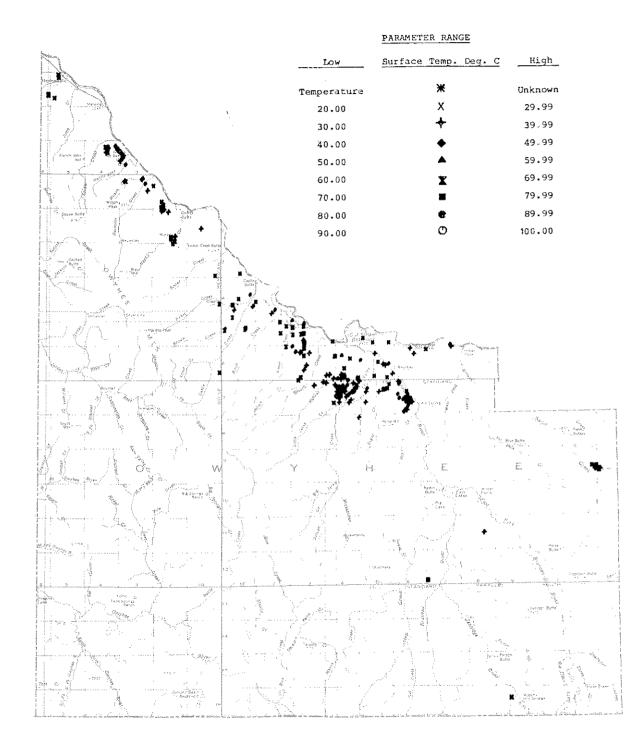


FIGURE 47. Index map of Owyhee County showing locations of thermal water occurrences with surface tempera-tures of 20°C or higher.

Recharge to the volcanic-rock aquifer (except the Banbury Basalt) is thought to be chiefly from precipitation in the higher altitudes to the south and southwest of the study area where the rock units are exposed at the surface. Recharge to the sedimentary-rock aquifers and the Banbury Basalt is believed to be mainly by the upward movement of water from the underlying volcanic-rock aquifers.

The Idavada Volcanics or underlying rock units are believed to be the reservoir rocks for the thermal water in the Bruneau-Grand View area.

A system of northwest-trending faults has probably fractured and displaced rocks ranging in age from Pliocene to Pleistocene. Most of the faulting probably occurred in early Pliocene time, with progressively diminishing movements through Pleistocene time. Gravity and aeromagnetic surveys support the theory of a northwestward-trending subsurface structure.

An AMT (audio-magnetotelluric) survey of the Bruneau-Grand View area has revealed a large conductive anomaly in the region between Oreana and Grand View. The low resistivities observed, approaching 2 ohm-meters, imply a hot-water reservoir in which the reservoir rocks have been altered.

Sampled thermal water in the Bruneau-Grand View area is generally of a sodium bicarbonate type. In the study area, thermal water from the sedimentaryrock aquifers generally contains dissolved solids concentrations greater than 600 mg/l, is nearly neutral in pH, and usually contains less than 2 mg/l flouride. Water from the volcanic-rock aquifers generally contains less than 500 mg/l dissolved solids, has pH values higher than 8.0, and has flouride concentrations in excess of 8 mg/l. Chloride concentrations range from 2.7 to 79 mg/l for all sampled water with the values from the volcanic-rock aquifers usually less than 20 mg/l. Sulfate concentrations are much higher for water from the volcanic rock than for the water from the overlying sedimentary-rock aquifers. The chemistry thermal water from the volcanic-rock of the aquifers is very similar to that of thermal water flowing from the granitic rocks of the Idaho batholith.

(Note: Recent deep drilling in the area has revealed the existence of granitic rock underlying the silicic volcanic rock aquifers.)

Ratios of concentration of selected chemical constituents are used to distinguish water from the volcanic-rock and sedimentary-rock aquifers. The chloride-fluoride ratio is probably the best indicator with ratios generally less than 0.6 for water from the volcanic-rock aquifers. Chloride-boron ratios of the hotter water aquifers showed a marked decrease near Bruneau and Grand View because of increased boron concentrations.

Measured groundwater temperatures at the surface in the Bruneau-Grand View area range from 9.5 to 83°C with the higher temperatures (40 to 83°C) found in the water from the volcanic-rock aquifers. Temperatures of the water from the sedimentary-rock aquifers seldom exceed 35°C. The observed groundwater temperatures in the volcanic-rock aquifers seem to be related to the depth to the aquifers.

The gas in samples collected from water in the Bruneau-Grand View area consists primarily of nitrogen, oxygen, and methane. Methane was found primarily in samples from the sedimentary rock aquifers. Analysis of the gas in water from the volcanic-rock aquifers indicates that the gas is essentially that contained in meteroic water recharging the system.

Mineral deposition at wells and springs in the Bruneau-Grand View area is noticeably absent, largely because of the low dissolved-solids concentration in the water.

The source of heat for the deeply circulating thermal waters in the Bruneau-Grand View area is believed to be an above normal geothermal gradient. This above normal gradient could be related to a thinning of the earth's upper crust in this area.

The Bruneau-Grand View area represents a complex geothermal system consisting of several aquifers that may be interconnected by faulting and by wells that have been drilled through the overlying sedimentary rock aquifers into the volcanic rock aquifers. The complexity and intermingling of water from wells drilled into the various aquifers precludes accurate subsurface determinations for every well. Consequently, only aquifer temperatures are given in basic data table 4 (in basic data table 2 all available aquifer temperatures are given) for wells cased at least two thirds of their total depth and to those with surface temperatures of 40°C or above. These estimated aquifer temperatures suggest that the waters in the Bruneau-Grand View area have never been very hot (100 to 110° C) and in some cases may have come from depths where temperatures are even cooler (70 to 100° C). Deep drilling in the area has given conflicting results, although the most accurate seems to come from Phillips Petroleum's Lawrence D. No. 1 well (5S-1E-24adl) with a reported bottom hole temperature of 108°C at a depth of 2,672 m.

Young and Whitehead's study was limited to an area south of the Snake River. It is not known whether the aquifer systems extend north of the Snake River. Warner (1975) postulated the existence of a large northwest striking left lateral rift system near the present course of the Snake River, with clockwise or northwestward rotation of about 80 km of the northern block relative to the southern block. Rifting postdates formation of the sedimentary and volcanic rock aguifers of the Bruneau-Grand View area. If this rifting hypothesis is correct, the sedimentary and volcanic rock aquifers in the Bruneau-Grand View area have been rifted also, and the other "half" of this thermal anomaly may have been subsequently shifted northwestward to now lie somewhere between Boise and Weiser. Indeed, much thermal water has been found by well drillers in Ada, Canyon, Payette and Washington counties.

TWIN FALLS COUNTY

Thermal water in Twin Falls County (figure 48) is widely scattered occurring principally in the northeastern and eastern part of the county. There are 56 thermal water occurrences with surface temperatures of 20°C or above.

Miracle (8S-14E-31acb1S) and Banbury (8S-4E-33cbalS) hot springs are resorts located along the Snake River in northwestern Twin Falls County. Several wells are also located along the Snake River north and west of Buhl.

A number of wells have encountered warm water in the Blue Gulch area northwest of Balanced Rock and west of Salmon Falls Creek. A fairly large warm water aquifer may exist here, judging from the number and spacing of thermal wells. A general alignment of wells and springs along the eastern margin of the thermal anomaly may indicate faulting or other geologic structure that may control thermal water here. A large northwest-trending linear feature (figure 29), which stretches from Mountain Home to Salmon Falls Creek (90 km), may also control thermal water here and feed the aquifer system. Wells generally average 190 m deep and well head temperatures average about 27°C.

A well 0.8 km east of Buhl may indicate some potential for low temperature geothermal use in the Buhl area. No other information is available on this well except that the well head temperature is 26° C.

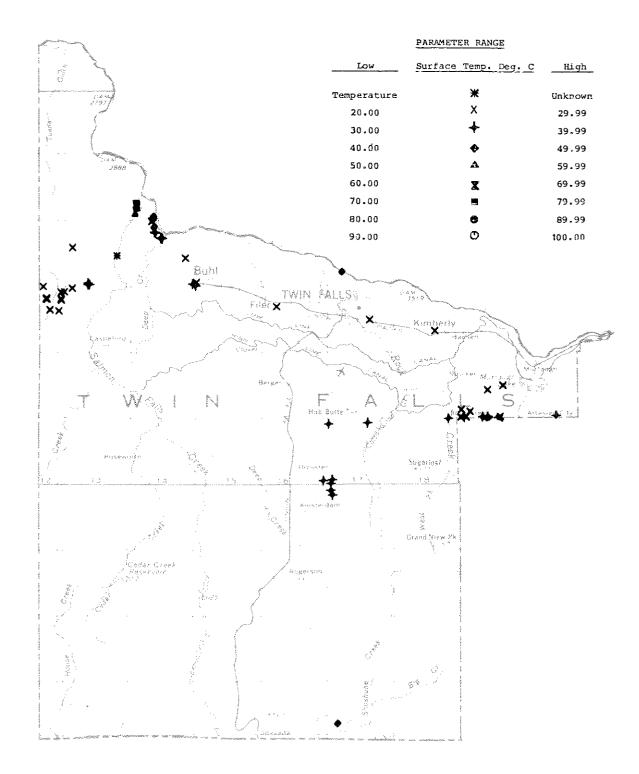


FIGURE 48. Index map of Twin Falls County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

The city of Filer owns a well (10S-16E-8cdal) having a well head temperature of 27°C. Another well temperature of 29°C exists on the outskirts of Twin Falls (10S-17E-14ccdl) and indicates a possible thermal source may exist in this area also. A well (10S-18E-26bbal) between Hansen and Kimberly is also 20°C and a large concentration of wells (10 in Twin Falls County and 20 in western Cassia County) exists east of Cedar Hill and southwest of Murtaugh Lake near Artesian City. These wells are aligned in a nearly east-west direction and occur near the foot of the South Hills. This may indicate a large fault could exist here. Most of the wells are in the 27 to 37°C range and range in depth from 150 to 365 meters.

Perhaps the first or only geothermally heated dog house in the world exists at Magic Hot Springs (16S-17E-30acalS) in southern Twin Falls County near a small private resort close to the Idaho-Nevada border. Here thermal water is used for recreation, balneological purposes and for space heating a number of cabins.

Nat-Soo-Paw Warm Springs (12S-17E-31babls) is located 5 km east of Hollister and flows at 36°C surface temperature from Quaternary alluvium near Tertiary silicic volcanic rocks along a possible concealed fault. Nat-Soo-Paw has been a resort for many years. Several other thermal springs existed in the Hollister area but are now dry due to well drilling. Several wells in the area discharge thermal water of low temperature (from 20 to 38°C).

Donaldson and Applegate (1979) reported that:

The Twin Falls area lies on the boundary of the subdivision of the Snake River Plain into its eastern and western components. This may be significant if the division reflects a crustal break as has been suggested by Malde (1959) based on gravity and earthquake epicenters.

In this area gravity does not suggest any sharp structural features. The regional gradient toward the axis of the plain is dominant with the exception of a broad 5-10 mgal low centered about 23 km due east of Jerome (figure 49). A corresponding local magnetic low (figure 50) enhances the possibility that a structural depression exists. There are no active faults documented by Witkind (1975) in this subarea but Day (1974) has mapped lineaments from ERTS imagery which approximate the trend of the western plain in direction (figure 10).

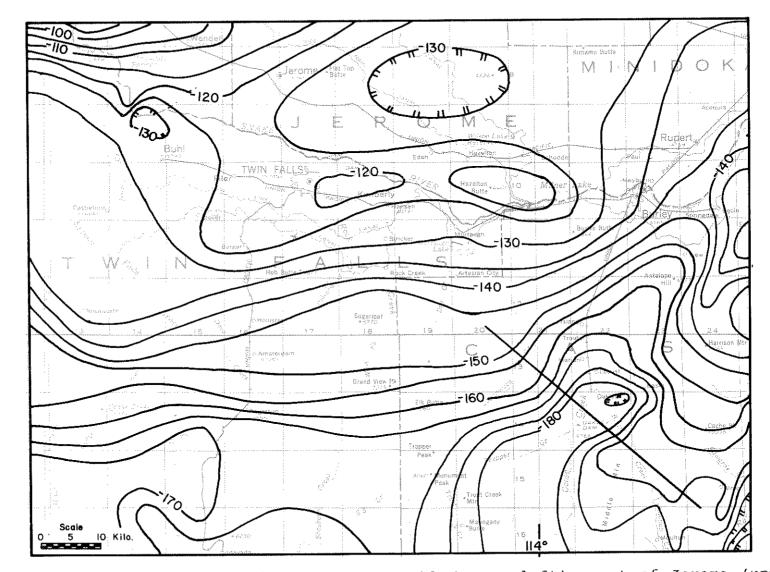

A series of warm wells in the southern portion of this area match quite closely the trends of 3 active faults reported by Witkind (1975).

FIGURE 49. Gravity map showing lows near Buhl (upper left), east of Jerome (upper center) and near Oakley (lower right). (Mabey, Peterson and Wilson, 1974.)

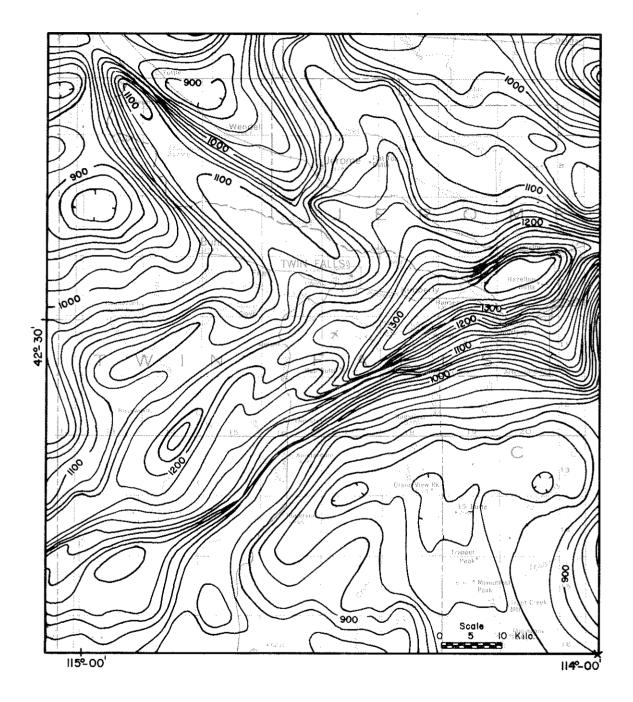


FIGURE 50. Aeromagnetic map showing low west of Jerome (upper right) (U.S. Geological Survey, 1971).

NORTHERN FREMONT COUNTY

Extensive geothermal leasing activity is ongoing in the Island Park basin in east-central Fremont County near Yellowstone Park (figure 51). Stearns and others, (1939, p. 28-29) recognized this basin as a caldera. Hamilton (1965, p. Cl) described the "Island Park caldera" as "an elliptical collapse structure 29 by 37 km in diameter that was dropped from the center of a shield volcano composed of rhyolite ash flows." Hamilton further described the caldera as:

...part of the Snake River-Yellowstone province of intense Pliocene and Quaternary volcanism of olivine basalt and rhyolite. In this province, as in other bimodal volcanic provinces, rhyolite and basalt erupted from vents interspersed in both time and space, and simultaneous eruptions of both liquids from the same or nearby vents are known to have occurred. In the Island Park caldera the eruptive sequence and geometry suggest that the large magma chamber contains liquid rhyolite overlying liquid olivine basalt.

Hoover and Long (1975, p. 1,062) stated:

geologic evidence Current suggests that а Yellowstone-type system does not exist at Island Park because the last major rhyolite body was emplaced about one million years ago and subsequent eruptions were of basaltic composition coming from the mantle along fractures in the older caldera (R.L. Christiansen, oral commun., 1975). The general absence of hot springs also suggests an old AMT and telluric surveys were made in svstem. August 1974 to study the possible existence of concealed hydrothermal activity.

The generalized geology of rock types in the caldera is shown in figure 52 with the 7.6 Hz north-south AMT data. The caldera stands out as an area of high resistivity, generally above 100 ohm-m surrounded by a region of intermediate values. Within the caldera local highs around 1000 ohm-m are associated with small rhyolite domes on the surface, and most hidden by later basalt flows. The AMT data shows the possibility of another rhyolite body on the western rim of the caldera which has been covered by tuff and rhyolite flows and may represent a source for some of these materials.

An east-west cross section is shown in figure 53. Included in the figure is a skin-depth

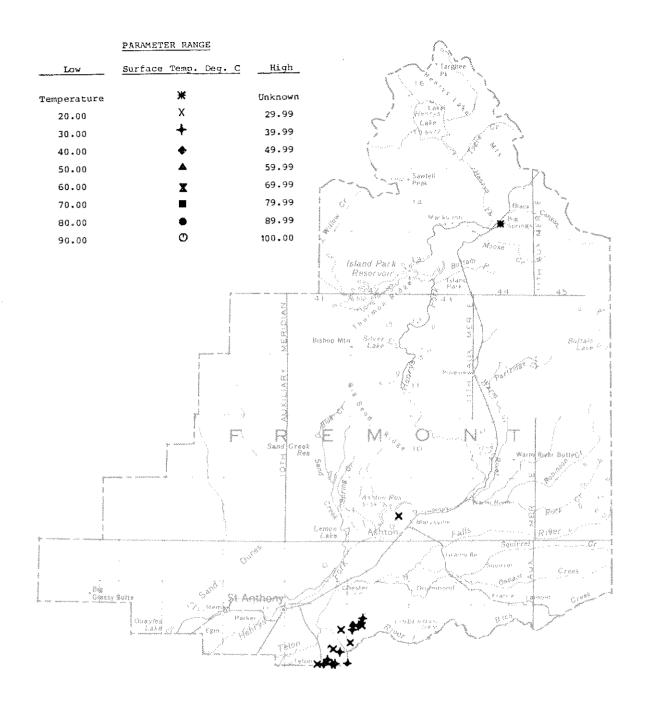


FIGURE 51. Index map of Fremont County showing the locations of thermal water occurrences with surface temperatures of 20°C or higher.

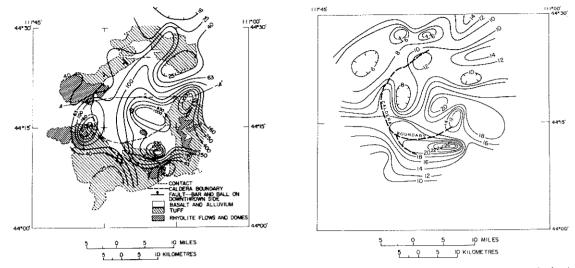


FIGURE 52. Map of rock types and 26 Hz apparent-resistivity (telluric line north-south), Island Park, Idaho. Contours in ohm-meters and logarithmic basis. FIGURE 54. Telluric anomaly map at 20- to 30-sec period, Island Park, Idaho. Contour interval $2K = 10 \sqrt{J}$.

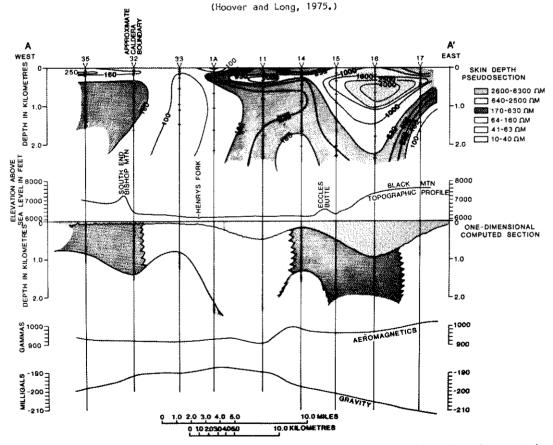


FIGURE 53. Comparison of skin-depth pseudosections and one-dimension inverted section with gravity and magnetic data across the Island Park area. Line of section (A-A') shown in Figure 6.

pseudosection obtained by contouring the apparent resistivities at their corresponding skin depths on the section, and a second section obtained by onedimensional inversion of the same sounding curves. The corresponding gravity and magnetic data show an edge of the body near station 11. The gravity data show a high associated with the caldera partly masked by the flanks of the extreme low associated with the Yellowstone region.

The telluric survey data appears in figure 54 which shows a high degree of correlation with the AMT Telluric data was obtained in the 20 to 30 data. second period range, which would give a skin depth around 25 km in 1000 ohm-m material. The highresistivity material in the southeast part of the caldera is present at depth as indicated on the telluric map, and even the smallest high on the western edge can be seen as well. The telluric data also clearly shows the caldera as a region of high resistivity. This implies that the caldera has cooled, that there is little rock alteration, and that the area is not now a very promising The high resistivities in exploration target. Island Park basin clearly support Christiansen's inferences.

BUTTE COUNTY

Four warm wells are known in Butte County (figure 55) and are located near the northern margin of the Snake River Plain. Three are in Butte City, 5 km south of Arco, and another is between Arco and the Craters of the Moon National Monument.

One Butte City well (3N-27E-9abbl) $(35^{\circ}C)$ was originally drilled to a depth of 259 m in search of cold water. There was an increase in the temperature as the drilling went deeper so the well was backfilled to 145 m. Subsurface temperatures may be as high as 76°C at this location. Another Butte City well (3N-27E-9abb2) is 33°C and was drilled to a depth of 152.5 m. The chalcedony and Na-K-Ca chemical geothermometers indicate temperatures between 52 and 54°C might be encountered by deepening the well.

The oldest warm water well in this area (3N-27E-9aab1) was drilled in 1919 to a depth of 183 m and produced water in the 40°C temperature range. Another well (3N-25E-32cdc1) is 110 m deep and has a surface temperature of 43.5°C.

Butte City-Arco might be an area where use of thermal water for space heating could prove feasible. As other wells in the area have not encountered thermal water, it PARAMETER RANGE

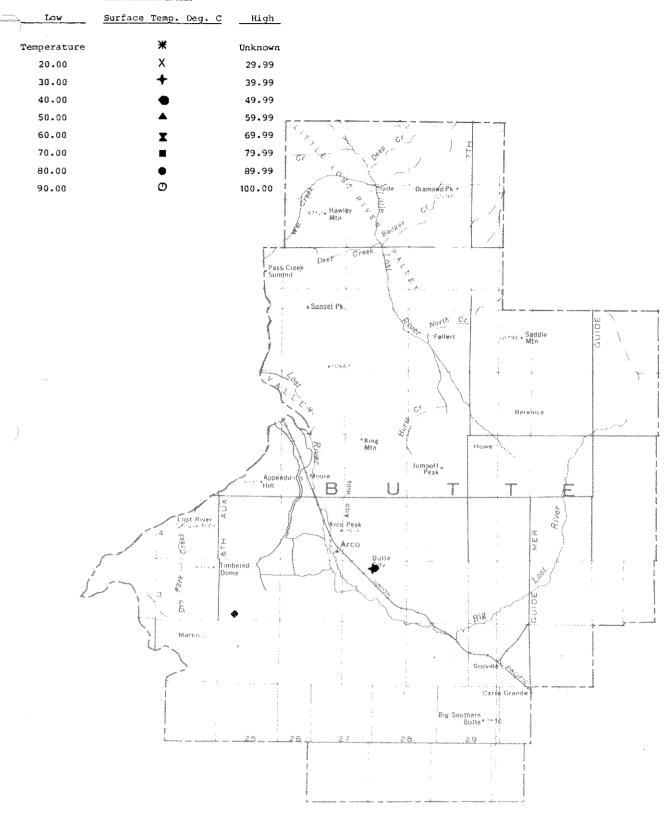


FIGURE 55. Index map of Butte County showing locations of thermal occurrences with surface temperatures of 20° C or higher.

appears these thermal occurrences are structurally controlled (maybe drilled into faults along which the thermal water is rising). Any studies should be designed to delineate the faults and determine the extent of the resource along them. This could be accomplished by geophysical techniques, coupled with detailed geologic mapping, of the area around Butte City and Arco. Hydrologic and geochemical studies should be pursued in order to determine developmental effects on already existing groundwater supplies.

WESTERN CASSIA COUNTY

Several warm irrigation wells are located between Oakley and Burley west of the Albion Range in western Cassia County (figure 56). Measured surface temperatures range from 21 to 39° C and known well depths range from 76 to 585 m.

The largest concentration of wells in western Cassia County occurs near Artesian City. Drilling of irrigation wells in this area indicates the existence of a fairly large thermal zone, possibly fault fed at the base of the South Hills. Temperatures are fairly low, ranging from 24 to 38°C. This area might prove suitable for some type of large scale low temperature geothermal development, possibly related to agricultural use in the area.

Oakley Warm Springs (14S-22E-27dcblS), 5 km south of Oakley, is used as a small natatorium. Warm waters issue from a fault in Paleozoic quartzite at 48°C and 40 l/min from two springs and a well. Subsurface temperatures predicted by chalcedony and Na-K-Ca chemical geothermometers are 89 and 92°C, respectively.

Donaldson and Applegate (1979) reported:

A gravity map compiled by the USGS (Mabey, Peterson and Wilson, 1974) reveals an anomaly in the vicinity of Oakley, Idaho. The anomaly is a relatively amplitude low which trends small basically north-south, broadens near the Utah-Idaho Border and narrows and shifts eastward north of Trapper Creek (figure 49). A southeast trending gravity profile was taken from map values (figure 57). Computations based on a 21 mgal anomaly and a density contrast of 0.4 g/cc (gram per cubic centimeter) results in a basin depth estimate of about 1250 m near Oakley. The profile indicates a regional gradient with gravity increasing toward the Snake River Plain and decreasing toward a neighboring gravity low southeast of Almo, Idaho.

The Oakley anomaly is not strongly definitive of structure and Witkind (1975) does not document

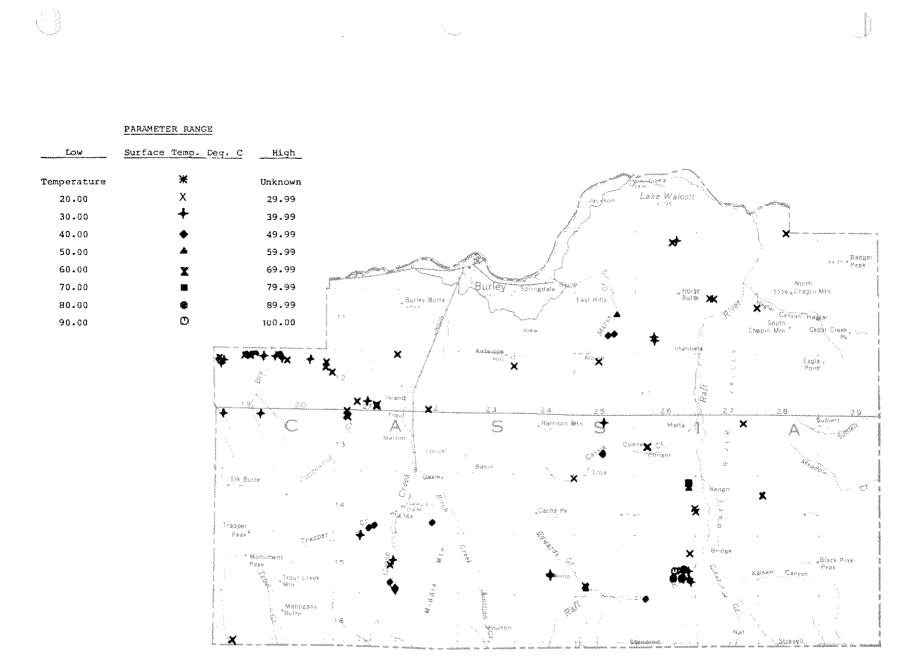


FIGURE 56. Index map of Cassia County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

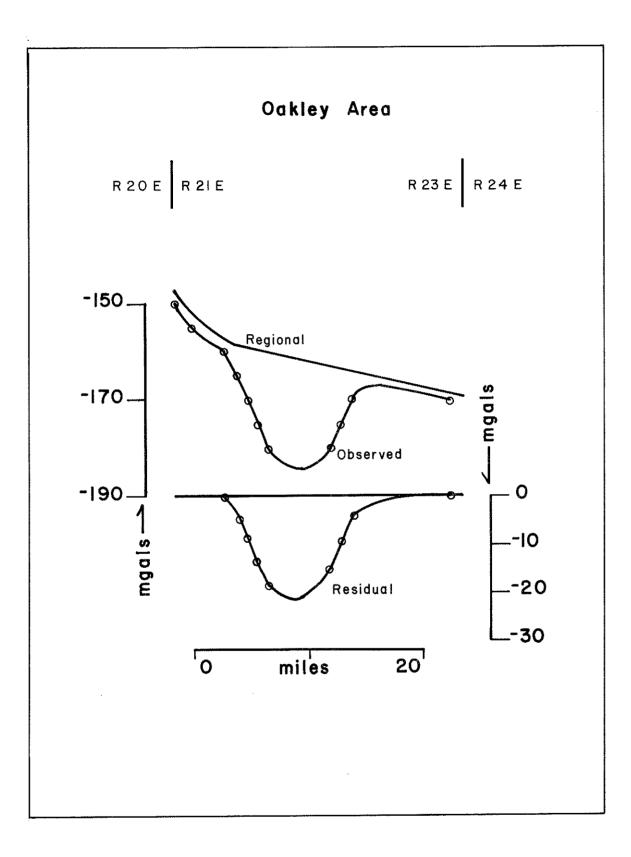


FIGURE 57. Gravity profile near Oakley (from Donaldson and Applegate, 1979).

known or suspected active faults which would control the nose of the anomaly to the northeast. He does identify a fault suspected of being active since mid-Miocene which lies about 11 km west of Oakley, trends northwest and appears to control a rather linear topographic break. The position of this fault does correlate very well with a coherent distortion of gravity contours as expected for movement downward toward the basin.

While faults are not documented to define the gravity suggested structure, Day (1974) has mapped lineaments from ERTS imagery which correspond very well to the location, shape and trend of the gravity anomaly (figure 9).

The basin depth estimate of about 1250 m near Oakley is a very conservative estimate based on calculations using a Bouger approximation. This approximation is generally quite accurate where basin width is several times the basin depth and results in increasingly conservative estimates as the width to depth ratio decreases.

Assuming a 1250 m deep basin structure with a basement rock thermal conductivity of 6.0 mcal/cm/ O C, a basin fill thermal conductivity of 3.0 mcal/ cm/ O C, and a heat flow of 3.0 HFU (see Brott, et al., 1976), one can calculate a predicted temperature of about 90 O C at maximum depth (Diment, et al., 1975). This maximum temperature estimate is conservative in the same sense that the depth estimate is considered conservative.

SUMMARY - SNAKE RIVER PLAIN REGION

Table 5 shows cities, towns, and recreational home areas in central Idaho that are near known thermal water. These towns probably could make use of thermal water for space heating of schools and public buildings if sufficient flow rates and temperatures could be obtained by drilling. The subsequent reuse of the warm water effluent through watersource heat pumps would give a greater and more economic use of а limited heat source. The hot springs near transportation lines might be used to establish small industries suitable to thermal water found in the area. In certain places (see basic data table 1) fluoride concentrations in the thermal water EPA's that exceed drinking water standard (to 2.4 mg/l depending on temperature) might lead to disposal problems. The areas near these towns would probably be evaluated without large capital outlays for exploration as the target areas are limited in size. In this area, those with the potential for the highest return in conventional energy savings should be These would include areas of largest evaluated first. population or of greatest industrial potential. Initial evaluations of the geothermal resource in the Boise Front area has already been conducted. Several successful exploration holes have been drilled. Other areas needing initial assessment work are Nampa-Caldwell, Twin Falls, Mountain Home, and Mountain Home Air Base. Weiser has received an initial assessment, but no drill sites have been More work is needed there and near Payette to selected. select possible drill sites.

Exploration programs including detailed geophysical studies, such as gravity, magnetic, resistivity, and reflective seismic surveys, as well as hydrologic studies including isotope and additional geochemical work should be pursued in areas near known thermal water to determine structure and select drill sites. These surveys probably should be conducted by federal or state people or by private entities with federal or state assistance as these studies are expensive and small private companies have little capital to invest in such programs. Large corporations with exploration money presently are not interested in what they feel are minor energy users and will not invest money to supply energy to one or even several users. However, combined users switching to a geothermal source in several of these areas could significantly affect the present energy consumption pattern in Idaho and help Idaho toward becoming more energy self-sufficient.

		TOWNS IN THE :	Spring or Well Surface Tempera-	*Best Estimated Subsurface Temperature <u>°C</u> Min. Max.		Total Dissolved	Present Water		Surface	
Town	County	Location	ture ^o C	Na-K-Ca	Chalcedony	Solids	Use	Population	Owner	Remarks
Boise	Ada	3N-2E-12cdd1	71	80	96	286	Space Heating	92,901	Private	One of several wells in Boise area. Depth rang 122-430 m.
Buhl	Twin Falls	9S-14E-36d						3,382	Private	No chemical anal- yses available.
Caldwell	Canyon	4N-3W-28aab1	28	54	70	203	Irrigation Recreation	15,643	City of Caldwell	Flowing well.
Cambridge		14N-3W-19cbd1S		65	76	312	Unused	451		
Emmett -	Gem	6N-2W-14acc1	20			and an	Domestic	3,943	Private	Plans are for space heating a shop. No chemica analyses avail- able.
Filer Glønns Ferry	Twin Falls Elmore	 55-10E-32bdb1	38	67	 68*	364	Natatorium	1,420 1,387	Private Private	
Hanson	Twin Falls	10S-18E-26bba1	20				Irrigation	450		
Hollister	Twin Falls	12S-17E-31bab1		81	29	279	Natatorium	63	City of Hollister	Well located half- way between Hanso and Kimberly.
Homedale	Owyhee							1,601	Private	'
Kimberly	Twin Falls	105-18E-26bba1					Irrigation	1,780	Private	Well located half- way between Hanso and Kimberly.
King Hill	Elmore	5S-11E-7acd	32	63	65*	235	Domestic		Private	
Kuna	Ada	2N-1W-35caa1	25				irrigation	941	Private	96 meters deep 3,595 lpm.
Melba	Canyon						**	221	Private	
Midvale	Ŭ	13N-3W-8ccc1	23	46	68 *	318	Public supply	447		Municipal well.
Mountain Home	Elmore	35-6E-26adc1	23	<u> </u>			Municipal wate supply	r 6,755	City of Mountain Home	City well 305 m deep.
Mountain Home Air- base	Elmore	4S-5E-25bbc1	24	47	62	114	Irrigation	6,000	Private	Well 162 m deep.
Murphy	Owyhee								Private	
Nampa	Canyon						Recreation	23,584	City of Nampa	Well No chemical anal- yses available.

•

(continued)									
		Spring or Well Surface Tempera-	Est Subs Temper	imated urface ature ^o C	Total Dissolved	Present Water		Surface	
County	Location	ture °C	Na-K-Ca	Chalcedony	Solids	Use	Population	Owner	Remarks
Canyon	4N-3W-35abc1	28	54	70		Municipal water use	1,879	City of Parma	Well 46 m deep.
Minidoka	9S-23E-28cca1	22				Municipal water use	911	City of Paul	Well 137 m deep.
Twin Falls	10S-17E-14cdd	1 29				Irrigation	23,616	Municipal Well	
Washington	11N-6W-10cca1	70	145	152***	197	Natatorlum, greenhouse	4,607	Private	Several small diameter wells.
Cassia	14S-22E-7dcb1	5 47	90	90	295	Natatorium	698	Private	Warm spring.
;	County Canyon Minidoka Twin Falls Washington	County Location Canyon 4N-3W-35abc1 Minidoka 9S-23E-28cca1 Twin Falls 10S-17E-14cdd Washington 11N-6W-10cca1	Spring or Well Surface Tempera- County Location ture °C Canyon 4N-3W-35abc1 28 Minidoka 9S-23E-28cca1 22 s Twin Falls 10S-17E-14cdd1 29 Washington 11N-6W-10cca1 70	Spring or Est Well Subs Surface <u>Temper</u> <u>Tempera-</u> <u>Min.</u> County Location ture C Na-K-Ca Canyon 4N-3W-35abc1 28 54 Minidoka 9S-23E-28cca1 22 s Twin Falls 10S-17E-14cdd1 29 Washington 11N-6W-10cca1 70 145	Spring *Best or Estimated Well Subsurface Surface <u>Temperature ^OC</u> Min. Max. County Location ture ^O C Na-K-Ca Chalcedony Canyon 4N-3W-35abc1 28 54 70 Minidoka 9S-23E-28cca1 22 s Twin Falls 10S-17E-14cdd1 29 Washington 11N-6W-10cca1 70 145 152***	Spring*Best ororEstimated WellSurfaceTemperature °C Tempera-CountyLocationture °CNa-K-Ca Na-K-CaCanyon4N-3W-35abc1285470Minidoka9S-23E-28cca122Twin Falls10S-17E-14cdd129Washington11N-6W-10cca170145152***197	Spring*Best ororEstimatedWellSubsurfaceSurfaceTemperature °CTempera-Min.Min.Max.DissolvedWaterCountyLocationture °CNa-K-CaChalcedonySolidsCanyon4N-3W-35abc1285470Minidoka9S-23E-28cca122Twin Falls10S-17E-14cdd129Washington11N-6W-10cca170145152***197Natatorium, greenhouse	Spring*Best ororEstimatedWellSubsurfaceSurfaceTemperature °CTempera-Min.Min.Max.DissolvedWaterCountyLocationture °CNa-K-CaChalcedonySolidsUsePopulationCanyon4N-3W-35abc1285470Minidoka9S-23E-28cca122Municipal911waterusesTwin Falls10S-17E-14cdd129Inigtion11N-6W-10cca170145152***197Natatorium,4,607greenhouse	Spring or*Best Estimated SubsurfaceWellSubsurface Temperature °CTotalPresent Present Dissolved WaterCountyLocationture °CNa-K-CaChalcedonySolidsUsePopulationOwnerCanyon4N-3W-35abc1285470Municipal water use1,879City of ParmaMinidoka9S-23E-28cca122Municipal water use911City of ParmasTwin Falls10S-17E-14cdd129Irrigation23,616Municipal wellWashington11N-6W-10cca170145152***197Natatorium, greenhouse4,607Private greenhouse

holovoronion

Table 5. Cities and Towns in the Snake River Plain Region within 5 km (3 mi) of a 20°C or Higher Thermal Spring or Well

*See first footnote, Table 4. **Minimum temperature is chalcedony temperature. Maximum temperature is Na-K-Ca temperature. ***Minimum temperature is quartz temperature. Maximum temperature is Na-K-Ca temperature.

GEOTHERMAL POTENTIAL OF THE BASIN AND RANGE OF SOUTHEASTERN IDAHO INCLUDING EASTERN CASSIA, ONEIDA, FRANKLIN, BEAR LAKE CARIBOU, BANNOCK, POWER, BINGHAM, BONNEVILLE, MADISON, JEFFERSON, SOUTHERN FREMONT, CLARK AND TETON COUNTIES

Thermal springs and wells in the Basin and Range-Central Rocky Mountain Region (figure 6) generally share several characteristics - including high dissolved solids, high HCO₃ content and generally precipitation of CaCO₃ in the form of travertine. This area also is endowed with certain geologic characteristics that favor the occurrence of geothermal energy.

The eastern margin of the Basin and Range Province is within a long narrow curvilinear zone of earthquake activity stretching from Las Vegas, Nevada, on the south to Flathead Lake, Montana, on the north, known as the Intermountain Seismic Belt (Smith and Sbar, 1974). This zone is interpreted to be a boundary between subplates of the greater North American crustal plate, where differential movements between the Basin and Range and Colorado Plateau-Rocky Mountain provinces are taking place (Sbar and others, 1972). Plate and subplate boundaries are considered be excellent areas for prospecting for geothermal to resources. Youthful magmatic activity, areas of high heat flow, and thermal spring activity are known to occur along the Intermountain Seismic Belt. In Idaho, the approximate axis of the belt passes near Preston, in Cache Valley, through the Soda Springs area in Caribou County to Driggs in Teton County and into the Yellowstone Park area.

The Basin and Range Province in Idaho consists predominantly of block faulted mountain ranges separated by Intermontane basins arranged in an echelon pattern. Mountain front faults are considered to be normal faults by most authorities. Most of the block fault ranges tilt eastward, and valleys have been partially filled with eroded waste rock from adjacent mountains. Rock types here differ from most of the rest of the state, since they are mostly marine limestones, dolomites, shales, siltstones, and sandstones ranging in age from Precambrian through Permian, and Cretaceous, and younger land derived sediments. The rocks in general are older in the central part of the area and increasingly younger toward the edges of the become Province.

Thermal spring activity is widely distributed through the Basin and Range Province, and wells have encountered thermal water locally. Most springs are associated with known faulting or lineaments but not necessarily with valley-mountain range boundary faults. Most springs are near drainages and are therefore at low elevations. Thermal springs and wells in southeast Idaho exhibit the highest dissolved solids of any found in Idaho, presumably reflecting the soluble nature of the marine sedimentary bedrock. Thermal springs and wells are found in areas of no known adjacent igneous activity.

Thermal springs and wells in southeastern Idaho seem to occur along suspected curvilinear zones (figure 9) similar to springs in the central part of the state. The curvilinear zones may not be quite so well defined here as in the crystalline granitic terrain of central Idaho. One zone, stretching from Bear Lake Hot Springs to Blackfoot River Hot Springs near the north end of Blackfoot Reservoir, has an apparent gap between Georgetown and Soda Springs where no thermal springs appear. Actually, a cold water spring associated with voluminous travertine deposits does exist near the center of the gap. It is thought that this spring was once thermal.

The largest curvilinear zone, stretching from the southern Idaho border up to Big Springs in Island Park (near Yellowstone National Park), coincides with a lineament that stretches from the northern part of the Great Salt Lake, somewhat discontinuously, up to at least Brockman Creek warm springs.

Discussion of the geothermal potential of this region follows on a county basis.

EASTERN CASSIA COUNTY

The best known and most studied geothermal anomaly in Idaho is in the Raft River Valley (figure 56), a north trending basin and range valley in southern Idaho immediately south of the Snake River Plain. The Raft River KGRA (known geothermal resource area), was formerly known as the Frazier KGRA after C.W. Frazier who drilled the first hot water well there for irrigation and stock watering purposes. This well was drilled to a depth of 122 m and issued 95°C water. Later, another hot well (92°C), was drilled on the Crank property and is presently used for greenhouse heating. Many other thermal wells exist in the Raft River Valley ranging from 20 to 148°C.

The largest variety of geothermal testing and experimentation at any single location in the world is presently underway or developing (Chappell and others, 1978, p. 83) at the Raft River site. The principal experiments have been summarized by the above authors (p. 85) as follows:

Soil Cooling Soil Heating Agriculture Aquaculture Agriculture Fluidized Bed Drying Gas Air Conditioning Component Testing Tube & Shell Heat Exchanger Direct Contact Heat Exchanger 60-KW Turbine-Generator Environmental Reservoir Engineering Heat Dissipation (Pond Cooling) Supply Well Mixing Tests Injection Testing Aerated Geothermal Water Corrosion Cooling Tower Chemistry of Brine as Makeup Water Sulfide Oxygen Scavenge Test Asbestos Cement Pipe Downhole Pump Test 500-KW Turbine-Generator Direct Contact

Many reports describing results of these experiments are available and listed as the ANCR & TREE reports in the Selected References.

Geophysical studies (Mabey and others, 1978, p. 1,470-1,478) have been conducted to infer the structure and general lithology underlying the valley (figures 58-60).

The thermal waters are believed to be derived from a deep fault and may be similar to other basin and range occurrences in Idaho. From several deep well tests in the Raft River Valley, a certain degree of reliability has been proven relating to the chemical geothermometers. The quartz Na-K-Ca predicted aquifer temperatures (Young & and Mitchell, 1973 and mixing models in unpublished data) agreed very closely (within 10° C) with temperatures found at depth (Kunze, 1975). Indeed, the Na-K-Ca chemical geothermometer predicted temperatures almost exactly as were found. This proven reliability in the Raft River Valley gives some measure of confidence in applying the same methods to other similar areas of the state.

To date, seven deep wells have been drilled to depths of 1,525 m into indicated fault zones, and large quantities of thermal water near 150°C have been encountered. From further well tests, it appears that the geothermal system is capable of sustained production of sufficient water to run a 50 megawatt power plant, although present plans are limited to 10 megawatts. The power generation system will be a binary cycle system.

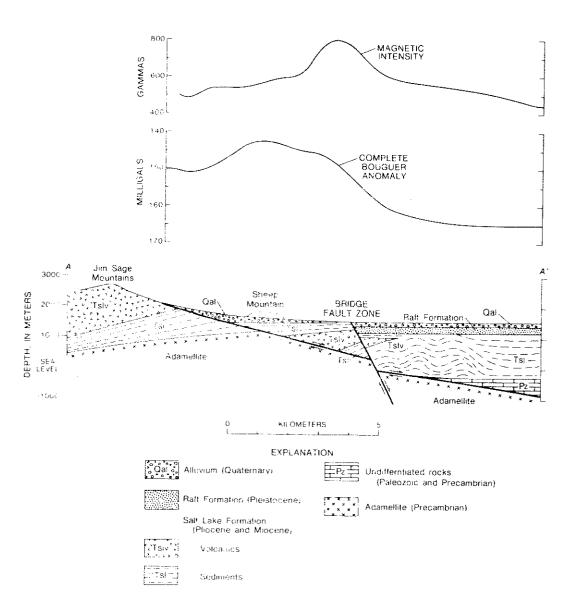
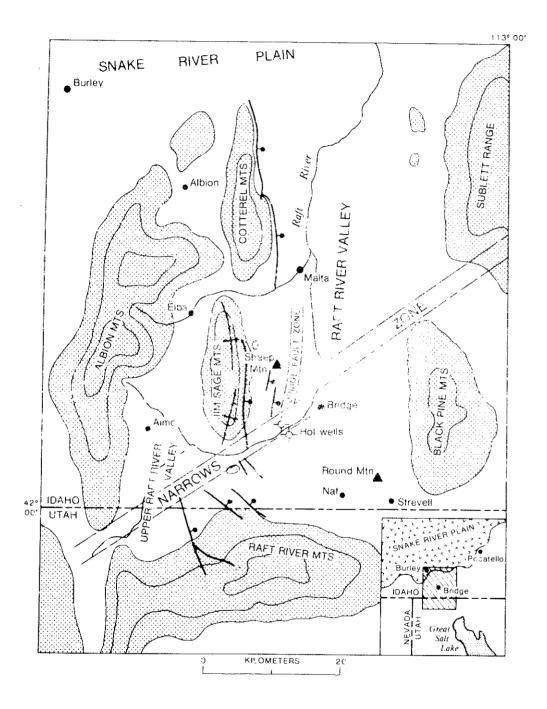



FIGURE 58. Interpreted section across the west side of the southern Raft River Valley. (From Mabey and others, 1978.)

Section 20

FIGURE 59. Map of the Raft River Valley region, Utah and Idaho, showing major topographic features and faults. (From Mabey and others, 1978.)

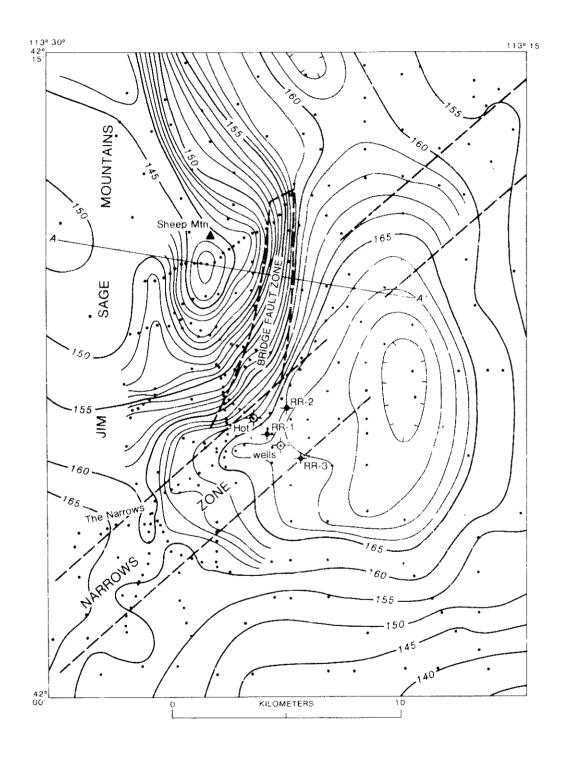


FIGURE 60. Complete Bouguer gravity anomaly map of the southern Raft River Valley. Contour interval is 1 and 5 milligals. Deep drill holes are shown and numbered. Dots are gravimeter stations. (From Mabey and others, 1978.)

Other springs and wells exist in the Raft River Valley and Cassia County, some of which are located along arcuate trends, as in north-central Idaho.

Oakley Warm Springs (14S-22E-27dcbl) located near Oakley in an adjoining valley west of Raft River issues at 47°C from Paleozoic quartzite and is developed as a small resort. The other wells documented in Cassia County are for irrigation or domestic uses and are in rural locations as are the springs.

ONEIDA COUNTY

Five thermal springs are located in Oneida County (figure 61) in the Malad Valley. All are fairly low in surface temperature and most occur near surface drainages. Pleasantview Warm Springs (15S-35E-3aablS) issues at 25°C Precambrian quartzite and presently is unused. from Woodruff Warm Springs (16S-38E-10bbclS) is the warmest spring at 27°C. Price's Hot Spring (16S-38E-23bbdlS) reported by Ross (1971) could not be found. An unnamed spring (12S-34E-36bcblS) exists near the upper end of Malad Its surface temperature is 24°C. Malad Warm Valley. Springs (14S-36E-27cdalS) issues at 25°C from a travertine mound in the fairgrounds area near Malad City. This spring, being in close proximity to Malad City, appears to have the most potential for development, due to its proximity to a population center.

In addition to the thermal springs, Burnham and others (1969, p. 33) report three areas of saline groundwater in Malad Valley. These saline groundwaters were: "(1) small in volume compared to recharge and groundwater in storage, (2) associated directly with deep circulation along or on the bedrock side of the boundary faults of the valley, and (3) localized in only three small areas." These saline waters might indicate that mineral rich thermal water is mixing with cold groundwaters. Indeed, the cold saline groundwaters are all found near thermal springs - one area near the eastern margin of the Malad Valley from Malad City to Cherry Creek, one area near Pleasantview Warm Springs, and one near Woodruff Warm Springs. If mixing is occurring, there is a good possibility that hotter water could be found by drilling near the warm springs. Careful targeting of drill holes to intersect faults at depth should be undertaken before any drilling commences. However, the chalcedony chemical geothermometer indicates aquifer temperature only a few degrees above surface temperature except at Woodruff Warm Springs where aquifer temperature may be as high as 46°C.

None of the mixing models applied to these three thermal springs in these areas are definitive (basic data table 2, columns T_8 , 9, 11).

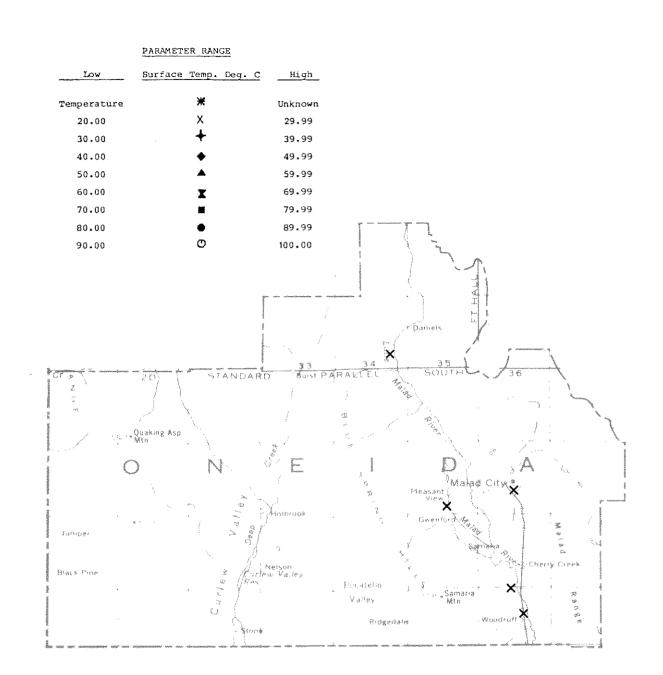
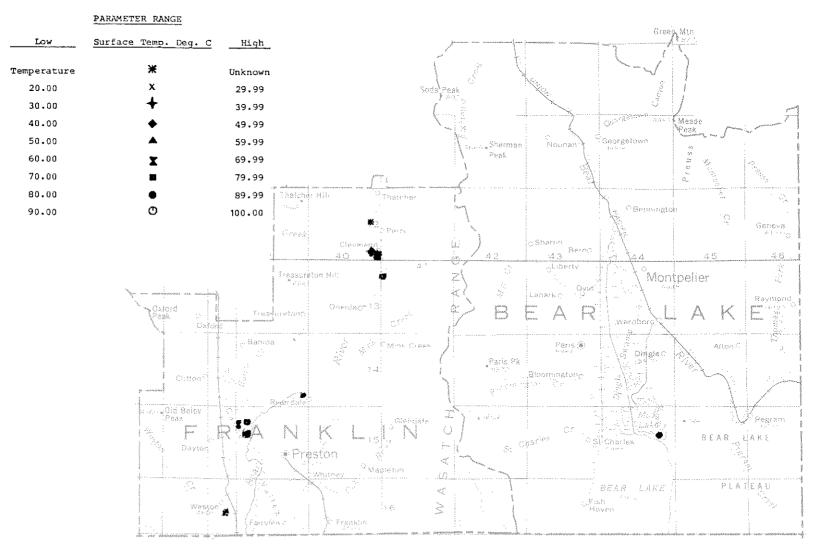


FIGURE 61. Index map of Oneida County showing locations of thermal water occurrences with surface tempera-tures of 20°C or higher.

FRANKLIN COUNTY

Mitchell, 1976, p. 17-19, summarized the thermal water occurrences in the northern Cache Valley area as follows:


Thermal springs and wells are scattered at irregular intervals along the Bear River (figure 62). They occur in conjunction with various types of consolidated and unconsolidated sedimentary rocks including travertine, limestone, quartzite, and alluvial deposits. Thermal wells penetrate only alluvial deposits.

Most springs in the area appear to be fault related. The springs near Cleveland are situated along a northwest linear trend on both sides of Bear River. On the west side, spring vents (12S-41E-30caalS) issue from the bottom of circular pools 6 to 9 m in diameter within travertine Numerous seeps and many small pools formations. occur near the river edge. Numerous seeps and spring vents issue from travertine bluff a overlooking Bear River on the east. Much gas, thought to consist mostly of CO_2 , escapes from the riverbed, audible for some tens of meters.

No fresh deposits of travertine were forming near Cleveland. The springs on the west side issuing from pools may even be dissolving the existing travertine deposits. The waters on the west side are much cooler $(35^{\circ}C)$ than the waters from the east bluff (66°C). Waters from the vents on the west side have been used for recreational purposes. Samples were taken for chemical analyses from the large pools on the west side and from several vents on the east side.

Maple Grove Hot Springs (13S-41E-7acalS) are located in an area of intense local faulting near shore of Oneida Narrows Reservoir. the The numerous vents and seeps and the one large pool that make up the spring system are more or less aligned with each other. Unlike the Cleveland springs, Maple Grove waters are depositing much travertine. Gas, probably CO₂, is also being evolved. Several small, cold (10°C) mud pots near the smaller vents at Maple Grove evolve small quantities of gas which bubbles up through the mud. The bubbling might be interpreted by a casual observer as evidence of boiling. These waters have been used for recreational purposes and also for power generation as evidenced by an old Pelton wheel found below the spring on the shore of Oneida

FIGURE 62. Index map of Franklin and Bear Lake counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

-130-

Narrows Reservoir. This may have been the first use of geothermal water for power generation in Idaho; even though the wheel was designed to make use of kinetic energy of the flowing water, rather than its enthalpy or heat content. Total installed capacity probably did not exceed 5 kilowatts (kw).

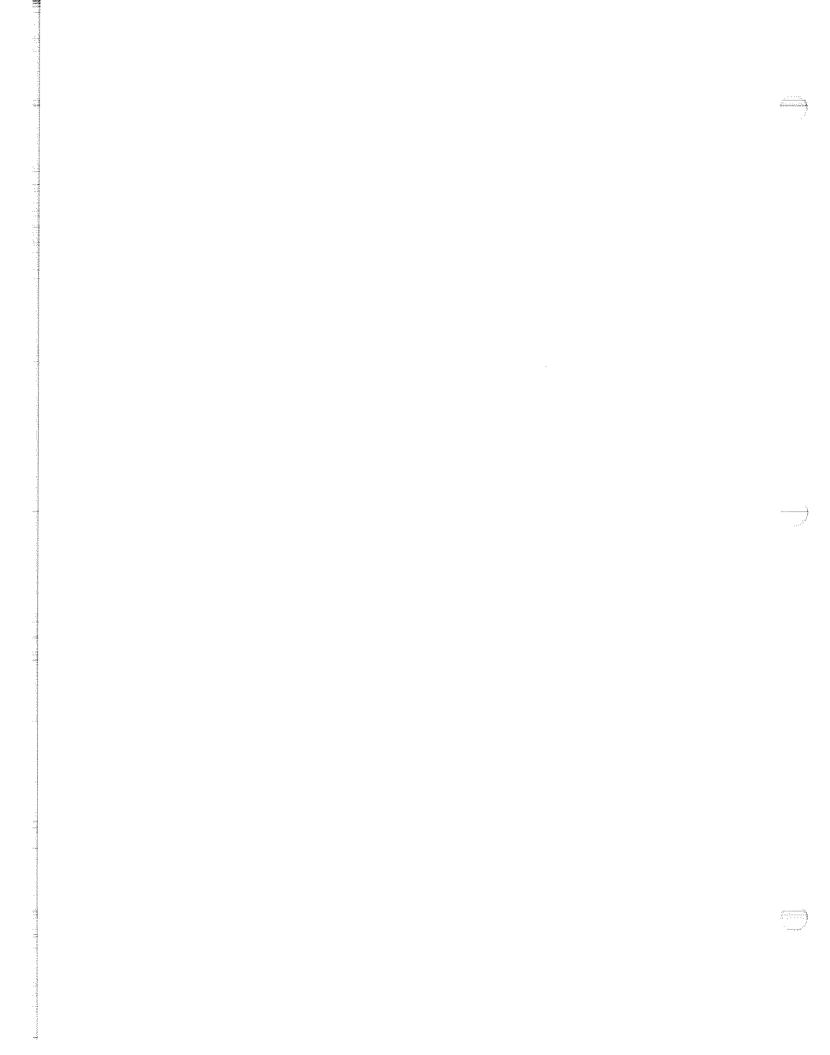
Well 14S-39E-36adal, on the Bear River flood plain at Riverdale, has a surface water temperature of $40^{\circ}C$ and was reportedly drilled to a depth of 12.1 m. For years, water from this well has been used for beneficial purposes in a dairy operation. Rulon F. Mitchell, a resident of the area for 40 years, reports that snow in a 40-acre tract around the well would melt much more quickly than in surrounding areas.

The Clifton Hill high angle boundary faults may at Battle Creek Hot Springs exist (Wayland) (15S-38E-8bdclS) and Squaw Hot Springs (15S-39E-17bcdlS) (Oriel and Platt, 1967; Peterson and Oriel, 1970; and Mabey, 1974, unpublished data). These faults may intersect the Mink Creek-Bear River lineament near these two hot springs (figure 63). The structural implications of this transverse lineament are unknown but it could represent a strike-slip or normal fault. The controlling structure for these two hot springs could be the intersection of the Clifton Hill high angle boundary faults with the Mink Creek-Bear River(?) fault.

Battle Creek Hot Springs consists of one large pool about 6 m in diameter, a smaller pool (probably a collapsed travertine structure), numerous vents and This spring system is located on the seeps. western edge of Bear River. Numerous vents are marked by gas bubbles in the riverbed. Travertine is actively being deposited around the pool and vents of this spring system. These waters have been used for hog carcass scalding and recreation. Samples were taken from the two pools and two smaller vents. Cold water seeps (temperature 6°C and total discharge $5-10 \ l/m$) were issuing from a clay bank just above the spring vents at Battle Creek Hot Springs. Other cold water seeps were issuing at approximately the same elevations as the thermal vents about 40 m down river from the ther-The cold water may be seepage along mal vents. impermeable clay layers from an irrigation canal which runs along the bottom edge of the uppermost terrace level of the river valley above the hot springs, or from irrigation water applied on farmlands above the canal. Significant quantities of cold water could be mixing with the thermal water.

Squaw Hot Springs (15S-39E-17bcdlS) are located about 1 km south of Battle Creek Hot Springs near the confluence of Deep Creek and Bear River. This system consists of one well, reportedly 6.7 m deep, four other vents and several seeps. Discharge from the well (15S-39E-17bcdl) is depositing travertine at the end of the discharge pipe some 30 m from the well head, and a small mound of travertine 1.5 m high and 3 m across the base has been formed on the edge of Deep Creek. Only minor travertine deposition or evaporative incrustation was evident at the well head itself, where water samples were taken. The other vents are now only very minor depositors of travertine with small incrustations and a few travertine-coated pebbles along discharge channels. Older travertine deposits crop out in the immediate spring area, indicating prior deposition by the springs. Samples were taken from the well, from a vent situated near the road, and from another vent located near the Bear River-Deep Creek confluence. All spring vents were evolving minor quantities of The well being the most gas, probably CO_2 . prolific gas evolver, gave a false appearance of vigorous boiling. These spring waters were formerly used for recreational purposes, and for heating hot houses.

Basic data table 2 lists apparent subsurface temperatures in Franklin County. Mitchell (1976) listed reasons for believing that at Squaw and Battle Creek hot springs, subsurface temperatures would approach 150° C provided quartz controlled silica in these waters. If mixing of thermal and non-thermal groundwater were taking place, temperatures could be as high as $235-245^{\circ}$ C. In other areas of Franklin County the chalcedony chemical geothermometer (T₄, basic data table 2) probably gives good subsurface temperature estimates.


BEAR LAKE COUNTY

In Bear Lake County (figure 62), located in the central Rocky Mountain Province, there are only two known thermal springs presently active. Extensive travertine deposits, particularly on the west side of Bear Lake Valley north of Bern, attest to much greater thermal spring activity in the past. It is not known whether the springs here ceased flowing because of cooling or to self sealing because of travertine deposition, or both. Prospecting for thermal water might prove fruitful in areas of extensive travertine deposition near known faults.

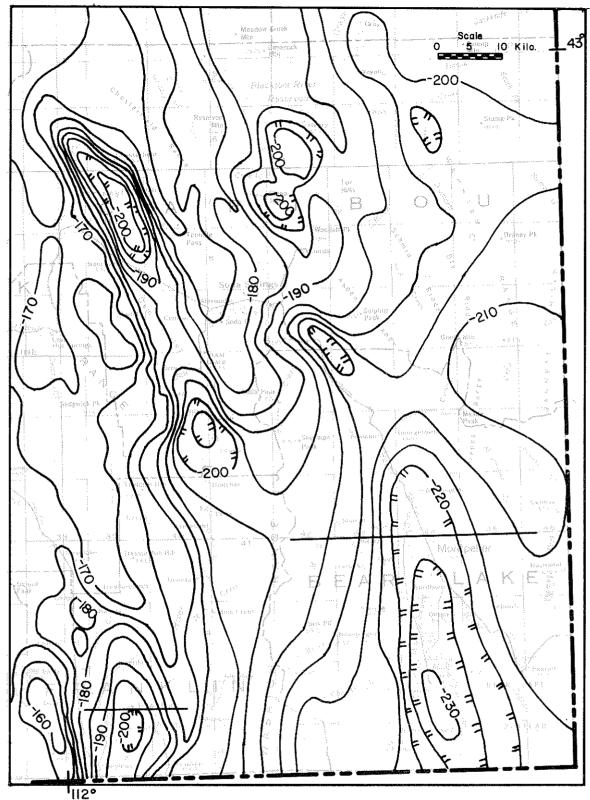
Pescadero Warm Spring (12S-44E-7bdalS) (26^oC) is located two miles south of the Nounan-Georgetown Road near the

FIGURE 63. EROS false color infrared Landsat EDISE image of part of southeastern Idaho and northern Utah showing selected thermal water locations with surface temperatures above 20°C.

Bern-Pescadero Road on a travertine-covered bluff overlooking the Bear River. It issues at about 40 l/min. It is presently used for stock water.

Bear Lake Hot Springs (15S-44E-13bcalS) is a popular resort area and has been for many years. Formerly known as Joe Rich's Spring, vents issue from limestone along a fault scarp at the base of the steep slope, which forms the western edge of the Bear Lake Plateau. The water issues at 48° C. Bear Lake Hot Springs and Pescadero Warm Springs are remote from population centers in Bear Lake Valley. Maximum subsurface temperatures expected at depth may be best represented by the chalcedony equilibrium temperature at about 54° C (see basic data table 2, column T₅). Bear Lake Hot Springs could probably support a natatorium and a greenhouse provided additional flow could be found by drilling.

Donaldson and Applegate (1979) reported that:


Gravity mapping (Mabey, Peterson and Wilson, 1974) in the Bear Lake-Montpelier area of southeastern Idaho reveals steep east-west gradients suggesting a north-south striking basin and range type graben valley (figure 64). An east-west profile taken from the aforementioned map along the Idaho Standard Parallel south through the Bear Lake anomaly (figure 65) defines a 21 mgal residual low. Calculations made assuming a 0.4 gm/cm³ density contrast between valley fill and flanking bedrock result in an estimated basin depth of about 1250 m. Witkind (1975) defines faults along both margins of the gravity inferred graben (figure 15) which are presumed active with late Quaternary beds broken. Day (1974) has mapped linears from band 5m MSS-ERTS imagery which also coincide very well with the gravity inferred graben (figure 9).

The basin depth estimate must be considered very conservative. A similar depth estimate was calculated in the Oakley area where a maximum temperature-at-depth of about 90°C was calculated. Given similar assumption, similar temperature estimates would be appropriate for this area.

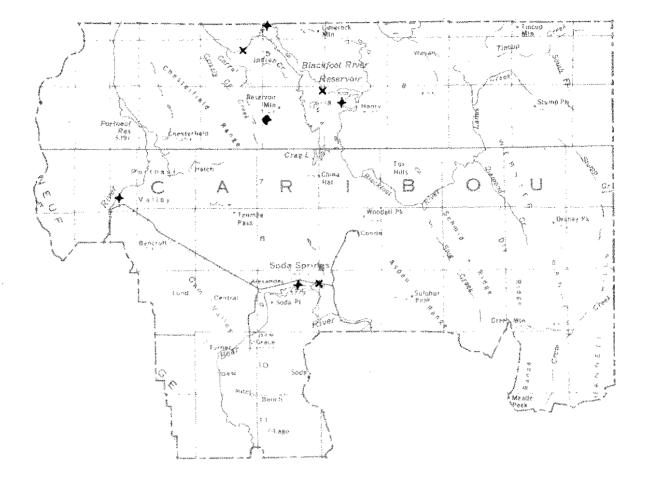
CARIBOU COUNTY

Six thermal springs and four thermal wells are known in Caribou County. They are widely scattered but principally located around the margins of the Blackfoot lava field and near the principal drainages of the Blackfoot, Bear, and Portneuf rivers (figure 66).

The best known thermal occurrence in Caribou County is located within the town of Soda Springs and is known as Soda

.....

ş :----j


FIGURE 64.

Gravity lows from Gem Valley (upper left), near Preston in Cache Valley (lower left), and near Bear Lake (lower right) (Mabey, Peterson and Wilson, 1974.) Contour interval = 5 milligals.

R 45 E R 46 E Bear Lake Valley -180--190-Regional -200. ← mgals -210-Observed -220-- 0 -230 mgals 🗕 --10 Residual -20 --30 0 30 miles

FIGURE 65. Gravity profile near Bear Lake. (From Donaldson and Applegate, 1979.)

/*******

	PARAMETER RANGE	
Low	Surface Temp. Deg. C	High
Temperature	ж	Unknown
20.00	x	29.99
30.00	+	39.99
40.00	٠	49.99
50.00	▲	59.99
60.00	x	69.99
70.00		79.99
80.00		89.99
90.00	O	100.00

in the second second

)

FIGURE 66. Index map of Caribou County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

-138-

Springs Geyser (9S-41E-12addl). It is actually a well drilled near a former hot spring, and geysering is caused by high pressure carbon dioxide gas rather than steam pressure generated by superheated water. Soda Springs Gyeser is now a tourist attraction erupting through automatic valves every hour (at the will of the city police) when the wind is right. It is 28°C at the wellhead.

A spring (6S-42E-8dbalS) with a surface temperature of 21° C issues from a large circular travertine mound west of Henry near the shore of Blackfoot Reservoir, and another (6S-41E-1adclS) issues at 22° C across the Meadow Creek arm of the reservoir. Steamboat Springs (9S-41E-10daalS) issues from travertine beneath the waters of Soda Point Reservoir. Blackfoot River Warm Springs (5S-40E-14bcdlS) issues from travertine overlying basalt on the edge of the Blackfoot River. Its temperature is 26° C. Another spring (7S-38E-26cbdlS) known in the area is on the bank of the Portneuf River on the west side of the Portneuf Valley. It has a temperature of 41° C.

The Corral Creek wells (6S-41E-19ba, temperature 36 to 41°C) are located in an extremely faulted area. Strike-slip, normal, and reverse faults were encountered when Food Machinery Corporation (FMC) drilled for phosphate in the area. The thermal water was encountered when drilling reached the Mead Peak member of the phosphoria formation. The wells were drilled near an old geyser cone.

Mitchell (1976) summarized the geothermal potential of Caribou County as follows:

Geologic evidence of geothermal activity is abundant in Caribou County. The Intermountain Seismic Belt, related to plate and subplate boundaries, passes through the area. A known zone of high heat flow coincides with the seismic zone, and is manifested by numerous thermal springs. Mansfield (1927) reports a high geothermal gradient. The Pleistocene basalt flows, thought to be less than 700,000 years old, exist west and south of the Blackfoot Reservoir. Possibly present is a geologically young volcanic collapse structure (caldera) or low density granitic intrusive (heat source ?). The extremely young (less than 100,000 years old) rhyolite structures (China Hat, North Cone and South Cone) exist near the center of the area surrounded by the somewhat younger basalts. Thermal spring deposits, warm springs and geyser activities are evident. All are strong geologic evidence of large-scale geothermal potential.

The audio-magnetotelluric (AMT) survey indicates that no shallow, low-conductive zone (typical of

geothermal systems) exists to depths approaching 2 km. This indicates the absence of geothermal reservoirs to 2 km depths in the survey area.

The chemical geothermometers indicate that the thermal waters of the Blackfoot Reservoir area probably have never reached high temperatures (above 50° C).

Published estimates of temperature gradients suggest that the thermal springs could emerge from depths as shallow as 1,000 m. The close association of these springs and wells with normal faults indicates that the waters are probably meteoric waters circulating to shallow depths along faults and re-emerging as thermal springs or wells. Water ascending from shallow depths may provide little information concerning any deep thermal system, which in this area would be the real exploration target.

The geochemistry of the thermal waters, the results of the AMT survey, and the speculative geothermal gradient and heat flow estimates from the Blackfoot little Reservoir area indicate potential for geothermal power generation from shallow depths (less than 2 km). The possibility of deeper geothermal resources is, however, attested to by the favorable geologic framework. The possible deep reservoirs would not be accessible to exploration or development except by very expensive techniques such as deep resistivity, heat flow, or deep test drilling.

Heat flow measurements taken from three or four strategically placed 300 m deep drill holes would indicate the approximate intensity of any deep heat source in the area, and consequently may be the better and less expensive method of exploration. This activity should be deferred until other, more accessible geothermal systems in Idaho have been assessed.

Caribou County does, however, represent a unique region where prospecting for geothermal water for low temperature use might be successfully conducted by local individuals, small businessmen, or corporations who wish to make use of low temperature geothermal energy but who lack large amounts of speculative investment capital. Local water well drillers might locate hot water in areas of obvious faulting where surface deposits of travertine are found. If the extinct springs have ceased to flow

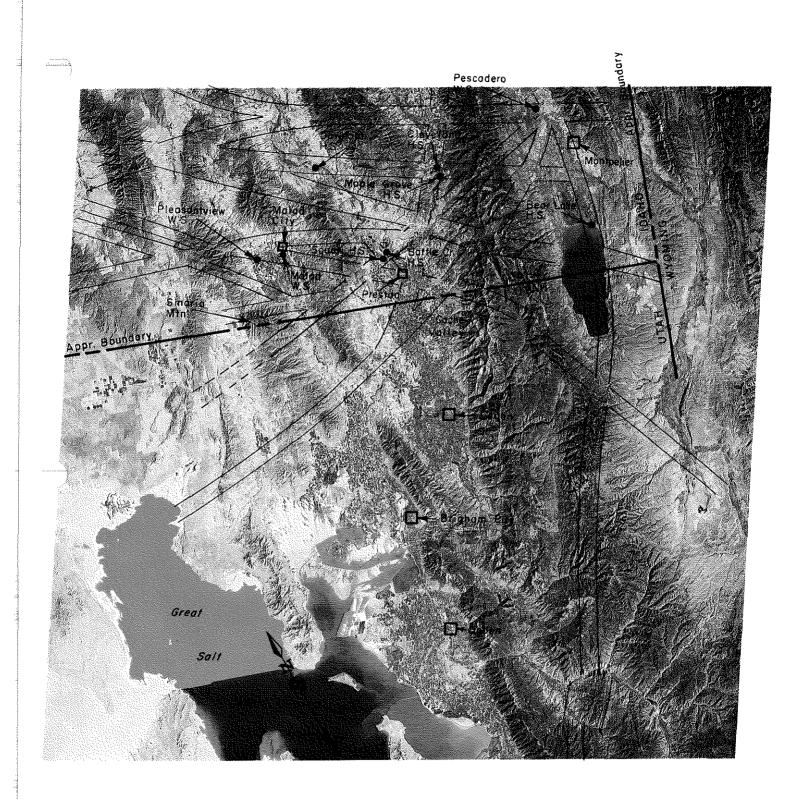
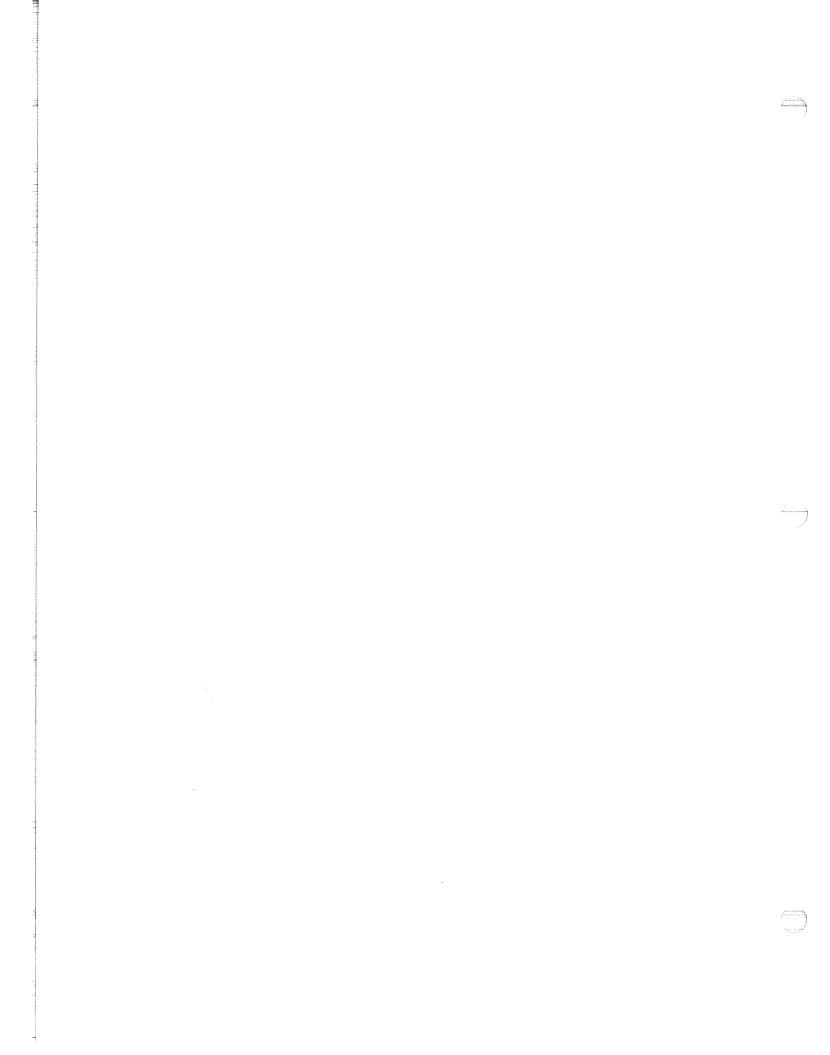



FIGURE 67. EROS false color infrared Landsat EDISE image of part of southeastern Idaho showing selected linear features and thermal water locations with surface temperatures above 20°C.

because of self-sealing due to CaCO₃ deposition, rather than regional cooling or more arid conditions than formerly existed, substantial amounts of low temperature water (less than 75°C) might be found by drilling into fault zones associated with travertine deposits. Self-reliant, enterprising individuals may even devise methods of scaling control, a potential hazard in geothermal water utilization in this area.

The moderately high dissolved solids in these waters preclude their use for irrigation purposes or stockwatering. Their low temperatures suggest uses such as mushroom growing, balneological baths, soil warming, recreational usages, warm water for winter mining operations or de-icing. Space heating for vegetable greenhouses or animal husbandry may be practical if efficient heat pumps were utilized.

The saline waters may challenge engineers who work toward their utilization. Activities related to the large-scale withdrawal and use of these waters must be very carefully monitored. Cooperation between those individuals making use of the water, as well as state and local officials, is necessary to avoid potential thermal and saline pollution, which could be a danger due to the higher temperature and salinity of these waters should large-scale withdrawal be attempted.

Figure 67 is an enhanced false-color infrared satellite image of part of southeastern Idaho showing major linear features and thermal water occurrences. Many of the thermal springs and wells are near the intersection of these major linear features. The exact nature of these features is not known but the features may represent some type of crustal fracture along which meteoric water circulates to depths where it is heated by hot rock.

An irregular, somewhat discontinuous and curved lineament can be traced on satellite images (figures 63 and 67) from the north end of the Great Salt Lake in northern Utah through Woodruff Hot Springs south of Malad, near Squaw Hot Springs west of Preston, through Cleveland Hot Springs, through Soda Springs, through Henry Warm Springs, through Brockman Creek Warm Springs, through Fall Creek Mineral Springs, and further north, perhaps to Ashton Warm Springs. This lineament coincides with the suspected curvilinear zone revealed by thermal spring activity as shown on figure 9. Springs along this zone appear near where east-west trending lineaments intersect the curvilinear lineament or zone. The geothermal potential of the Blackfoot Reservoir area indicates that much of the energy requirements for the growing phosphate industry, as well as space heating for the expanding population, might be supplied by geothermal energy.

BANNOCK COUNTY

Four thermal spring areas and seven thermal wells are located in Bannock County (figure 68). The most promising areas for development are north of Pocatello near Tyhee and Lava Hot Springs.

In the Tyhee area the warm water wells, drilled to depths of 177 m, are used for irrigation, domestic, and stock water. The wells range from 20 to 41°C in temperature. They are more or less aligned in a northeastsouthwest direction approximately following an inferred fault through the area (Trimbel, 1976). A faint linear feature can be seen in enhanced false color satellite images of the area. The feature is consistent with the warm water well alignment and inferred fault. A magnetic high similar to one found near Heise Hot Springs also exists near the wells (Corbett, 1978, oral commun.). These facts are evidence of both structural control for thermal water in the area and possible deep circulation of meteoric water along Chalcedony and Na-K-Ca chemical geothermometers faults. give 63 and 47°C respectively in one well (5S-34E-26dabl) in the Tyhee area. Quartz predicts 63°C for the subsurface temperature in another well (basic data 2, columns T1, T4, Further work in the area should be considered to Τ₅). determine the attitude and exact position of the controlling structures to target drill holes to intersect the structure at predetermined depth. Gravity, magnetic, and hydrologic studies should be performed first to best determine the type of followup approaches to use in further reservoir assessment in the Pocatello-Typee area. This area is currently being studied in greater detail. Any thermal water discovered here could be utilized for space heating and industrial uses in Pocatello.

Another area of thermal water occurrence is Lava Hot Springs where two groups of thermal springs and several wells of above normal temperatures are known. Lava Hot Springs has been a popular resort area for years boasting a state-owned health spa. Before renovation, the swimming pool contained natural thermal water; now, the water must be heated by natural gas to give a comfortable swimming temperature. The city is interested in further development of the resource, particularly for space heating.

McClain (1978) reported on the geothermal occurrences near Lava Hot Springs and stated:

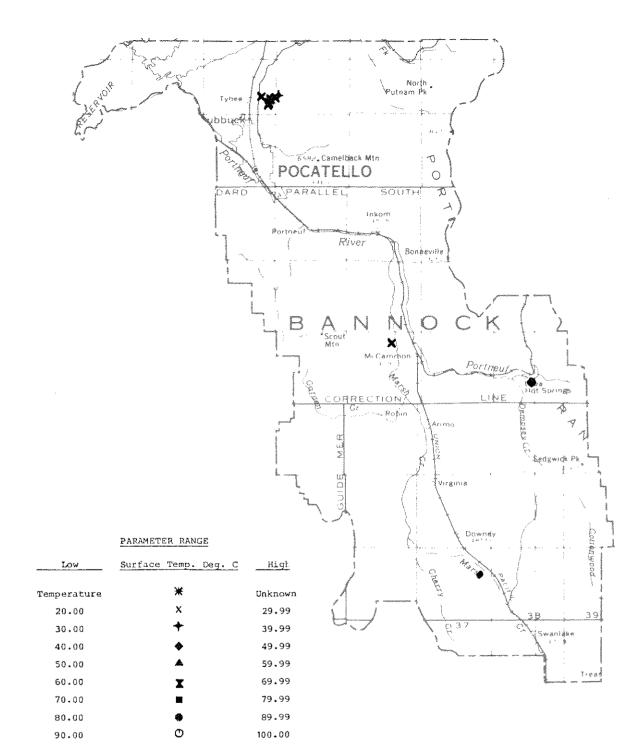


FIGURE 68. Index map of Bannock County showing locations of thermal water occurrences with surface temperatures of 20°C or higher. Geologically, the Lava Hot Springs area is a complicated stratigraphic and structural location. The oldest rocks in the area are Precambrian and lower Cambrian quartzite. Units representing Cambrian through Pennsylvanian systems are present in the area. Most of the rocks in this section are carbonates. A major unconformity exists between the upper Paleozoic units and Tertiary units of the area. Pliocene units are present in the area and consist of sedimentary and volcanic breccias, tuffs, ash, and lava flows. Most of these rocks are valley fill materials which have been largely removed by erosion. The final stratigraphic unit deposited in the area are Pleistocene lava flows. Most of the Portneuf River Valley is underlain by this intervalley basalt flow.

During the Cretaceous and early Tertiary, major thrust faulting displaced the Precambrian and Paleozoic units eastward. The area experienced a period of structural quiescence during the early and middle Miocene which was followed by extensive high angle faulting during the Pliocene. This last period of tectonic uplift created the present fault block mountain range of the area.

Physiographically, the Lava Hot Springs area is in the northeasternmost corner of the Basin and Range Province. The occurrence of thermal springs in the area appears to be related to the location of fault zones. The brecciated fault zones serve as permeable conduits leading the thermal water up from depth.

In the city of Lava Hot Springs, two major fault linears intersect. The Lava Hot Springs fault is a major north-south trending linear that is typical Basin and Range Province. Vertical of the displacement along this fault is several thousand feet creating the fault block mountain which dominates the relief of the area. A second fault cuts east-west through the Lava Hot Springs area offsetting the Lava Hot Springs fault to the east several hundred feet. It is at the intersection of these two faults that the thermal waters of the area are manifested. The relationship of the thermal waters to the thrust plain of the region is unclear.

The hot waters of the Lava Hot Springs area range in temperature from 21-68°C. The major springs which feed the Foundation Spa are 38°C. The presence of fault zones can be easily determined in the area by extensive travertine deposits. These thermal waters are most logically associated with deeper sources of thermal fluids which are circulating up through the Paleozoic units along the fault intersection.

Most of the thermal springs and wells in the area occur from the basaltic rocks which underlie the Portneuf River Valley. Several shallow wells have been dug with backhoes to depths of less than 20 feet. Hot fluids are intersected along the bottom contact of the basalts. This may indicate that thermal water of the area is rising along the fault zones and spreading horizontally along the basalt contact.

Using the sodium-potassium-calcium geothermometer, a reservoir temperature of 211°C has been predicted, and using silica, a temperature of 80°C. In either case, the temperature would be sufficient for space heating. A surface temperature of 71°C has been reported on the bank of the Portneuf River just west of the spa. Investigations are presently being undertaken to determine the feasibility of designing a district heating project. The reported flow (over 1500 1/min.) and the location appears to favor this project. A district heating project would also avoid the present apparent interference between the very shallow individual wells in towns.

Downata Hot Springs (12S-37E-12ccd1S), a popular resort area of long standing, rises from Quaternary alluvium near Tertiary sediments. It is associated with an east-west lineament (see figure 67). It is $43^{\circ}C$ at the surface. Subsurface temperatures here probably are not much higher than $46^{\circ}C$, as estimated by the Na-K-Ca chemical geothermometer. These hot springs are remote enough from a large population center to exclude large scale development. Greenhouses or other agricultural uses could be made of excess water over and above the resort's needs.

One warm domestic well (22^OC) exists near Marsh Creek between McCammon and Inkom. It has not been sampled.

POWER COUNTY

Power County has one popular resort area, Indian Springs (8S-31E-18dablS) (figure 69), which has been in existence for many years. It is located a few kilometers south of American Falls. Indian Springs is 32°C and discharges 5,830 1/min. Maximum subsurface temperatures expected are best represented by the Na-K-Ca chemical geothermometer at 71°C with the quartz chemical geothermometer indicating 63°C.

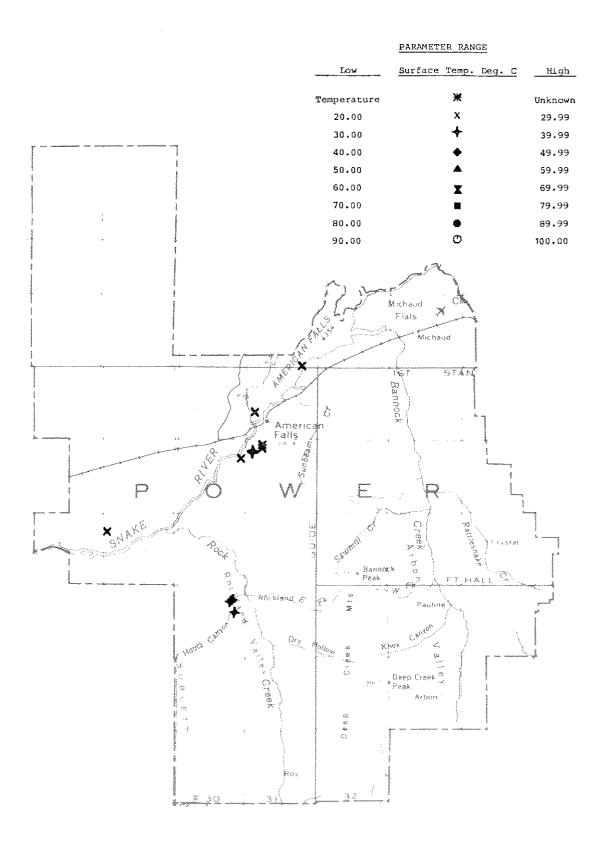


FIGURE 69. Index map of Power County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Two other springs, Rockland Warm Springs (10S-30E-13cdclS) and an unnamed spring (9S-28E-19acdlS) located west of Massacre Rocks State Park on the shore of Lake Walcott, are undeveloped. Rockland Warm Springs has a chemistry and surface temperature similar to Indian Springs.

Several large travertine deposits occur in Power County (figure 70). Past flows of thermal water may have deposited them. If the thermal springs ceased flowing due to self sealing from travertine deposition in spring vents, thermal water might be found by prospecting along known faults near the travertine deposits. Trimble and Carr (1976, p. 62-64) reported on the geology in the Rockland and Arbon quadrangles, Power County. They stated:

Travertine and travertine-cemented conglomerate and breccia occur at several localities in the Rockland and Arbon quadrangles. Yellowish-white travertine as much as 1.83 m thick overlies the Little Creek Formation in the valley of Warm Creek from a point near Indian Springs to a point near the community An isolated exposure of travertine of Neeley. apparently overlies basalt of the Massacre Volcanics on the east side of the valley of Rock Creek, in the SW1/4 NE1/4 sec. 13, T.9S., R.31E. Several outcrops of travertine overlie alluvial pebbly silt or gravel that, in turn, rests on the Starlight Formation (1) on the north side of Rocky Hollow east of the highway between American Falls and Rockland (State Highway 37), (2) in secs. 28 and 29, T.9S., R.31E., between Rocky Hollow and Spring Creek and (3) along the valley of Spring Creek.

Travertine and travertine-cemented conglomerate and breccia are exposed in the valley of East Fork Rock Creek and in Sand Hollow and Dry Hollow in the Rockland quadrangle and are exposed in the area of Pete Lish Canyon, Howard Flat, and Warner Flat in the Arbon quadrangle. The thickest travertine deposits are adjacent to the frontal fault of the Deep Creek Mountains and to a normal fault of large displacement in the Arbon quadrangle. In Sand Hollow, travertine-cemented conglomerate immediately adjacent to the frontal fault is about 68 m thick and ends abruptly on the east at a breccia In the valley of East Fork Rock Creek, it is zone. more than 15 m thick. Travertine is found downvalley from the fault for as much as 5 km in some places and appears to be younger than the coarse pediment gravel in this area.

The volume of travertine-cemented breccia at the locality in the Arbon quadrangle is notable. An

Summinist

FIGURE 70. Travertine deposits and associated known springs in southeastern Idaho (modified from Bodnar and Bush, 1978).

area more than 4 km long and locally more than half a mile wide between Pete Lish Canyon and Warner Flat is completely covered. Locally, this deposit probably is more than 150 m thick. The breccia is composed mainly of fragments 0.65 - 1.25 m across of Paleozoic rocks in a travertine matrix. Travertinecemented sandstone and tuffaceous sandstone is locally interbedded with the breccia.

The common occurrences of travertine-cemented conglomerate and breccia adjacent to major faults, and the abundance of travertine near Indian Springs, a hot spring apparently on a fault line, indicate that the travertine was deposited by water containing a high percentage of calcium carbonate that issued from artesian springs along the faults.

A late Pleistocene age for most of the travertine is suggested by two lines of evidence. First, the isolated exposure of travertine overlying basalt east of Rock Creek, in the SE1/4 NW1/4 sec. 13, T.95. R.30E., contains mollusks of possible Pleistocene age (USGS Cenozoic loc. 21644). According to D.W. Taylor (written commun., 1959) the absence of extinct species tends to suggest a late Pleistocene age, but the small number of species makes even this age uncertain. The stratigraphic position, in several localities, of the travertine above gravel that probably is generally equivalent to the Sunbeam Formation also suggests a late Pleistocene age for much of the deposit. Eastward dips in the travertine cemented breccia and sandstone in the Arbon quadrangle indicate that there has been renewed tectonic movement along the major fault after deposition of the travertine. This suggests that these deposits are somewhat older than flat-lying deposits west of the frontal fault of the Deep Creek Mountains.

BINGHAM COUNTY

Only two thermal springs are known in Bingham County (figure 71). Both are of low temperature. Yandall Springs (3S-37E-31dbb1S) is located at the base of Yandall Mountain along a fault in Paleozoic limestone. It issues from several vents at 22 - 32°C. This is a fairly large spring, discharging 5,700 l/min and is used for irrigation. Dissolved solids are only 197 mg/l. Subsurface temperature probably will not exceed 35°C, as predicted by the chalced-ony chemical geothermometer.

Alkali Flat Warm Springs (4S-38E-28dddlS) is a small seep situated in a bowl in travertine and closely resembles

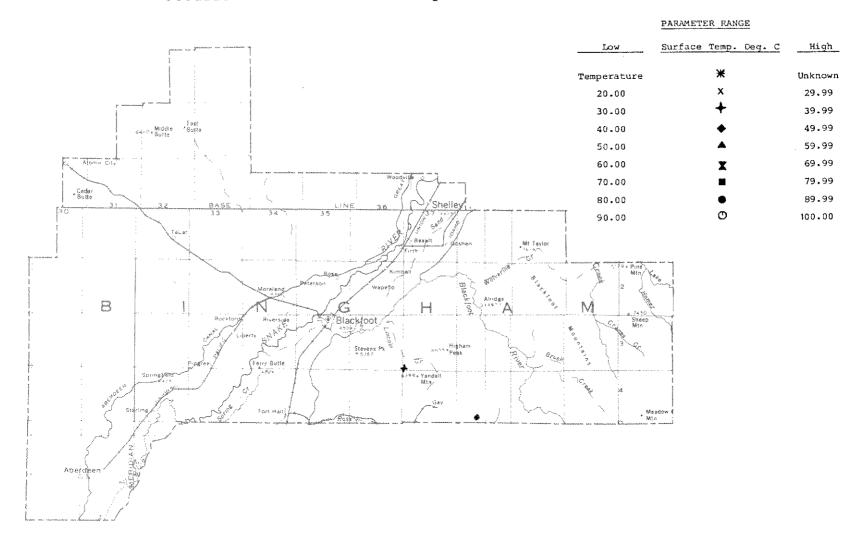
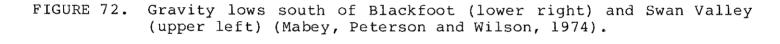
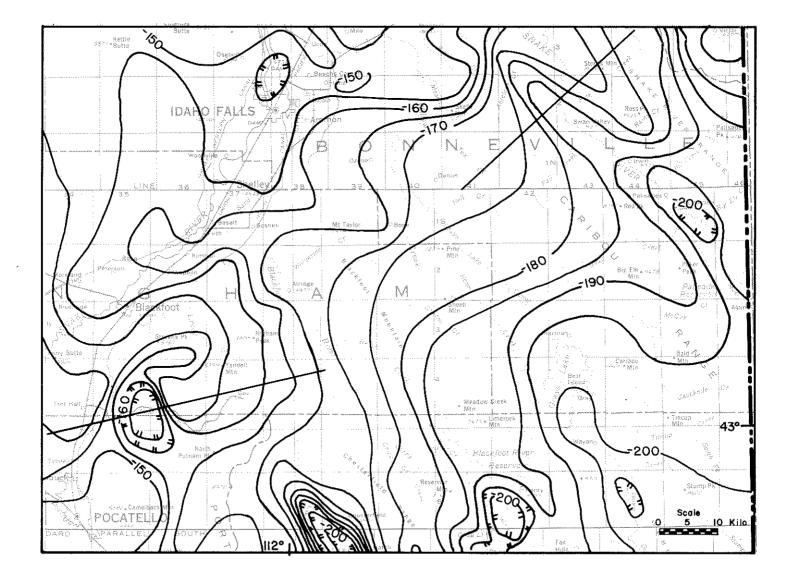


FIGURE 71. Index map of Bingham County showing locations of thermal water occurrences with surface temperatures of 20°C of higher.

-152-


springs found in Caribou County. It has a surface temperature of 34°C, discharges about 75 1/min and is located in the Gay Mine (phosphate) area. Thermal water in this area could possibly be used in winter mining operations. The spring is presently used for stock water. Subsurface temperatures are predicted to be about 58°C by the chalcedony chemical geothermometer.


Donaldson and Applegate (1979) reported that:

The preliminary Gravity Map of southern Idaho (Mabey, Peterson and Wilson, 1974) defines a prominent low about 12 miles south of Blackfoot (figure 72). An east-northeast profile through this anomaly (figure 73) defines a 22.5 mgal low which, assuming a 0.4 gm/cm^3 density contrast, results in calculations estimating a basin depth of about 1,342 m. A steep gravity gradient on the east side of the anomaly is very suggestive of a fault but the equi-dimensional nature of the main part of the anomaly does not suggest a preferred direction of valley strike. Witkind (1975) defines a 105 km terminated in the long active fault which is vicinity of the east flank of the gravity anomaly (figure 15). This fault has been recurrently active since Middle Miocene time. East of this anomaly, gravity is quite featureless and exhibits only a regional gradient of about -.64 mgal/km eastward. Day (1974) has mapped a lineament from ERTS imagery (figure 9) which approximates a portion of the Witkind fault but terminates before reaching the gravity anomaly. In the vicinity of the gravity anomaly, Day has mapped several northeast trending linears which parallel the trend of the eastern Snake River Plain, only a short distance northward (figure 9). It is probably significant that gravity contours enclosing the main portion of the previously mentioned anomaly are distorted toward the northeast (figure 72). Gravity, mapped lineaments and a prominent fault interruption all indicate effects of the force or forces responsible for the presence of the eastern Snake River Plain and the complexity expected in the transition into this dominating structural feature.

BONNEVILLE COUNTY

Three thermal spring areas are located in Bonneville County and warm water of 20°C has been encountered by well drilling near Ammon west of Idaho Falls (figure 74). Alpine Warm Springs (2S-46E-19cad1S), the hottest at 37°C, is now covered by the waters of Palisades Reservoir. A sample of

-154-

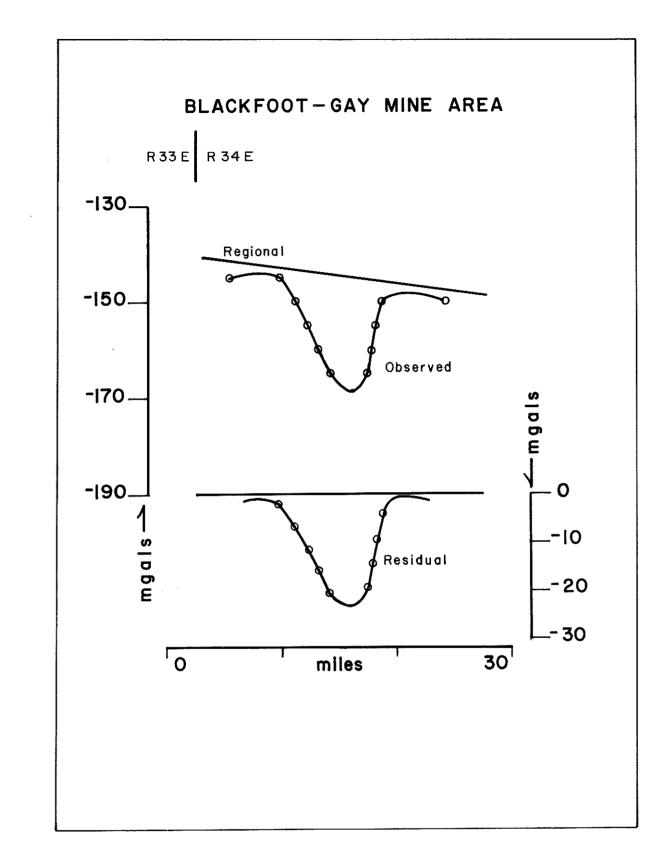


FIGURE 73. Gravity profile near Blackfoot. (From Donaldson and Applegate, 1979.)

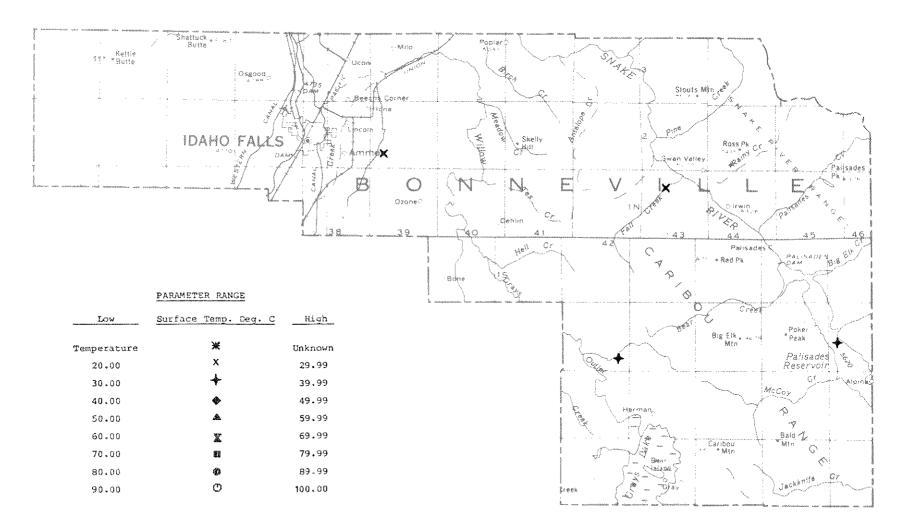


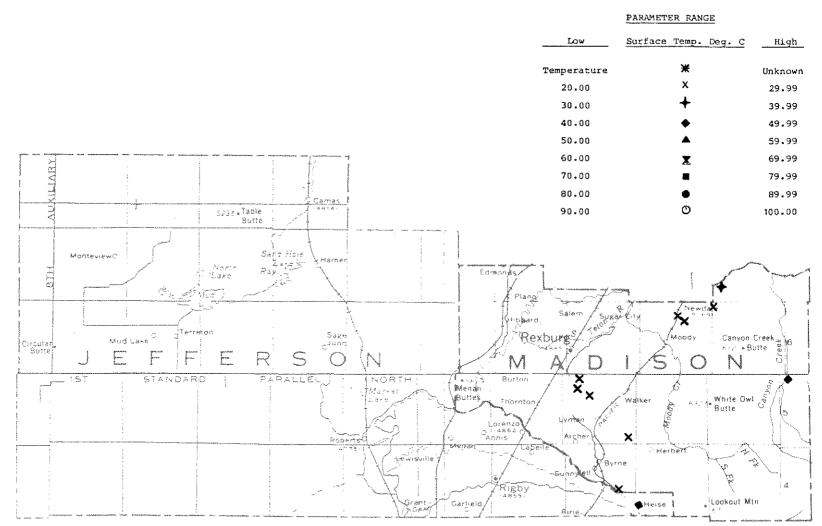
FIGURE 74. Index map of Bonneville County showing locations of thermal water occurrences with surface temperatures of 20° or higher.

this group of springs was obtained during low water caused by the drought of 1977. Subsurface temperature here might be 61° C as predicted by the chalcedony chemical geothermometer.

Brockman Creek Hot Springs (2S-42E-26dcdlS) is 35^OC, discharges 49 l/min and bubbles gas.

Fall Creek Mineral Springs (1N-43E-9cbblS) is the coolest thermal spring at $25^{\circ}C$. It discharges water along a three-fourths mile long stretch of Fall Creek and deposits travertine in several locations. The spring appears to be fault controlled.

Subsurface temperatures in these areas are best represented by the chalcedony (T₄, basic data table 2) temperature, with the exception of Fall Creek Mineral Spring, where quartz (T₁) may be the best estimated subsurface temperature. At Fall Creek, subsurface temperatures may approach 40°C, while at Brockman Creek and Alpine Warm Springs, subsurface temperatures might be as high as 38 and 61°C, respectively.


This area lies along what is locally known geologically as the Heise Alpine Trend.

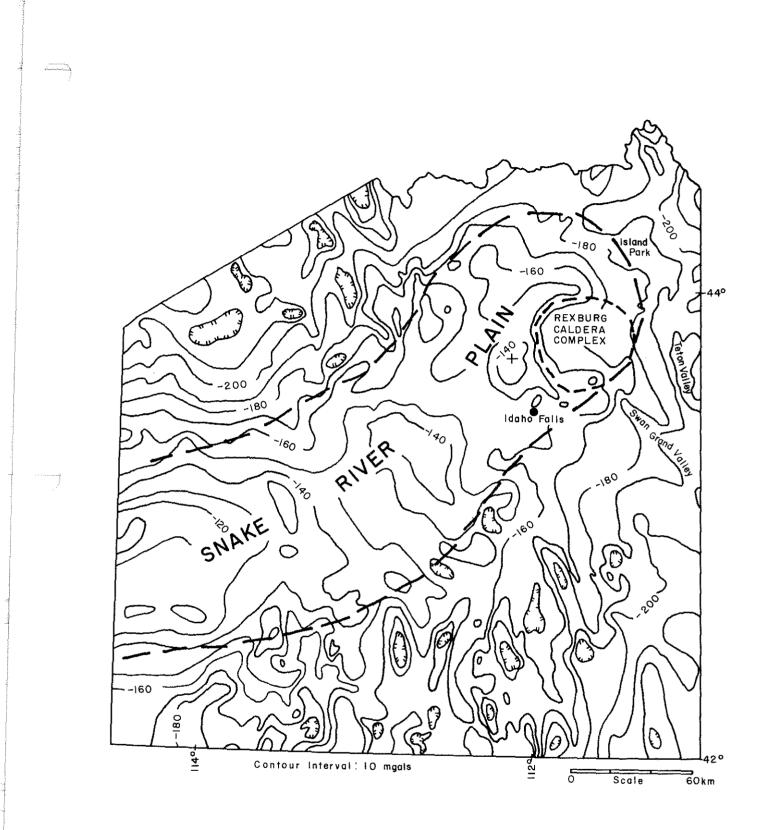
MADISON COUNTY

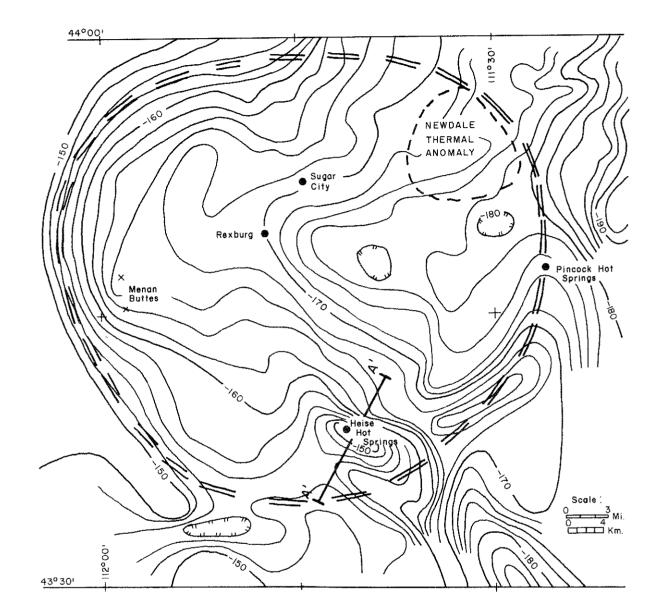
Madison County near Rexburg and Fremont County near Newdale have been scenes of intense geothermal research activity by the DOE and the USGS. Since the destruction of Sugar City by the Teton Dam failure and flood of 1976, efforts have been aimed at finding a thermal source to heat the rebuilt town of Sugar City. The area lies along the southern margin of the eastern Snake River Plain in a zone of high heat flow recognized by Brott and others, 1976. Heat flow values in excess of 5 HFU extend in a northeastsouthwest zone from Rexburg to Newdale. Several thermal wells are also known here (figure 75). The Na-K-Ca chemical geothermometer predicts a shallow warm water system with temperatures that might range between 30 and 81°C.

Mabey (1978) reports:

A caldera complex in the Rexburg area of the eastern Snake River Plain has been defined on the basis of geologic evidence provided by H.J. Prostka and G.F. Embree (written communication, 1977) and named the Rexburg caldera complex (figure 76). Geothermal resources in the Rexburg area are likely to be related directly or indirectly by this caldera complex. FIGURE 75. Index map of Madison and Jefferson counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

-158-




FIGURE 76. Bouguer gravity anomaly map of southeastern Idaho showing the location of the Rexburg caldera complex (from Mabey, 1978).

A gravity map of the caldera complex (Mabey, 1978) is shown in figure 77.

Mabey (1978) further reports:

The boundary of the Rexburg caldera complex is best defined by the surface geology in the southeastern quadrant, and here there is very good correlation between the boundary of the Rexburg gravity low and the caldera complex boundary. On the west and north the gravity data may be the best information available on the boundary of the caldera complex, and the inferred boundary of the caldera complex shown in figure 77 coincides with the edge of the negative mass anomaly indicated by the gravity data. To the northeast the caldera complex appears to overlap another depression, and the margin here is not well defined by either the geology or the The inferred boundary here gravity data. is primarily a connection of the better defined segments. The lowest gravity values occur in the eastern and western parts of the caldera complex, near Menan Buttes and east of Rexburg. The subdued these appears be hiqh between lows to а northwestward-trending gravity high centered over Heise Hot Springs and a southwest-trending high west of Sugar City.

Gravity lows associated with calderas in the western United States usually result from two sources: low density fill within the caldera or an underlying body of intrusive rock that is less dense than the enclosing basement. The coincidence of the southwestern boundary of the Rexburg caldera complex with steep gravity gradients suggests a near-surface source, caldera fill. Except in the vicinity of the gravity high at Heise Hot Springs, the rocks exposed or penetrated by drill holes as deep as 420 m in the area of the gravity low are basalt, and welded tuff o£ stream gravels, Quaternary age, and Pliocene rhyolite. No attempt has been made to determine the density of these rocks in the area of the Rexburg caldera complex, but the average bulk density of similar rocks in the region ranges from about 2.0 to 2.65 g per cm^3 . The average bulk density of pre-Tertiary rocks in the region is about 2.65 g per cm^3 . Thus a mass of the low-density Quaternary and Tertiary sedimentary and volcanic rock enclosed by pre-Tertiary rock would produce a gravity low, and this seems a probable cause of a major part of the low. Nowhere does the gravity anomaly require a deep source, although the existence of such a source smaller in

. Sumaanna

FIGURE 77. Bouguer gravity anomaly map of the Rexburg area showing the outline of the Rexburg caldera complex as inferred from the gravity data. Contour interval is 2 milligals (from Mabey, 1978).

extent than the inferred caldera complex is not inconsistent with the gravity data.

Although the Rexburg gravity low appears in large part to reflect fill within the Rexburg caldera complex, a precise quantitative interpretation of the anomaly is not justified. The amplitude of the gravity low cannot be accurately determined because of uncertainties in isolating the anomaly from the more regional high associated with the eastern Snake River Plain. No approximation of the regional gravity anomaly over the Snake River Plain can be computed by assuming that a linear relationship exists between the gravity anomaly and topography (Mabey, 1966). However, in the northeast part of the Snake River Plain, the area over which the elevations are averaged strongly affects the regional determined and thus the amplitude of the computed residual. Even if the local low could be isolated from the regional high, the fill and the enclosing rock cannot be accurately Also the possibility of a significant estimated. contribution to the gravity anomaly by an underlying intrusive body cannot be discounted. The residual amplitude of gravity is estimated to be about 20 mgals. The average density contrast between the fill and the enclosing rock is likely to be between 0.2 and 0.5 g per cm^3 . A 20-mgal anomaly could be produced by a thickness of 1 to 2.5 km of rocks having this density contrast.

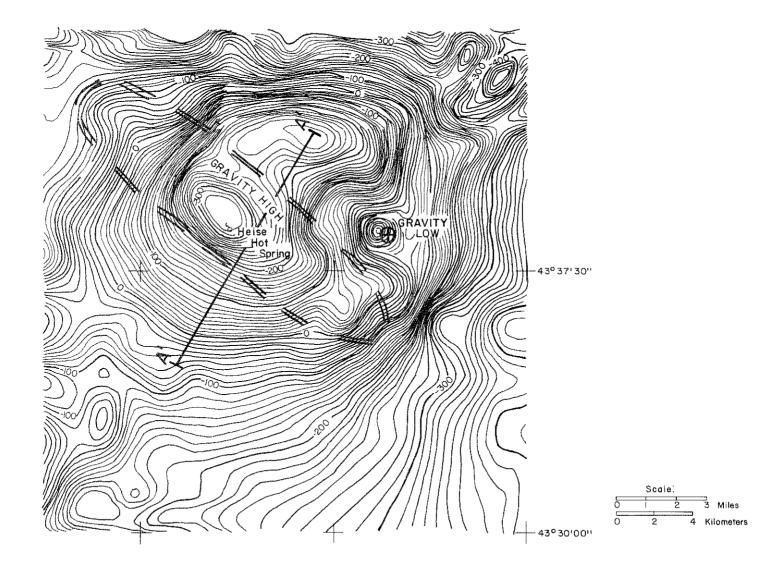
Green Canyon (Pincock) Hot Spring (5N-43E-6bcalS) lies on the caldera margin (figure 77). The quartz chemical geothermometer (T₁, basic data table 2) gives an estimate that thermal water feeding the Green Canyon Hot Springs may only have been as hot as $72^{\circ}C$.

JEFFERSON COUNTY

Only one thermal water occurrence is known in Jefferson County (figure 75). Heise Hot Springs (4N-40E-25ddalS), an established popular resort area located near the South Fork of the Snake River near the edge of the Snake River Plain, is in the extreme southeastern part of the county. Surface temperature is 49°C. The quartz chemical geothermometer gives an estimate of a subsurface temperature of 79°C. This spring deposits free sulfur and travertine and has a distinct sulfur odor. It issues from Tertiary silicic volcanic rocks along a northwest-trending fault. Heise lies within and near the southern margin of the Rexburg caldera on a large gravity high.

Mabey (1978) reports:

The most prominent local gravity and magnetic anomalies are highs within the Rexburg caldera complex in the area of Heise Hot Springs (figure 77.) Although the crests of the anomalies are coincident, the extent of the anomalies are different and they cannot reflect entirely the same mass. Mesozoic sedimentary rocks overlain by Pliocene rhyolite flows and welded tuffs are exposed in the area of the anomalies. Rhyolite dikes are locally The northwest-trending Heise fault abundant. (Prostka and Hackman, 1974), which forms а southwest-facing scarp locally 300 m high, is parallel to and near the crest of the anomalies. The correlation between the gravity high and outcropping Mesozoic sedimentary rock suggests that the gravity anomaly reflects in large part a structural high elevating the more dense pre-Tertiary The shape and extent of the magnetic rocks. anomaly, the abundant rhyolite dikes in the area, and the indication by the magnetic gradients that the source lies below the surface all suggest that a major part of the magnetic high is produced by a large buried intrusive body. Some features of the magnetic anomaly reflect the near-surface volcanic rocks.


Heise Hot Springs and the warm springs to the northwest occur along the crest of the gravity and magnetic highs. The springs are in a structurally complex area where northwest-trending faults, probably related to the Basin and Range structure of Swan and Grand valleys, displace a structural high over the inferred intrusive body. Although the Heise fault forms a prominent southwest-facing scarp and the presence of the Snake River against this scarp attests to recent movement of the fault, the geophysical data indicate that the Heise fault is near the crest of the structural high.

The north side of the magnetic high is an easttrending zone that coincides with a subtle east trend in the gravity anomaly contours. The zone coincides with west-trending segments of major canyons and is north of the northernmost outcrops of rhyolite. Another east-trending gravity feature is apparent about 5 km farther north.

About 8 km east of Heise Hot Springs are coincident gravity and magnetic lows (figure 78). The cause of the lows is not apparent on the geologic map of Prostka and Hackman (1974). The anomalies appear to reflect a zone in which both the density and magnetization of the underlying rocks are lower than those of the enclosing rocks.

1122222

FIGURE 78. Residual aeromagnetic map of the area of Heise Hot Springs showing the location of the gravity high at Heise Hot Springs and a gravity low to the east.

Pincock Hot Spring, on the east edge of the Rexburg caldera, lies midway betwen two flight lines about 9 km apart on the regional map (figure 78). Along both flight lines a magnetic high was measured opposite the hot spring. Although existing data are not adequate to define this anomaly, the data suggest a magnetic high in the area of Pincock Hot Spring.

A profile (figure 79) normal to the trend of the gravity high shows a section that would produce the major features of the gravity and magnetic fields in the vicinity of Heise Hot Springs. The gravity anomaly is attributed to a high on the surface of the pre-Cenozoic rocks at Heise Hot Springs and to an area of thicker Cenozoic rocks under the valley of the Snake River to the southwest. The depresrocks sion containing the thicker Cenozoic is parallel to and within a northwestward projection of the Swan-Grand Valley trend into the Rexburg The magnetic anomaly has two caldera complex. a local high at Heise Hot major components: Springs superimposed on broader, more deeply buried Both components probably reflect a large source. body of intrusive rock with the apex near Heise Hot Springs. The intrusive mass, which may be the same age as the rhyolite dikes, lies within the Rexburg caldera complex where the Swan-Grand Valley trend caldera. Magnetic anomalies intersects the suggesting a similar intrusive body occur elsewhere along the southeastern margin of the Snake River where major Basin and Range structures Plain, intersect the plain (Mabey, in press). Along the northeastern part of the profile, the magnetic anomaly appears to reflect both Cenozoic volcanic rock and the underlying intrusive body.

SOUTHERN FREMONT COUNTY

One thermal spring in southern Fremont County referred to as Ashton Warm Springs (9N-42E-23daclS) is located outside the Rexburg caldera boundaries near the community of Ashton (figure 51). It seeps into a nearby creek at 41°C. Silica content is quite high, indicating superheated water could be obtained here. The Na-K-Ca chemical geothermometer indicates that a maximum subsurface temperature of 91°C may be obtained. Ashton Warm Springs is close enough to Ashton to represent a significant energy source for low temperature space heating, and uses up to low temperature blanching (figure 4) might be possible if increased flow rates and be found through deep drilling. temperatures could Geophysical and geological studies to determine structure should be pursued before any drilling in the area begins to best site a target prior to any contemplated deep holes.

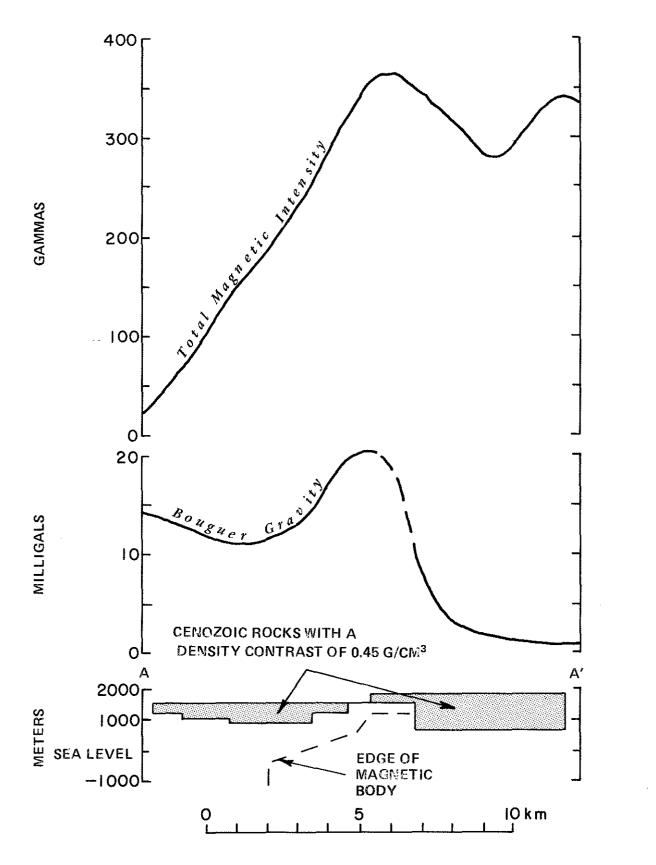
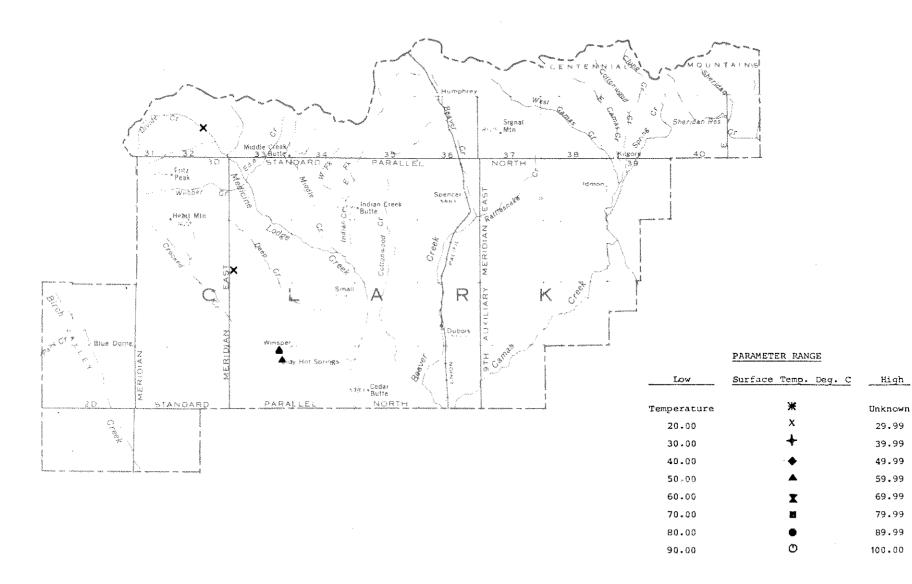


FIGURE 79. Magnetic and gravity profiles and interpreted section across the anomalies at Heise Hot Springs (from Mabey, 1978).

Seventeen thermal wells ranging from 22 to 51°C exist in southern Fremont County in and around the city of Newdale (10 km southeast of St. Anthony). This thermal anomaly seems to be related to the Rexburg caldera previously discussed in the sections on Madison and Jefferson counties. Further work in this area might be oriented toward determining if thermal water could possibly extend further to the northwest, toward St. Anthony.

CLARK COUNTY


Ŵ. COLODIN

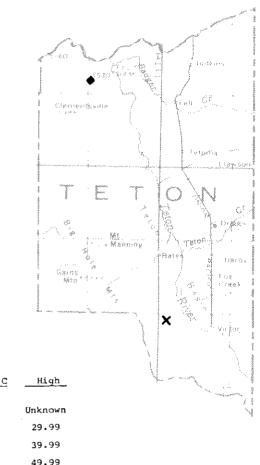
Three thermal spring areas are known in Clark County (figure 80). Liddy Hot Springs (10N-33E-35ccclS) is located near where the mountain front meets the northern margin of the eastern Snake River Plain. Liddy is located on an active fault and is used presently for phosphate fertilizer processing and in a domestic laundry room. It was formerly used at the Liddy Hot Springs natatorium, which has been closed for several years. Discharge is near a ridgecrest several tens of meters above the Snake River Plain. It is one of the two ridgetop discharges known in Idaho. A well has been drilled near the spring site and the owner reports that water shot to the top of the 12 m drilling mast, so the well apparently is under some degree of shut-in pressure. Surface temperature is 51°C. Best estimated subsurface 54°C by the chalcedony chemical temperature is The Na-K-Ca chemical geothermometer gives geothermometer. an estimate of 65°C as the probable highest temperature that might be obtained from the well.

Big Springs (13N-32E-15bcb1S) is located on Warm Springs Creek, a tributary to Medicine Lodge Creek in the Beaverhead Mountain Range. It is 23°C and is not used. It discharges 140 1/min. No chemical analysis is available.

Warm Springs (11N-32E-25aaclS) is 29° C, discharging 3400 1/m and is currently used for stock water. Chalcedony and Na-K-Ca chemical geothermometers give an estimate of subsurface temperatures of 25 and 23° C, 4 and 6° C, respectively, below surface temperatures. The quartz chemical geothermometer gives an estimated subsurface temperature of 51° C.

Clark County thermal areas apparently lie on the same thermal water structure or issue from deep rocks similar to those found on the south side of the Snake River Plain, judging from the travertine deposits found in both areas (figure 70). Clark County is the only area north of the Snake River Plain where travertine deposits of large areal extent are known. Commercial quarrying operations for onyx occur here. Water quality appears to be good; dissolved solids are less than 500 mg/l. Flouride content at Liddy Hot Springs is 6 mg/l; however, as maximum subsurface temperatures appear to be not greater than 68°C, limited use FIGURE 80. Index map of Clark County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

-168-


·*****

could be made of the thermal water. Uses such as animal husbandry, greenhouse, space heating, and hay and grain drying are suggested in figure 4. Other thermal water might be discovered in Clark County in areas of obvious faulting near travertine deposits provided extinct springs have ceased flowing caused by self sealing from travertine deposition in the thermal water conduits.

TETON COUNTY

Only one thermal spring (13N-45E-7baalS) is known in Teton County (figure 81). It is located east of Victor near the western flank of the Big Hole range in the Teton Basin. It is 20°C at the surface. Chemical analysis is not available, so speculation on the subsurface temperature cannot be made. It discharges 950 1/min and is used for swimming. This spring is located near a thrust fault in Triassic marine sedimentary rocks near the nose of an anticline.

A thermal well (7N-43E-36aacl), 353 m deep, has been reported in northwestern Teton County. The reported surface temperature is $49^{\circ}C$. The well was not field checked, but the well location seems to "fit" the suspected curvilinear zone outlined on figure 9.

	PARAMETER RANGE	
Low	Surface Temp. Deg. C	<u>High</u>
Temperature	*	Unknown
20.00	x	29.99
30.00	+	39.99
40.00	٠	49.99
50.00	A	59.99
60.00	X	69.99
70.00		79.99
80.00	٠	89.99
90.00	ð	100.00

FIGURE 81. Index map of Teton County showing locations of thermal water occurrences with surface tempera-tures of 20°C or higher.

SUMMARY BASIN AND RANGE CENTRAL ROCKY MOUNTAIN PROVINCE SOUTHEASTERN IDAHO

Table 6 shows towns in southeastern Idaho that are near These towns probably could be heated by thermal water. geothermal water if sufficient flow rates and temperatures could be obtained by drilling. School districts could perhaps lower heating costs by developing geothermal New schools or other public buildings planned heating. could be built near thermal water locations. In certain places, as at Preston, Malad, and Soda Springs, $CaCO_3$ deposition and high dissolved solids may lead to scaling and disposal problems. In other areas, heat dissipation and objectionable gasses may pose environmental problems. Areas near towns in southeastern Idaho could be evaluated without large capital outlays for exploration as the target areas are limited in size.

Pocatello, due to its large population and industrial base, shows the most promise of the largest impact upon conventional energy supply savings by converting to geothermal energy; the potential in this area should be studied first. Gravity, magnetic, seismic refraction or resistivity studies should be able to pinpoint controlling structure and thermal water occurrence in a limited area near Tyhee, north of Pocatello. Pump tests on existing wells should be conducted to determine aquifer characteristics.

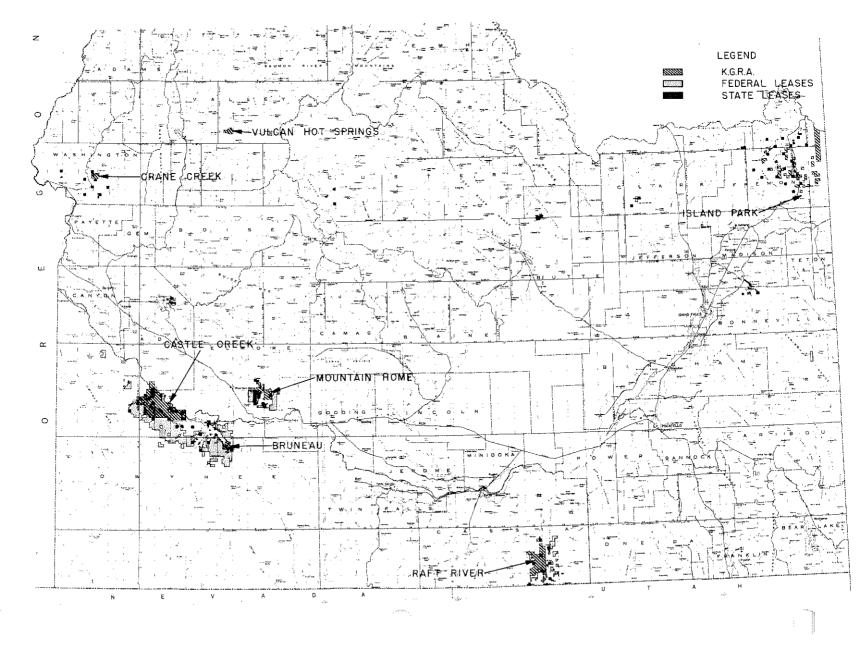
Preston may show promise of power generation. If such is the case, cascading uses could be made of thermal water effluent from the power plant. These uses range from steam electric generation to fish farming (see figure 4).

Malad, Soda Springs, Lava Hot Springs, Rexburg, and Ashton represent towns where an economical assessment of geothermal resources for space heating of business establishments and area subdivisions could be made. Rexburg also has potential to use geothermal heat in food processing plants, as well as to heat large buildings at Ricks College. Other areas may have potential and could see development as well, but assessment might be a little more difficult and costly. The engineering and economic feasibility of retrofitting the above communities for space heating could also be studied.

Wells to tap the geothermal resource would have to be carefully targeted to intersect thermal water bearing structures which, in most cases, appear to be faults.

	сіт	IES AND TOWNS I	IN SOUTHEAS	ST IDAHO W	TABL		20°C OR HIGHER 1	THERMAL SPRIN	IG OR WELL	(1978
Тоул	County		Spring or Well Surface Tempera- ture ^O C	* Est Subs	Best imated urface <u>ature ^oC Max.</u> Chalcedony	Total Dissolved Solids	Present Water Use	Population	Surface Owner	Remarks
Albion	Cassia	11S-25E-11cca1	60	81	89****	372	Irrigation	243		
Ammon	Bonneville	3N-39E-30adc1	20	****			Domestic	3,360	Private	No chemical anal yses available.
Ashton	Fremont	9S-42E-23dab1S	5 41	91	116	204	Unused	1,181	Private	Thermal spring just north of town.
Lava Hot Springs	Bannock	9S-38E-21dda15	5 45	50	82***	960	Natatorium balneological baths	512	State of Idaho	Recreational area.
Malad	Oneida	14S-36E-27cda1	IS 25	29	61***		Unused	1,848	Private	Spring in traver tine bowl near fairgrounds.
McCammon	Bannock	9S-36E-3cdb1	20	****			Domestic	619	Private	No chemical anal yses available.
Vewdale	Fremont	7N-41E-35cdd1	32	84	93	377	lrrigation	285	City	Several wells in vicinity of New dale.
Pocatello	Bannock	5S-34E-26dab1	1 41	47	62	718	Domestic & irrigation	42,565	Private	Several wells aligned in a NE direction.
Preston	Franklin	15S-39E-17bcd	1 84	125	250**	9,830	Unused	3,284	Private	Geothermometers difficult to in terpret.
Rexburg	Madison	5N-40E-36ddb1	26				Irrigation	9,761	Private	No chemical ana yses available not field check
Soda Springs	Caribou	9S-41E-12add15	6 28	30	54	3,207	Tourism	3,487	City	Really a well drilled near a former spring.
lictor	Teton	3N-45E-7abb1	20				Private swimming	254	Private	No chemical ana yses available
Veston	Franklin	16S-38E-24acd	1 23	84	92	566	Irrigation	229	Private	Well 3 km SE of Weston.

*See first footnote of Table 4. **Maximum temperature is from Na-K-Ca chemical geothermometer, minimum temperature is from quartz chemical geothermometer. ***Maximum temperature is from quartz chemical geothermometer, minimum temperature is from the chalcedony chemical geothermometer. ***Maximum temperature is from Na-K-Ca chemical geothermometer, minimum temperature is from the chalcedony chemical geothermometer.


CONCLUSIONS AND RECOMMENDATIONS

It has become apparent that much of the thermal water discharged through wells and springs is probably of low temperature (<100°C). Much of it discharges near small towns and cities throughout southern Idaho where it could reasonably be used for space heating. Figure 82 shows locations of towns and cities in Idaho within 5 km of a thermal water discharge. In these areas, and to some extent in favorable rural areas, the federal 1978 Energy Tax Act has provided significant incentives for private development. These cities and towns near thermal water discharges represent approximately 30 percent of Idaho's present population.

Prior to the development of any geothermal resource, the prospective developer/user should be sure there is a necessary amount of water appropriated and a drilling permit secured from the IDWR. The subsurface ownership should be checked for ownership of the mineral rights. If not, the developer/user will need to secure a geothermal lease from the appropriate party or agency.

As found in the statewide study done for this report, most of the thermal water is associated with known faults or linear features thought to represent some type of rock Even the three main thermal aquifers presently fracture. known to have thermal water are widespread--Bruneau-Grand View, Blue Gulch-Artesian City, and Nampa-Caldwell areas may ultimately be fed through deep-seated regional fractures. the fracture controlled systems could be Recharge to anywhere along their length and interbasin groundwater transfer may be associated with those that are regional in More and perhaps hotter water might be discovered length. by exploration along faults and fractures throughout the Snake River Plain region. (Drill holes would have to be targeted carefully to intersect the water bearing structure at predetermined depth. Detailed knowledge of the dip, strike, and throw of faults would be needed to site the Reflective seismic profiling and deep drill holes.) electrical resistivity methods appear to be the best methods of delineating fractures containing thermal water in much of the western Snake River Plain region. A systematic program for seismic and resistivity profiling should be initiated in the Western Snake River Plain region and in areas of heavy population density in eastern Idaho, such as Pocatello, Twin Falls, and Idaho Falls, to map fracture patterns, provided geologic conditions are conducive to seismic techniques in these areas.

FIGURE 82. Index map showing known geothermal resource areas (KGRAs) and federal and state leased lands in Idaho (current to October, 1978).

anna ann an trainn an

In the Western Snake River Plain region, the faults and linear features associated with thermal water appear to be regional in character, some stretching the length and breadth of the plain. In the Western Snake River Plain, a systematic seismic reflection profiling program should be initiated to cover most of the plain proper where geologic conditions are favorable to seismic reflection techniques. This could be in the Nampa-Caldwell-Boise region and be extended into other areas later on. The seismic profiling could be followed by resistivity surveys of faulted and fractured areas discovered by the seismic profiling. This would provide information on deep water movement, recharge, and discharge areas. It would leave well-defined target areas for large-scale energy users to explore in greater depth.

The small towns and cities outside the Western Snake River Plain could be assessed at relatively small cost as surveys could be concentrated in smaller areas.

The preceding three regional summaries give specific conclusions regarding towns that could receive the most significant and the greatest benefits from further study.

SELECTED REFERENCES

- Ackerman, H.D., 1975, abs., Seismic refraction study in the Raft River geothermal area, Idaho: Soc. Explor. Geophys. Annual Int. Meeting, Abs. no. 45, p. 28.
- _____, 1975, Velocity section in Raft River, Idaho, geothermal area from seismic refractions: U.S. Geol. Survey open file report no. 75-106.
- Anderson, W.L., 1977, Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho: U.S. Geol. Survey open file report no. 77-557.
- Applegate, J.K. and Donaldson, P.R., 1975, abs., Passive and active seismic studies and the geologic structure of the Boise front, Idaho: Soc. Explor. Geophys. Annual Int. Meeting, abs. no. 45, p. 29.
- , 1977, Characteristics of selected geothermal systems in Idaho, in The earth's crust, its nature and physical properties: Am. Geophys. Union, Geophysical monograph 20.
- Applegate, J.K., Donaldson, P.R., Hinkley, D., and others, 1976, abs., Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho: Soc. Explor. Geophys., Annual Int. Meeting, abs. no. 45, p. 94-95.
- Applegate, J.K., Donaldson, P.R. and Mink, L.L., 1976, abs., Geologic and seismic studies of the Boise front, Idaho, for geothermal resource evaluation: Am. Assoc. Petroleum Geologists Bull., v. 60, p. 1389.
- Applegate, J.K., Donaldson, P.R., Mink, L.L., and others, 1977, An investigation of the geothermal potential of the Boise, Idaho area: U.S. Dept. of Energy, open file report 1537, Idaho Falls, Idaho.
- Armstrong, F.C., 1953 Generalized composite stratigraphic section for the Soda Springs quadrangle and adjacent areas in southeastern Idaho: <u>in</u> Intermountain Assoc. Petroleum Geologists 4th Ann. Field Conf., 1953: chart in pocket.
- , 1969, Geologic map of the Soda Springs quadrangle, southeastern Idaho: U.S. Geol. Survey Misc. Geol. Inv. Map 1-557, 2 sheets.
- Armstrong, F.C. and Cressman, E.R., 1963, the Bannock thrust zone, southeastern Idaho: U.S. Geol. Survey Prof. Paper 374-J, 22 p.

- Armstrong, R.L., Leeman, W.P. and Malde, H.E., 1975, K-Ar dating, Quaternary and Neogene volcanic rocks of the Snake River Plain, Idaho: Amer. Jour. Sci., v. 275, p. 225-251.
- Arnórsson, Stefán, 1970, Underground temperatures in hydrothermal areas in Iceland as deduced from the silica content of the thermal water: <u>in</u> Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1, Geothermics, Spec. Issue 2, p. 537-541.
- , 1975, Application of silica geothermometer in low temperature hydrothermal areas in Iceland: Amer. Jour. Sci., v. 275, no. 7, p. 763-784.
- Austin, C.F. and Wheland, J.A., 1978, Geothermal potential at U.S. Air Force Bases: Geothermal Technology Div. Naval Weapons Center, China Lake, Ca. Civil and Environmental Engineering Development Div., Air Force Systems Command, Tyndall Air Force Base CEEDO-TR-78-47, 55 p.
- Barnes, H.L., ed., 1967, Geochemistry of hydrothermal ore deposits: New York; Holt, Rinehart, and Winston, Inc., 670 p.
- Bennett, E.H., 1976, Reconnaissance geology and geochemistry of the South Mountain-Juniper Mountain region, Owyhee County, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 166, 110 p.
- , 1977, Reconnaissance geology and geochemistry of the Blackbird Mountain-Panther Creek region, Lemhi County, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 167, 108 p.
- Bishop, A.A., 1975, Use of geothermal water for agriculture: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1221.
- Bjorklund, L.J. and McGreevy, L.J., 1971, Groundwater resources of Cache Valley, Utah and Idaho: State of Utah, Dept. of Natural Resources, tech. pub. no. 36, 72 p.
- Bodnar, Theodore and Bush, Richard, 1978, Hot springs in the state of Idaho and associated deposits: ISU Geology Research Dept., open file report.
- Bodvarsson, Gunnar, 1970, Evaluation of geothermal prospects and the objectives of geothermal exploration: Geoexploration, 8,7.
- Bond, J.G., 1963, Geology of the Clearwater embayment: Idaho Bur. of Mines and Geology Pamph. no. 128, 83 p.

_____, 1978, Geologic map of Idaho: Idaho Dept. of Lands, Bur. of Mines and Geology, 1 map.

Bonini, W.E., 1963, Gravity anomalies in Idaho: Idaho Bur. of Mines and Geology Pamph. no. 132, 10 p.

- Bonini, W.E. and Lavin, P.M., 1957, abs., Gravity anomalies in southern Idaho and southwestern Montana: Geol. Soc. America Bull., v. 68, p. 1702.
- Braile, L.W., Keller, G.R., Martin, W.R., et. al., 1977, abs., Crustal structure of the Columbia Plateau and Snake River Plain: Geol. Soc. America, abs. programs, vol. 9, no. 7, p. 908-909.
- Bright, R.W., 1963, Pleistocene Lakes Thatcher and Bonneville, southeastern Idaho: Minnesota Univ. (Minneapolis) Ph.D. thesis; available from University Microfilms, Inc., Ann Arbor, Mich.
- Brook, C.A., Mariner, R.H., Mabey, D.R., and Swanson, J.S., 1979, Hydrothermal convection systems with reservoir temperature ≥ 90°C, in Assessment of geothermal resources of the United States - 1978, L.J.B. Muffler, ed., U.S. Geol. Survey Circ. 790, 163 p.
- Brott, C.A., Blackwell, D.D. and Mitchell, J.C., 1975, abs., Heat flow studies of the Snake River Plain: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 590-591.
 - , 1976, Geothermal Investigations in Idaho, Part 8, Heat flow studies of the Snake River Plain, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 195 p.
- _____, 1976, abs., Heat flow study of Snake River Plain, Idaho: Amer. Assoc. Petroleum Geologists Bull., v. 60, p. 1392.
- , 1978, Tectonic implications of the heat flow of the western Snake River Plain, Idaho: Geol. Soc. America Bull., v. 89 p. 1697~ 1701.
- Burnham, W.L., Harder, A.H. and Dion, N.P., 1969, Availability of groundwater for large-scale use in the Malad Valley-Bear River Basin areas of southeastern Idaho - an initial assessment: U.S. Geol. Survey open file report, 40 p.
- Castelin, P.M. and Chapman, Sherl, 1972, Water resources of the Big Wood River-Silver Creek area, Blaine County, Idaho: Idaho Dept. of Water Adm., Water Inf. Bull. no. 28.
- Castelin, P.M. and Winner, J.E., 1976, Effects of urbanization on the water resources of the Sun Valley-Ketchum area, Blaine County, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 40.
- Cater, F.W., Pinckney, D.M., Hamilton, W.B., Parker, R.L., Weldin, R.D., Close, T.J. and Zilka, N.T., 1973, Mineral resources of the Idaho Primitive Area and vicinity, Idaho: U.S. Geol. Survey Bull. 1304, 431 p.
- Chappel, R.N., Griffith, J.L., Knowles, W.R. and Schulta, R.J., 1978, The multipurpose geothermal test and experimental activities at Raft

River, Idaho: Geothermal Energy: A Novelty becomes a Resource, transactions v. 2, sec. 1, p. 83-87, Geothermal Resources Council Annu. Meeting, 25-27 July 1978.

- Choate, Raoul, 1962, Geology and ore deposits of the Stanley area: Idaho Bur. of Mines and Geology Pamph. no. 126, 122 p.
- Cook, K.L., Halverson, M.O., Stepp, J.C. and Bery, J.W., Jr., 1964, Regional gravity survey of the northern Great Salt Lake Desert and adjacent areas in Utah, Nevada and Idaho: Geol. Soc. America Bull., v. 75, p. 715-740.
- Coulter, H.W., 1956, Geology of the southeast portion of the Preston quadrangle, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 107, 47 p.
- Covington, H.R., Deep drilling data, Raft River geothermal area, Idaho (well no. 3, sidetract-C): U.S. Geol. Survey open file report no. 77-883.
 - , 1977, Deep drilling data, Raft River geothermal area, Idaho (well no. 1): U.S. Geol. Survey open file report No. 77-226.
 - _____, 1977, Deep drilling data, Raft River geothermal area, Idaho (well no. 2): U.S. Geol. Survey open file report no. 77-243.
- _____, 1977, Deep drilling data, Raft River geothermal area, Idaho (well no. 3): U.S. Geol. Survey open file report no. 77-616.

, 1977, Deep drilling data, Raft River geothermal area, Idaho (well no. 4): U.S. Geol. Survey open file report no. 78-91.

- Cox, Allan, Dalrymple, G.B. and Doell, R.R., 1967, Reversals of the earth's magnetic field: Sci. American, v. 216, no. 2, p. 44-54.
- Crosthwaite, E.G., 1957 (1958), Ground-water possibilities south of the Snake River between Twin Falls and Pocatello, Idaho: U.S. Geol. Survey Water-Supply Paper 1460 C, p. 99-145.
- Crosthwaite, E.G., Mundorff, M.J. and Walker, D.H., 1970, Ground water aspects of the Lower Henry Fork region, eastern Idaho: U.S. Geol. Survey Water Supply Paper 1879 C.
- Crosthwaite, E.G. and Scott, R.C., 1956, Ground-water in the North Side Pumping Division, Minidoka County, Idaho: U.S. Geol. Survey Circ. 371, 19 p.
- Dart, R.H., Neill, D.T. and Whitbeck, J.F., 1975, Conceptual design and cost evaluation of organic rankine cycle electric generating plant powered by medium temperature geothermal water: Aerojet Nuclear Corp., Idaho Operations Office, ANCR report 1226.

Davis, W.E., 1972, Mineral resources of the Salmon River breaks primitive area, Idaho, aeromagnetic survey: U.S. Geol. Survey Bull. 1353-C, p. 18-20.

lana an

- Day, N.F., 1974, Linears Map, Band 5, MSS-ERTS, Northern and Southern Idaho: Idaho Bur. of Mines and Geology open file map, 2 maps.
- Diment, W.H., Urban, T.C., Sass, J.H., et al., 1975, Temperatures and heat contents based on conductive transport of heat, in Assessment of geothermal resources of the United States, 1975: U.S. Geol. Survey Cir. 726.
- Dion, N.P., 1969, Hydrologic reconnaissance of the Bear River Basin in southeastern Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. No. 13, 66 p.
- , 1974, An estimate of leakage from the Blackfoot Reservoir to Bear River Basin, southeastern Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. No. 34, 24 p.
- Doherty, D.M. and Nash, K.G., 1977, abs., Remote sensing identification of caldera related geologic features in the eastern Snake River Plain: Geol. Soc. America, abs. programs, v. 9, no. 6, p. 719-720.
- Donaldson, P.R. and Applegate, J.K., 1975, abs., Evaluation of the geothermal potential of the Boise front, Idaho: Soc. Explor. Geophys. Annual Int. Meeting, abs., no. 45, p. 29.
- , 1976, abs., Geoelectrical investigations of Boise, Idaho geothermal system: Amer. Assoc. Petroleum Geologists Bull., v. 60, p. 1397.

_____, 1979, Geophysical review of selected geothermal areas in southern Idaho: Geotechniques, Inc. open file report.

- Donovan, L. E., 1975, Feasibility/conceptual design study for Boise geothermal space heating demonstration project distribution and disposal system: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1258.
- Donovan, L.E. and Richardson, A.S., 1975, Feasibility/conceptual design study for Boise geothermal space heating demonstration project building modifications: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1246.
- Eldridge, G. H., 1895, A geologic reconnaissance across Idaho: U.S. Geol. Survey Sixteenth Ann. report, pt. 2, 211-276.

Ellis, A. J., 1970, Quantitative interpretation of chemical characteristics of hydrothermal systems: in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1, Geothermics, Spec. Issue 2, p. 516-528.

- Fenneman, N.M., 1917, Physiographic division of the United States: Assoc. Am. Geographers Annals 6, p. 19-98.
- _____, 1931, Physiography of Western United States: New York, McGraw-Hill Book Co., 534 p.
- Forrester, J.D., 1956, Geology and mineral resources of the Salmon Quadrangle, Lemhi county, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 106, 102 p.
- Fournier, R.O., 1977. Chemical geothermometers and mixing models for geothermal systems: Geothermics, v. 5, no. 1-4, p. 41-50.
- Fournier, R.O. and Potter, R.W., II, 1978, A magnesium correction for the Na-K-Ca chemical geothermometer: U.S. Geol. Survey open file report 78-986, 24 p.
- Fournier, R.O. and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet steam wells: Am. Jour. Sci., v. 264, p. 685-695.
- Fournier, R.O., and Truesdell A.H., 1970, Chemical indicators of subsurface temperature applied to hot waters of Yellowstone National Park, Wyo., U.S.A.: in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Energy, Pisa, 1970, v. 2, Part 1, Geothermics, Spec. Issue 2; p. 529-535.

_____, 1973, An empirical Na-K-Ca geochemical thermometer for natural waters: Geochim, et. Cosmochim, Acta., v. 73, p. 1255-1275.

, 1974, Geochemical indicators of subsurface temperature, Part 2, Estimation of temperature and fracture of hot water mixed with cold: U.S. Geol. Survey Jour. of Research, v. 2, no. 3, p. 264-270.

- Fournier, R.O., White, D.E. and Truesdell, A.H., 1974, Geochemical indicators of subsurface temperature, Part 1, Basic Assumptions: U.S. Geol. Survey Jour. of Research, v. 2, no. 3, p. 259-263.
- Geothermal Task Force, 1975, Idaho Geothermal R&D project report for period 1-1-75 to 3-31-75: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1222.
- , 1975, Geothermal R&D project report for period 4-1-75 to 6-30-75: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1247.

, 1975, Geothermal R&D project report for period 7-1-75 to 9-30-75: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1281.

, 1975, Geothermal R&D project report for period 10-1-75 to 12-30-75: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1283.

- , 1976, Geothermal R&D project report for period 1-1-76 to 3-31-76: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1319.
- , 1976, Geothermal R&D project report for period 4-1-76 to 6-30-76: EG&G Idaho, Inc., Idaho National Engineering Laboratory, Energy Research and Development Administration, Idaho Operations Office, TREE report 1008.
- Gerick, J.A. and Simmons, George, 1977, Idaho potential for industrial utilization of geothermal energy: M.S. thesis, University of Idaho, Chem. Eng. Dept., 169 p.
- Gilbert, G.K., 1875, Lake Bonneville, in report upon the geographic and geologic exploration and survey west of the 100th meridian: Washington U.S Gov't. Printing Office, v. 3.

, 1890. Lake Bonneville: U.S. Geol. Survey Mon. 1, 438 p.

- Godwin, L.H., Haigler, L.B., Rioux, R.L., White, D.E., Muffler, L.J.P. Wayland, R.G., 1971, Classification of public lands valuable for geothermal resources: U.S. Geol. Survey Circ. 647, 17 p.
- Godwin, L.H. and Oberlindacher, Peter, 1967, Rev. July 1976, State of Idaho geothermal and classification map: Menlo Park, Calif., U.S. Geol. Survey Conserv. Div., Pacific Area.
- Greenberg, S.A. and Price, E.W., 1957, The solubility of silica in solutions and electrolytes: Jour. Phys. Chem. 61, p. 1539-1541.
- Grose, L.T., 1971, Geothermal energy: geology, exploration, and developments; Part 1: Colorado School Mines Research Inst. Min. Industries Bull. v. 14, no. 6, 14 p.
- Hale, L.A., 1969, abs., Phosphate exploration using gamma-radiation logs, Dry Valley, Idaho: Mining Eng., v. 21, no. 8, p. 35.
- Hamilton, W.S., 1965, Geology and petrogenesis of the Island Park caldera of rhyolite and basalt eastern Idaho: U.S. Geol. Survey Prof. Paper 504 C, p. Cl-C37.

_____, 1976, abs., Tectonic history of west-central Idaho: Geol. Soc. America, abs. programs, v. 8, no. 3, p. 378-379.

- Hardy, C.T. and Williams, J.S., 1953, Geologic map of the northern Wasatch Mountains, Utah and Idaho: in Intermountain Assoc. Petroleum Geologists Guidebook 4th Ann. Field Conf., Geology of northern Utah and southeastern Idaho, 1953, pl. 1.
- Harrison, J.E., Greggs, A.B. and Wells, J.D., 1974, Tectonic features of the Precambrian belt basin and their influence on post-belt structures: U.S. Geol. Survey Prof. Paper 866.
- Haskett, G.R., 1976, Thermal springs and wells, lineaments and circular feature map for Idaho, U.S. Bur of Rec. map, open file.
- Healy, J., 1970, Pre-investigation geological appraisal of geothermal fields: in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1, Geothermics, Spec. Issue 2, p. 571-577.
- Hill, D.P., 1963, Gravity and crustal structure in the western Snake River Plain, Idaho: Jour. Geophys. Research, v. 68, no. 20, p. 5807-5819.
- Hill, D.P., Baldwin, H.L. and Pakiser, L.C., 1961, Gravity, volcanism and deformation in the Snake River Plain, Idaho: U.S. Geol. Survey Prof. Paper 424-B, p. 248-250.
- Hill, D.P. and Pakiser, L.C., 1967, Seismic-refraction study of crustal structure between the Nevada test site and Boise, Idaho: Geol. Soc. America Bull., v. 78, p. 685-704.
- Holland, H.D., 1965, Some application of thermochemical data to problems of ore deposits, II. Mineral assemblages and the composition of oreforming fluids: Econ. Geology v. 60, no. 6, p. 1101-1165.
- , 1967, Gangue minerals in hydrothermal deposits: in Geochemistry of Hydrothermal Ore Deposits, H.L. Barnes, ed., Holt, Rinehart, and Winston, Inc.
- Hollenbaugh, K.M. and Nichols, C.R., 1975, Geological aspects of the national potential for non-electrical utilization of geothermal resources: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1213.
- Hoover, D.B. and Long, C.L., 1975, Audio-magnetotelluric methods in reconnaissance geothermal explorations: Proceedings, 2nd United Nations Symp. on the Development and Use of Geothermal Resources, San Francisco, v. 2, p. 1059-1064.

Hoover, D.B. and Tippens, C.L., 1975, Geothermal Investigations in Idaho, Part 2, A reconnaissance audio-magnetotelluric survey: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, p. 53-79.

Х

- Hoover, D.B., Brougham, G.W. and Clark, J.C., 1976, Station and traverse location map, audio-magnetotelluric data log and telluric profiles for Crane Creek known geothermal resource area, Idaho: U.S. Geol. Survey open file report no. 76-409.
- Hubbard, C.R., 1956, Geology and mineral resources of Nez Perce County, Idaho: Bur. of Mines and Geology, County report no. 1, 17 p.
- Huttrer, G. W. and Tamm, A.H., 1977, abs., Geothermal potential of three areas in southeastern Idaho and western Wyoming: Am. Assoc. Petroleum Geologists Bull., v. 61, p. 798.
- Hyde, Jay and Whelan, J.A., 1978, Field report, geothermal potential of the Mountain Home Air Force Base and Sailor Creek Air Force Range, Idaho. Appendix B, Item 8 to Air Force report CEEDO 78-47, Geothermal potential at U.S. Air Force Bases, 55 p.
- Jackson, D.B., 1974, Report on direct current soundings over a geothermal prospect in the Bruneau-Grandview area, Idaho: U.S. Geol. Survey open file report no. 74-240.
- Jobin, D.A. and Schroeder, M.L., 1964. Geology of the Conant Valley quadrangle, Bonneville County, Idaho: U.S. Geol. Survey Mineral Inv. Field Studies Map MF-277, 1 sheet.
- Karlo, J.F. and Koswor, P.R., 1975, abs., Thermal overprint as a possible effect on the gravity relations of the eastern Snake River Plain, Idaho: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 615-616.
- Keller, A.S., 1963, Structure and stratigraphy behind the Bannock thrust in parts of the Preston and Montpelier quadrangles, Idaho: Unpublished Columbia Univ., Ph.D. dissertation, 204 p.
- Keller, J.G., Miller, L.G., Miners, G.L. and Richardson, A.S., 1975, Geothermal space heating of a geothermal drilling rig: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission Idaho Operations Office, ANCR report 1241.
- Kettenacker, W.C., 1977, Two dimensional simulation of the Raft River geothermal reservoir and wells: EG&G Idaho, Inc., Idaho National Engineering Laboratory, Energy Research and Development Administration, Idaho Operations Office, TREE report 1085.
- Kharaka, Y.K. and Barns, Ivan, 1973, SOLMNEQ: Solution-mineral equilibrium computations: National Tech. Inf. Service pub. PB-215 899.82 p.

- Khattab, M.M.M., 1969, abs., Gravity and magnetic surveys of the Grouse Creek Mountains and the Raft River Mountains area and vicinity, Utah and Idaho: Diss. abs. v. 29, no. 12, part 1, p. 4720 B.
- Killsgaard, T.H., Freeman, V.L. and Coffman, J.S., 1970, Mineral resources of the Sawtooth primitive area, Idaho: U.S. Geol. Survey Bull. 1319-D.
- King, Clarence, 1878, Systematic geology: U.S. Geol. Explor. 40th Parallel, v. 1, p. 127-227.
- Kirkham, V.R.D., 1924, Geology and oil possibilities of Bingham, Bonneville, and Caribou Counties, Idaho: Idaho Bur. of Mines and Geology Bull. 8, 108 p.
- Kummell, Bernhard, 1954, Triassic stratigraphy of southeastern Idaho and adjacent areas: U.S. Geol. Survey Prof. Paper 254-H, p. 165-194.
- Kunze, J.F., 1974, Program plan for FY 1974: Aerojet Nuclear Corp., National Reactor Testing Station, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1139.
- , 1975, Idaho geothermal R&D project report for period 1-1-75 to 3-31-75: Idaho National Engineering Laboratory, ANCR report 1222, p. 17.
- Kunze, J.F. and Miller, L.G., 1974, Idaho geothermal R&D project report for period 12-16-73 to 3-15-74: Aerojet Nuclear Corp., National Reactor Testing Station, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1155.
 - ______, 1974, Idaho geothermal R&D project report for period 7-16-74 to 9-30-74: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1190.
- _____, 1974, Geothermal R&D project report for period 10-1-74 to 12-31-74: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1208.
- , 1974, Idaho geothermal R&D project report for 3-16-74 to 7-15-74: Aerojet Nuclear Corp., National Reactor Testing Station, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1175.
- Kunze, J.F., Miller, L.G. and Whitbeck, J.F., 1975, Moderate temperature utilization project in the Raft River Valley, Proceedings 2nd United Nations Symp. on the Development and Use of Geothermal Resources, San Francisco, v. 3, p. 1241-1245.
- Kunze, J.F. and Richardson, A.S., 1975, National program definition study for the non-electrical utilization of geothermal energy:

Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1214.

- Kunze, J.F., Richardson, A.S., Nichols, C.R. and Mink, L.L., 1975, Geothermal space heating project involving state owned buildings in Boise, Idaho: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1211.
- Kunze, J.F., Richardson, A.S., Hollenbaugh, K.M., Nichols, C.R. and Mink, L.L., 1975, Non-electric utilization project, Boise, Idaho: Proceedings 2nd United Nations Symp. on the Development and Use of Geothermal Resources, San Francisco, v. 3, p. 2141-2145.
- Kunze, J.F., Miller, L.G., Neill, D.T. and Nichols, C.R., 1974, Proposal for a demonstration geothermal power plant in the Raft River Valley: Aerojet Nuclear Corp., National Reactor Testing Station, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1138.
- Kunze, J.F. and Whitbeck, J.F., 1976, A plan for developing moderate temperature low salinity geothermal resources: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1318.
- La Fehr, T.R., 1963, abs., Gravity and crustal structure in eastern Snake River Plain, Idaho: Am. Assoc. Petroleum Geologists Bull., v. 47, p. 1772.
- La Fehr, T.R. and Pakiser, L.C., 1962, Gravity, volcanism and crustal deformation in the eastern Snake River Plain, Idaho: U.S. Geol. Survey Prof. Paper 450D, p. 76-78.
- Lindal, Baldur, 1973, Industrial and other applications of geothermal energy: in Earth Sciences 12, Geothermal Energy, A Review of Research and Development, The Unesco Press, H.C. Armstead, ed., p. 135-147.
- Lindgren, Waldemar, 1900, The gold and silver veins of Silver city, DeLamar, and other mining districts in Idaho: U.S. Geol. Survey Twentieth Ann. report p. 3, p. 65-256.
- Livingston, D.C. and Laney, F.G., 1920, The copper deposits of the Seven Devils and adjacent districts including Heath, Hornet Creek, Hoodoo, and Deer Creek: Idaho Bur. of Mines and Geology Pamph. no. 1, 105 p.
- Long, C.L., O'Donnell, J.E. and Smith, B.D., 1975, abs., Geophysical studies in the Island Park caldera, Idaho: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 623.
- Long, C.L., et. al., 1976, AMT station location map, Island Park KGRA, Idaho: U.S. Geol. Survey open file report no. 76-700-E.

Mabey, D.R., 1966, Relation between Bouguer gravity anamalies and regional topography in Nevada and the eastern Snake River Plain, Idaho: U.S. Geol. Survey Prof. Paper 550-B, p. 105-110.

, 1971, Geophysical data relating to a possible Pleistocene overflow of Lake Bonneville at Gem Valley, southeastern Idaho: U.S. Geol. Survey Prof. Paper 750-B, p. 122-127.

- , 1974, abs., Regional gravity and magnetic anomalies in southeastern Idaho and western Wyoming: Geol. Soc. Am. Spec. Paper 76, p. 212.
 - _____, 1976, Interpretation of a gravity profile across the western Snake River Plain, Idaho: Geology, v. 4, no. 1, p. 53-55.
- , 1978, Gravity and aeromagnetic anomalies in the Rexburg area of eastern Idaho: U.S. Geol. Survey open file report no. 78-382.
- Mabey, D.R., Ackerman, H., Zohdy, A.A.R., and others, 1975, abs., Geophysical studies of a geothermal area in the southern Raft River Valley, Idaho: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 624.
- Mabey, D.R. and Armstrong, F.C., 1962, Gravity and magnetic anomalies in Gem Valley, Caribou County, Idaho: U.S. Geol. Survey Prof. Paper 450-D, p. 73-75.
- Mabey, D.R., Peterson, D.L. and Wilson, C.W., 1973, abs., Regional gravity and aeromagnetic studies in southern Idaho: Geol. Soc. America, abs., v. 5, no. 6, p. 494.

, 1974, Preliminary gravity map of southern Idaho: U.S. Geol. Survey open file report no. 74-78, 1 map, scale 1:250,000.

- , 1975, abs., Regional gravity and magnetic studies of the Snake River Plain: Geol. Soc. America, abs. programs, v. 7, no 5, p. 624-625.
- Mabey, D.R. and Oriel, S.S., 1970, Gravity and magnetic anomalies in the Soda Springs region, southeastern Idaho: U.S. Geol. Survey Prof. Paper 646-E.
- Mabey, D.R., Hoover, D.B., O'Donnell, J.E., and Wilson, C.W., 1978, Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho, Geophysics, v. 43, no. 7, p. 1470-1484.
- Madsen, W.W. and Ingvarsson, I.J., 1975, Analysis of the binary cycle for geothermal power generation: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1245.

- Mahon, W.A.J., 1970, Chemistry in the exploration and exploitation of hydrothermal systems: in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 2, Geothermics, Spec. Issue 2, p. 1310-1322.
- Malde, H.E., 1959, Fault zone along northern boundary of western Snake River Plain, Idaho: Science, v. 130, no. 3370, p. 272.
- Malde, H.E., 1965, Snake River Plain: in the Quaternary of the United States: Princeton, N.M., Princeton Univ. Press, p. 255-263, illus., tables, geol. map.
- Malde, H.E., Powers, H.A. and Marshall, C.H., 1963, Reconnaissance geologic map of west-central Snake River Plain, Idaho: U.S. Geol. Survey, Misc. Geol. Inv. Map 1-373.
- Maley, S.T., 1973, Handbook of mineral law (1977): Idaho Dept. of Lands Adm. & Div. of Earth Resources, MMRC Publication, Boise, Idaho, 293 p.
- Mansfield, G.R., 1927, Geography, geology and mineral resources of part of southeastern Idaho: U.S. Geol. Survey Prof. Paper 152, 453 p.
- McGreevy, L.L. and Bjorklund, L.J., 1970, Selected hydrologic data, Cache Valley, Utah and Idaho: U.S. Geol. Survey open file release (duplicated as Utah Basic-Data Release 21), 51 p.
- McLain, David, 1978, Lava Hot Springs, Idaho: Geo-heat utilization center Bull. v. 14, no. 1, p. 3.
- Meinzer, O.E., 1924, Origin of the thermal springs of Nevada, Utah, and southern Idaho: Jour. Geology v. 32, no. 4, p. 295-303.
- Meuschke, J.L. and Long, C.L., 1965, Aeromagnetic map of part of the Lanes Creek quadrangle, Caribou County, Idaho: U.S. Geol. Survey Geophys. Inv. Map GP-490, 1:62,500.
- Miller, R.L., 1976, Corrosion Engineering in the utilization of the Raft River geothermal resource: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1342.
- Mink, L.L. and Graham, D.L., 1977, Geothermal potential of the west Boise area: EG&G Idaho, Inc., Idaho National Engineering Laboratory, Dept. of Energy, Idaho Operations Office, TREE report 1162, 34 p.
- Mitchell, C.M., Knowles, F.F. and Petrafeso, F.A., 1965, Aeromagnetic map of the Pocatello-Soda Springs area, Bannock and Caribou Counties, Idaho: U.S. Geol. Survey Geophys. Inv. Map GP-521.
- Mitchell, J.C., 1976a, Geothermal Investigations in Idaho, Part 5, Geochemistry and geologic setting of the thermal waters of the

Northern Cache Valley area, Franklin County, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 47 p.

, 1976b, Geothermal Investigations in Idaho, Part 6, Geochemistry and geologic setting of the thermal and mineral waters of the Blackfoot Reservoir area, Caribou County, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 47 p.

, 1976c, Geothermal Investigations in Idaho, Part 7, Geochemistry and geologic setting of the thermal waters of the Camas Prairie area, Blaine and Camas Counties, Idaho: Dept. of Water Resources, Water Inf. Bull. no. 30, 44 p.

, 1978, Idaho Dept. of Water Resources unpublished data.

Ŵ

- Mundorff, M.J., 1967, Ground-water in the vicinity of American Falls Reservoir, Idaho: Prepared in cooperation with the U.S. Bureau of Reclamation, Geol. Survey Water-Supply Paper 1846.
- Nace, R.L., et. al., 1961, Water resources of the Raft River Basin, Idaho-Utah: U.S. Geol. Survey Water-Supply Paper 1582, 138 p.
- Newcomb, R.C., 1970, Tectonic structure of the main part of the basalt of the Columbia River Group, Washington, Oregon and Idaho: U.S. Geol. Survey Misc. Inv. Map 1-587, 1 sheet.
- Newton, N.C. and Corcoran, R.E., 1963, Petroleum geology of the western Snake River Basin, Oregon-Idaho: Oil and Gas Investigations no. 1, Oregon Dept. of Geology and Min. Industries, 67 p.
- Nichols, C.R., Brockway, C.E. and Warnick, C.C., 1972, Geothermal water and power resource exploration and development for Idaho: Water Resource Research Inst. Tech. Completion Prep. Project NSF-Geothermal 47-517, 48 p.
- Norvitch, R.F. and Larson, A.L., 1970, A reconnaissance of water resources in the Portneuf River Basin, Idaho: Idaho Dept. of Reclamation, Water Inf. Bull. no. 16, 58 p.
- Oriel, S.S. and Platt, L.B., 1968, Reconnaissance geologic map of the Preston quadrangle, southeastern Idaho: U.S. Geol. Survey open file map, 2 sheets.
- Pakiser, L.C., 1960, abs., Gravity in volcanic areas, California and Idaho: Jour. Geophys. Research v. 65, no. 8, p. 2515.
- Pakiser, L.C. and Baldwin, H.L., 1961, Gravity, volcanism and crustal deformation in and near Yellowstone National Park: U.S. Geol. Survey Prof. Paper 424-B, p. 246-248.
- Pakiser, L.C. and Hill, D.P., 1963, Crustal structure in Nevada and southern Idaho from nuclear explosions: Jour. Geophys. Research, v. 68, no. 20, p. 5757-5766.

Pennington, W.D., Smith, R.B. and Trimble, H.B., 1974, A microearthquake survey of parts of the Snake River Plain and Central Idaho: Seismological Soc. Amer. Bull., v. 64, p. 307-312.

Peterson, D.L., 1974, Bouguer gravity map of part of the northern Lake Bonneville Basin, Utah and Idaho: U.S. Geol. Survey, Misc. Field Study Map, no. MF-627, gravity survey map 1:250,000.

, 1977, Principal facts for a gravity survey of Battle Creek-Squaw Creek Hot Springs and vicinity, northern Cache Valley, Idaho: U.S. Geol. Survey open file report no. 77-670.

- Peterson, D.L. and Oriel, S.S., 1970, Gravity anomalies in Cache Valley, Cache and Box Elder Counties, Utah, and Bannock and Franklin Counties, Idaho: U.S. Geol. Survey Prof. Paper 700-C, pp. Cl14-Cl18.
- Peterson, D.L. and Witkind, I.J., 1975, Preliminary results of a gravity survey of the Henry's Lake quadrangle, Idaho and Montana: Jour. Research, U.S. Geol. Survey, v. 3, no. 3, p. 223-228.
- Piper, A.M., 1923, Geology and water resources of the Goose Creek Basin, Cassia County, Idaho: Idaho Bur. of Mines and Geology Bull. no. 6, 48 p.

, 1925, Ground Water for irrigation on Camas Prairie, Camas and Elmore Counties, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 15, 46 p.

- Presser, T.S. and Barnes, Ivan, 1974, Special techniques for determining chemical properties of geothermal water: U.S. Geol. Survey Water Resource Investigations 22-74, 11 p.
- Prostka, H.J. and Embree, G.F., 1978, Geology and geothermal potential of the Rexburg area, southeastern Idaho, U.S. Geol. Survey open file report no. 78-1009.
- Prostka, H.J., Hackman R.J., 1974, Preliminary geologic map of the northwest 1/4, Driggs 1 and 2^o quadrangle, southeastern Idaho: U.S. Geol. Survey open file geologic map 74-105.
- Prostka, H.J. and Oriel, S.S., 1975, abs., Genetic models for Snake River Plain, Idaho: Geol. Soc. America, abs. programs, v. 7, no. 7, p. 1236.
- Ralston, D.R. and Chapman, S.L., 1968, Ground-water resources of the Mountain Home area, Elmore County, Idaho: Idaho Dept. of Reclamation, Water Inf. Bull. no. 4, 63 p.
- Rambo, W.L. and Blank, H.R., Jr., 1969, abs., Gravity survey of the Island Park caldera and vicinity, eastern Idaho: Geol. Soc. America Spec. Paper 121, p. 625.

- Renner, J.L., White, D.E. and Williams, D.L., 1975, Hydrothermal convection systems: in Assessment of Geothermal Resources of the United States - 1975, U.S. Geol. Survey Circ. 726, D.E. White and D.L. Williams, ed., 155 p.
- Richards, R.W., 1911, Notes on lead and copper deposits in the Bear River Range, Idaho and Utah: U.S. Geol. Survey Bull. no. 470, p. 117-187.
- Richards, R.W. and Mansfield, C.R., 1912, The Bannock overthrust, a major fault in southeastern Idaho and northeastern Utah: Jour. Geology, v. 20, p. 681-701.
- Rightmire, C.T., Young, H.W. and Whitehead, R.L., 1976, Geothermal Investigations in Idaho, Part 4, Isotopic and geochemical analysis of water from the Bruneau-Grand View and Weiser areas, southwest Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 28 p.

X

- Roberts, P.A., 1975, Fish culture utilization of geothermal energy: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations, ANCR report 1220.
- Ross, S.H., 1971, Geothermal potential of Idaho: Idaho Bur. of Mines and Geology Pamph. no. 150, 72 p., also in Proceedings, United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, v. 2, Part 2, Geothermic Spec. Issue 2, p. 975-1008.
- Russell, I.C., 1902, Geology and water resources of the Snake River Plain of Idaho: U.S. Geol. Survey Bull. no. 199, p. 192.
- Sacarto, D.M., 1976, State policies for geothermal development: National Conference of State Legislatures, Denver, Renewable Energy Resources Project, Patrick Binns, Dir., 94 p.
- Savage, C.N., 1958, Geology and mineral resources of Ada and Canyon Counties: Idaho Bur. of Mines and Geology, County report 3, 94 p.
- , 1962, Geomagnetics and geologic interpretation of a map of Eastern Bonner County: Idaho Bur. of Mines and Geol. Info. Circ. no. 15, 16 p.
- Sbar, M.L., Barazangi, Muawia, Dorman, James, Christopher, H.S. and Smith, R.B., 1972, Tectonics of the Intermountain Seismic Belt, Western United States Micro-earthquake seismicity and composite fault plane solution: Geol. Soc. American Bull. v. 83, no. 1.
- Schmidt, D.L. and Makin, J.H., 1962, Quaternary geology of the Bellevue area in Blaine and Camas Counties, Idaho: U.S. Geol. Survey open file report no. 625.

- Schmitt, R.C. and Spencer, S.G., 1977, Beneficial uses of geothermal energy, description and preliminary results for phase I of the Raft River irrigation experiment, TREE report 1048.
- Shaffer, C.J., 1975, Geothermal steam plant modeling and power tradeoff
 studies: Aerojet Nuclear Corp., Idaho National Engineering
 Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office,
 ANCR report 1295.
- Siever, Raymond, 1962, Silica solubility, 0-200^oC and diagenesis of siliceous sediments: Jour. Geol. v. 70, p. 127-150.
- Smith, C.L., 1966, Geology of the eastern Mount Bennett Hills, Camas, Gooding and Lincoln Counties, Idaho: Ph.D. dissertation, Univ. of Idaho, Moscow, 129 p.
- Smith, R.B. and Sbar, M.L., 1974, Contemporary tectonics and seismicity of the Western United States: Geol. Soc. America Bull., v. 85, p. 1205-1218.
- Smith, R.O., 1959, Ground water resources of the middle Big Wood River-Silver Creek area, Blaine County, Idaho: U.S. Geol. Survey Water-Supply Paper 1478, 64 p.
- Spencer, S.G., 1975, Environmental Report Deep geothermal test wells in the Raft River Valley: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1204.
- Staley, W.W. and Prater, L.S., 1945, Sulphur in Idaho: Idaho Bur. of Mines and Geology, Min. Resources report no. 2, 7 p.
- Stanley, W.D., 1972, Geophysical study of unconsolidated sediments and basin structure in Cache Valley, Utah and Idaho: Geol. Soc. America Bull, v. 83, no. 6, p. 1817-1830.
- Stearns, H.T. and Bryan, L.L., 1925, Preliminary report on the geology and water resources of the Mud Lake Basin, Idaho: U.S. Geol. Survey Water-Supply Paper 560-D, 134 p.
- Stearns, H.T., Crandall, Lynn and Steward, W.G., 1936, Records of wells on the Snake River Plain, southwestern Idaho: Water Supply Paper 775, 139 p.
- , 1938, Geology and ground-water resources of the Snake River Plain in southeastern Idaho: U.S. Geol. Survey Water Supply Paper 774, 268 p.
- Stearns, N.D., Stearns, H.T. and Waring G.A., 1937, Thermal springs in the United States: U.S. Geol. Survey Water-Supply Paper 679-B, p. 59-206.

- Stephenson, G.R. and Zugel, J.F., 1967, Seismic refraction studies in watershed hydrology: Proceedings of the Fifth Annual Engineering Geology and Soils Engineering Symp., Idaho Dept. of Highways.
- Stoker, R.C., 1975, Drilling plan Boise slim (2-3/8 in. diameter) holes demonstration space heating project 1975: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1261.

Stoker, R.C., 1977, unpublished data, EG&G Idaho, Inc., Idaho Falls.

- Stott, L.R., 1974, A gravity survey of a late Cenozoic graben in the Wyoming-Idaho thrust belt: Masters thesis, Univ. of Michigan.
- Swanberg, C.A., 1972, Vertical distribution of heat generation in the Idaho batholith: Jour. Geophys. Res., v. 77, p. 2508-2513.
- Swanson, J.R., 1977, Data file geotherm: U.S. Geol. Survey open file data, Menlo Park, CA.
- Swink, D.G. and Schultz, R.J., 1975, Conceptual study for utilization of an intermediate temperature geothermal resource: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1260.
- Torgerson, L.D. and Richardson, A.S., 1975, Feasibility review for geothermal conversion of existing H&V systems on the Boise geothermal space heating project: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1256.
- Trimble, D.E., 1976, Geology of the Michaud and Pocatello quadrangles, Bannock and Power Counties, Idaho: U.S. Geol. Survey Bull. 1400, p. 88.
- Trimble, D.E. and Carr, W.J., 1961, Late Quaternary history of the Snake River in the American Falls region, Idaho: Geol. Soc. America Bull, v. 72, no. p. 1739-1748.
- Truesdell, A.H. and Jones, B.F., 1974, WATEQ, a computer program for calculating chemical equilibia of natural waters: Jour. Research, U.S. Geol. Survey, v. 2, no. 2, March-April, 1974, p. 233-248.
- Tschanz, Charles, et. al., 1974, Mineral resources of the eastern part of the Sawtooth National Recreation Area, Custer and Blaine Counties, Idaho: U.S. Geol. Survey open file report.
- Umpleby, J.B., 1915, Ore deposits in the Sawtooth quadrangle, Blaine and Custer Counties, Idaho: in Contribution to Economic Geology: U.S. Geol. Survey Bull. 580, p. 221-249.
- Umpleby, J.B., Westgate, L.G. and Ross, C.P., 1930, Geology and ore deposits of the Wood River region, Idaho: U.S. Geol. Survey Bull. 814.

Urbin, T.C. and Diment, W.H., 1975, abs., Heat flow on the south flank of the Snake River rift: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 648.

6.....

- U.S. Geological Survey, 1971, Aeromagnetic map of southwestern Idaho, scale 1;500,000: U.S. Geol. Survey open file report.
- Vincent, K.R. and Applegate, J.K., 1978, A preliminary evaluation of the seismicity of southwestern Idaho and eastern Oregon: Implications for geologic engineering studies: Idaho Trans. Dept., Div. of Highways, Proc, Sixteenth Annual Eng. Geol. and Soils Eng. Symp.
- Walker, E.H., Dutcher, L.C., Decker S.O. and Dyer, K.L., 1979, The Raft River Basin, Idaho, Utah, As of 1966: A re-appraisal of the water resources and effects of ground-water development: U.S. Geol. Survey open file report, 116 p.
- Wallace, R.W., 1972, A finite-element planer flow model of Camas Prairie, Idaho: Univ. of Idaho Ph.D. dissertation.
- Walton, W.C., 1962, Ground-water resources of Camas Prairie, Camas and Elmore Counties, Idaho: U.S. Geol. Survey Water-Supply Paper 1609, 57 p.
- Waring, G.H. (revised by R.R. Blankenship and Ray Bentall), 1965, Thermal springs of the United States and other countries of the world a summary: U.S. Geol. Survey Prof. Paper 492, 383 p.
- Warner, M.M., 1972, Geothermal resources of Idaho: in Geothermal Overviews of the Western United States, Geothermal Resources Council Special report no. 1, p. 92-98.
 - , 1975, Special aspects of Cenozoic history of southern Idaho and their geothermal implications: in Proceedings 13th Annu. Eng. Geol. and Soils Eng. Symp. p. 247-270.
- , 1975, abs., Special aspects of Cenozoic history of southern Idaho and their geothermal implications: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 649-650.
- Watson, K., 1975, abs., Reconnaissance geothermal explorations at Raft River, Idaho, from thermal infrared scanning: Soc. Explor. Geophys., Annu. Int. Meeting, abs. no. 45, p. 66-67.
- Wells, M.W., 1971, Heat from the earth's surface: Early development of western geothermal resources: Jour. of the West, v. 10, p. 53-71.
- Whitbeck, J.R., 1974, Design concepts for flash steam systems for use with medium temperature geothermal water: Aerojet Nuclear Corp., National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1210.

, 1975, Review and tentative selection of a working fluid use with a medium temperature (300°F) geothermal resource: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1224.

- White, D.E., 1970, Geochemistry applied to the discovery, evaluation, and exploitation of geothermal energy resources, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Energy, Pisa, v. 1, Part 2, Geothermics, Spec. Issue 2, p. 58-80.
- White, D.E., Muffler, L.J.P. and Truesdell, A.H., 1971, Vapor-dominated hydrothermal systems compared with hot water systems: Econ. Geology, v. 66, no. 1, p. 75-97.
- White D.E. and Williams, D.L., ed., 1975, Assessment of geothermal resources of the United States 1975: U.S. Geol. Survey Circ. 726.
- Willden, R., 1965, Seismic-refraction measurements of crustal structure between American Falls Reservoir, Idaho, and Flaming Gorge, Utah: U.S. Geol. Survey Prof. Paper 525-C, p. 44-50.
- Williams, P.L., Mabey, D.R., Zohdy, A.A.R., Ackermann, Hans, Hoover, D.B., Pierce, K.L. and Oriel, S.S., 1975, Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, U.S.A.: Proceedings, 2nd United Nations Symp. on the Development and Use of Geothermal Resources, San Francisco, v. 2, p. 1273-1282.
- Wilson, M.D., Applegate, J.K., Chapman, S.L. and Donaldson, P.R., 1976, Geothermal investigations of the Cascade, Idaho area: Dept. of Geology and Geophysics, Boise State University report, 44 p.
- Witkind, I.J., 1975, Preliminary map showing known and suspected active faults in Idaho: U.S. Geol. Survey open file report no. 75-278.
- Woolard, G.P., 1958, Areas of tectonic activity in the United States as indicated by earthquake epicenter: Trans. Am. Geophys. Union, v. 39, no. 6, p. 1135-1149.
- Young, H.W., 1977, Reconnaissance of ground-water resources in the Mountain Home plateau area, southwest Idaho: U.S. Geol. Survey water resources investigations 77-108 open file report, 40 p.
- Young, H.W., Harenburg, W.A. and Seitz, H.R., 1977, Water resources of the Weiser River Basin, west-central Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 44.
- Young, H.W. and Mitchell, J.C., 1973, Geothermal Investigations in Idaho, Part 1, Geochemistry and geologic setting of selected thermal waters: Idaho Dept. of Water Resource, Water Inf. Bull. no. 30, 43 p.

Young, H.W. and Whitehead, R.L, 1975a, Geothermal Investigations in Idaho, Part 2, An evaluation of thermal water in the Bruneau-Grand View area, southwest Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 126 p.

X

_____, 1975b, Geothermal Investigations in Idaho, Part 3, An evaluation of thermal water in the Weiser area, Idaho: Idaho Dept. of X Water Resources, Water Inf. Bull. no. 30, 35 p.

- Zohdy, A.A.R., 1970, abs., mapping basaltic aquifers in southern Idaho by deep electrical soundings: Geophysics, v. 35, p. 1166.
- Zohdy, A.A.R. and Bisdorf, R.J., 1976, Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah: U.S. Geol. Survey open file report no. 76-92.
- Zohdy, A.A.R., Bisdorf, R.J. and Jackson, D.B., 1978, Simple total field and Schlumberger soundings near Sugar City, Idaho: U.S. Geol. Survey open file report no. 78.
- Zohdy, A.A.R., Jackson, D.B. and Bisdorf, R.J., 1975, Schlumberger soundings and total field measurements in the Raft River geothermal area, Idaho: U.S. Geol. Survey open file report no. 75-130.
- , 1975, abs., Exploring the Raft River geothermal area, Idaho, with the D.C. resistivity method: Soc. Explor. Geophys. Annual Int. Meeting, abs. no. 45, p. 27-28.
- Zohdy, A.A.R. and Stanley, W.D., 1972, abs., Profiles of deep electrical soundings on the Snake River Plain, Idaho: Geol. Soc. America, abs., v. 4, no. 6, p. 423-424.

APPENDIX

į.....

Basic	Data	Table	1	• •	•	••	••	•••	• •		• •	•	• •	••	••	•	••	•	• •	•	••	•	••	•	• •	201
Basic	Data	Table	2	••	•	••	••	••	•	••	••	•	••	••	••	٠	• •	•	• •	•	• •	•	••	•	6 4	223
Basic	Data	Table	3		•	••	••	• •	•	••	••	•	••	• •	• •	•	••	•		• •	••	•	••	•	o •	243
Basic	Data	Table	4	••	•	•••	••	••	•	••	••	•	••	••	• •	٠	••	•	• •	• •	• •	•	• •	•	• •	249
Preliminary Environmental Assessment, Idaho Geothermal Areas										333																

The basic data tables list information on thermal springs and wells so far as is presently known. In some instances the spring number given in the basic data tables may differ slightly from that found on the map, Geothermal Resources of Idaho, Plate 1, in pocket. The location given in the basic data tables represents a sample location while that given on the map represents that of the main discharge points. When a spring location is given in the text, it refers to the basic data tables.

BASIC DATA TABLE 1

(.....

-

BASIC DATA TABLE 1

CHEMICAL ANALYSES OF THERMAL WATER FROM SELECTED SPRINGS AND WELLS IN IDAHO (Chemical constitutents in milligrams per liter)

						¥.	T				- T									_				r				
Spring or Well Identification Number and Name	Sample Collecfion Uate	Ateasured Surface Temperature ^Q C	Reported Well Dopth below Land Surface (metars)	Discharge (1/min)	5111ca (5102)	Calcium (Ca)	Magnes)um (Mg)	Sodíum (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Carbonate (CO ₃)	Sultate (SV4)	Phosphate (PO ₄)	Chloride (CI)	Flouride (F)	Nitrate (NO ₃)	Baran (B)	Amamonia (NH ₃)	Specific Conductance (field)	pH (field)	Total Dissolved Solids (TDS)	Carbonate Carbonate	ate	Aikalinity as CaCOS	Percent Sodium (\$Na)	Sodium Absorption Ratio (SAR)	Cation-Anion Belance	Data Reference*
													Ada	County														
LILLIE COLLIAS WE IN IE IADCI	ELL 8/12/76	25	146.	0.	31	22.0	5.80	48	2,60	149.	0.0	33.00	0.02	17.0	0.70	1.00	0.0	0.0	342	0.1	234	79.	0.	122.	56.0	2.4	-0.198	12
NICHOLSON WELL IN 16 2508A1	8/ 2/76	25	162.	0.	38	17.0	2.60	30	2.30	119.	0.0	15.00	0.01	6.8	0.40	0.76	0.0	0.0	287	7.9	171	53.	0.	98.	53.8	1.8	-2.209	12
AGRI-CON WELL #4 IN 1E 36AAD1	0/0/0	22	0.	0.	46	377.0	105.00	444	124.00	0.	0.0	528.00	0.0	291.0	0.27	0,0	0.0	0.0	248	7.8	1915	1372.	1372.	0.	38.7	5.2	44.406	12
IDU LAND AND BEEF 1N 2E 6ABA1	5/ 6/54	25	123.	ο.	29	14.0	2.90	49	2,10	134.	0.0	22,00	0.0	16.0	1.10	0.0	0.0	0.0	299	8.3	201	47.	0.	110.	68.3	3.1	-1.900	9
TOM SEVINS WELL	0/ 0/ 0		0.	0.	25	224.0		889	99.00		0.0	1013.00	0.0		1.60	0.0	0.0	0.0	237	8.1	5431	584	0.	4910.	73.1	16.0	-40,613	12
GEORGE WHITMORE	•, •, -																											
	0/ 0/ 0	27	0.	0.	30	377.0	44.00	841	99.00	6784.	0.0	1363.00	0.0	390,0	0,56	0.0	0.0	0.0	294	7.6	6500	1122.	0.	5559.	59.4	10.9	-42.094	12
WARREN TOZER WELL 2N 3E 10BCB1	8/ 3/76	20	144.	0.	32	17.0	4.20	14	1.10	77.	0.0	16,00	0.01	7.3	0.30	1.30	0.0	0.0	193	7.9	131	60.	0.	63.	33.3	0.8	-0.592	12
ST. TRANS. DEPT. WELL	0 / T / TC		~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0		07 0	4 00	10	1 60	110		3 60	0.05		0.70	2.00			232	7 4	165	78.	0	0.9	14 2	0.0	0.007	
2N 3E 28CAC1	8/ 3/76	22	297.	0.	44	23.0	4.90	19	1.00	119.	0.0	7.60	0.05	4.6	0.30	2.00	0.0	0.0	232	/.4	100	/0.	0.	30.	34.2	0.9	0.883	12
FERD KOCH WELL 3N 2E 2CBD1	8/10/77	49	Ο.	76.	39	3.0	0.10	720	0.60	89.	15.00	25.00	0.0	7,3	3.10	0.0	0.0	0.0	320	9.0	856	8.	0.	98.	99.4	111.5	63.400	10
BEARD WELL 3N 2E ITABCT	10/21/77	76	0.	568.	80	5.5	0.0	89	1.40	120.	19.00	21.00	0.01	3.1	17.00	0.02	0.0	0.09	420	8.5	295	14.	0.	130.	92,6	10.5	1,851	10
WARM SPRINGS WATER DIST 3N 2E 12COD1	5/31/72	75	122.	727.	78	2.0	0.0	75	1.30	141.	4.00	23.00	0.01	9.3	24.00	0.08	0.0	0.0	386	7.3	286	5.	0.	122.	96,1	14.6	-13,543	3
OLD PENITENTIARY 3N 2E 13ACB1		59	266.	2649.	42	1.6	0.01	77	0.78	100.	20.00	ŭ.O	0.32	8.9	18.00	0.0	0.05	0,50	402	8.7	217	4.	0.	115.	97.1	16.7	-1,219	10
BOISE WATER CORP. WELL 3N 2E 36ABC1	7/29/77	21	0.	0.	25	19.0	0.80	22	1.10	97.	0.0	14.00	0.0	5.9	0.50	0.28	0.0	0.03	204	7.3	134	51.	0.	79.	47.9	1.3	-3.582	12
DENNIS FLAKE WELL 4N 1E 24DCC1	L 8/9/77	27	310,	95.	60	22.0	2.10	42	5.40	200.	0.0	3.10	0.12	2.6	0.60	0.0	0.0	0.11	310	7.6	236	64.	ο.	164.	56.5	2.3	-3,507	10
CARL RUSH WELL 4N 2E 4BDC1	8/ 9/77	29	0.	0,	27	34.0	3.10	30	1.20	150.	0.0	36.00	0.0	3.9	2.00	0.0	0.0	0.02	290	7.3	210	98,	0.	123.	39.7	1.3	-2.235	10
EDWARDS GREENHOU: WELL 4N 2E 29ACD1	SE 5/31/72	47	364.	0.	46	4.5	0.30	55	2.40	145.	2.00	21.00	0.02	4.4	10.00	0.06	0.0	0.0	311	7.1	216	12.					-13.927	3

A CONTRACTOR OF A CONTRACT OF A CONTRACT

SHADOW VALLEY WELL 5N 1E 25BCC1 8/ 8/77 28 92.1703	. 38 38.0 4	4.30 28	3.60 150.	0.0 54.00	0.0	4.1 1.80	0.0	0.0	0.04	340	8.6	245 112	. 0.	123.	34.2	1.1	-3.744	10
8EN STADLER WELL 5N 1E 260C01 8/ 9/77 29 210, 3406	. 32 22.0 1	1.90 37	3.50 110.	0.0 47.00	0.0	4.8 3.50	0.0	0.0	0.00	2799	7.9	205 63			54.5			10
JULIUS JEKER WELL 5N TE 35ACAT 5/31/72 40 0. 83	. 33 4.3 0	0.0 49	3,20 112,	1.00 23.00	0.03	4.9 11.00	0.05,	0.0	6.0	265	7.5	184 11	. 0.				-11.722	3
JERRY DAVIS WELL #1 IN IN 7ACC1 8/12/76 21 180. C	. 45 52.0 20	0.00 50	6.80 171.	0.0 100.00	0.0	43.0 0.29	4,20	0.0	0.0	656	8.0	405 212	. 72	140.			3.093	14
CLAYER FORSGREN WELL IN 1W 7BCC1 8/25/75 20 38. C	43 45.0 16	6.00 60	6,10 264.	0.0 110.00	0.0	27.0 0.30	0.0	0.0	0.0	643		439 186						
IRVIN BOEHLKE WELL IN IW 80BA1 10/ 6/77 22 0.3028		8.80 46	4.70 110.	0.0 130.00	0.04	55.0 0.20	1.20	0.0	0.07					,	40.2		-6.529	9
SHANE BUES WELL										610	1.5	405 211	. 121.	90.	31.6	1.4	1.326	10
IN 1W 15DAA1 8/12/76 23 165, 0 TERRY TLUCEK	. 47 20.0 7	7,00 39	4.90 130.	0.0 37.00	0.01	15.0 0.30	1.20	0.0	0.0	331	6.1	235 79.	. 0.	107.	50.0	1_9	0.233	12
WELL #1 IN IW 220001 0/0/0 23 0. (. 37 429.0 56	6.00 591	99.00 6589.	0.0 970.00	0.0	340.0 0.23	0.0	0.0	0.0	270	7.4 5	762 1301	. 0.	5400.	47.4	7.1	-43.501	12
BISCHOF REALTY WELL 3N 1W 25ADD1 8/25/77 21 0. (. 32 89.0 20	0.00 58	2.70 310.	0.0 140.00	0.0	26.0 0.30	3.10	G.O	0.07	508	7.0	523 304.	. 50.	254.	29.1	1.4	-0.772	12
LETHA FISHER WELL 5N 1W 160AB1 10/ 7/75 20 58. 0	. 62 34.0 8	8,10 25	9.30 237.	0.0 16.00	0.0	4.2 0.50	0.0	0.0	Ů.O	360	1.9	275 118.	. 0.	194.	29.5	1.0	-8,588	g
HARRY CHARTERS WELL																		-
	• 43 16.0 0	6,90 48	4.70 133.	0.0 41.00	0.01	15.0 0.50	1.40	0.0	0.0	346 (3.2	241 68.	0.	109.	58.4	2.5	-0.253	12
INITAL BUTTE WELL IS IW 366BCI 0/4/76 23 160. (. 32 19.D	5,70 54	4.60 114.	0.0 62.00	0.01	20.0 0.50	3.20	0.0	0.0	386 (3.1	257 71.	ο.	93.	60.5	2.8	0.149	12
					Adams	County												
WHITE LICKS H S Ton 2E 33BCC1S 6/29/72 65 0, 114	. 110 39.0 (0.30 420	17.00 71.	0.0 660.00	0.05	150.0 8.80	0.07	0.0	0.0	502	7.6 1	440 99	40.	58.	88.4	16.4	2.584	3
KRIGBAUM H S 19N 2E 2200A1S 6/29/72 43 D. 15	. 73 5.3 (û.20 140	3.30 81.	9.00 190.00	0.03	26.0 2.80	0.05	0.0	0.0	66B	8.8	489 14	. 0.	81.	94.3	16.2	-0.284	3
ZIM'S RESORT 20N IE 260DAIS 6/29/72 65 0. (. 64 12.0	0.10 190	3.60 47.	9.00 330.00	0.03	32.0 2.30	0.07	0.0	0.0	940	8.5	666 30	. 0.	54.	92.2	15.0	-0.167	3
STINKY W S 21N 1E 23A8A1S 10/19/77 30 0. 30	. 55 10.0	1.70 130	3,80 81.	1.00 230.00	0.02	24.0 1.80	0.0	0.0	0.88	680	8.4	497 32	. 0.	68.	88.5	10.0	-4.625	10
BOULDER OREEK RESORT 22N 1E 34DAD15 10/19/77 26 0. 19	. 43 17.0 {	0.0 50	0.40 46.	34,00 40,00	0.02	5.0 1.00	0.03	0.0	0.0	240	9.4	213 42	. 0.	94.	71.7	3.3	1.831	10
STARKEY H S 18N 1W 3408015 6/27/72 56 0.49:	. 56 4.5	0.0 86	1,60 60.	6.00 159.00	0.03	14.0 0.90	0.05	0.0	0.0	502	8.6	348 11	. 0.	59.	93.4	11.2	-8,700	3

*DATA REFERÈNCE : 1= ROSS,1971 3= YOUNG AND MITCHELL,1973 5= YOUNG AND MITCHELL,1973 5= YOUNG AND WHITEHEAD,1975B 7= MITCHELL,1976B 9= SWANSON,1977 11= TSCHANG,ET.AL.,1974 13= STOKER,UNPUBLISHED,1977 14= YOUNG,1977 14= YOUNG,1977

-203-

.....

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

Magnesius auguination Sample Colongerion Distered Surface Mestered Surface Mestered Surface Mesterature oc Discharge (motion Reported Weit Depth Betards Surface (notion (calum Magnesiu	Cerbonate Be Non-Carbonate See Al kal in i ty as CaCO3	Percent Sodium (gNa) Sodium Absorption Ratio (SAR)	Cation-Anion Balance Data Reference
--	---	--	--

													į	Bannoc	<u>k Cou</u>	nty													
	SHOAL SUBDIVISIO 55 34E 260BA1		26	72.	378.	38	93.0	39.00	176	25.00	425.	0.0	156,00	0.0	228.0	2,70	6.90	0.0	0,0	0	0.0	973	392.	44.	348.	47.4	3.9	-2.248	10
	ROBERT BROWN WELL 55 34E 26DAB1	∟∦1 7/27/72	41	177.	57.	20	70.0	25.00	150	21,00	478.	0.0	95.00	0.0	87.0	3.20	0.02	0.0	0.0	1170	7.7	706	277.	0.	392.	51.7	3.9	0.700	3
I	DEAN MORRIS WELL 95 36E 3CDB1		22	8.	٥.	25	44.0	9.20	13	1.90	143.	0.0	13.00	0.0	24.0	0,10	0.0	0.0	0.0	349	7.2	200	148.	30.	117.	15.9	0.5	3.373	9
	LAVA H S 95 38E 2100A15	8/15/72	45	0.	0.	32	120.0	32.00	170	39.00	542.	0.0	110,00	0.04	190.0	0.70	0.38	0,0	0.0	1579	6.6	960	431.	0.	444.	43.5	3.6	1,310	3
	DOWNATA H S 125 37E 12CCD1S	5/17/72	43	0,	1855.	29	43.0	15.00	20	9.10	214.	0.0	18.00	0,0	20.0	0.40	0.50	0.0	0.0	413	6.7	260	169.	0,	175.	19.4	0.7	0.135	3
													В	ear La	ke Co	untu													
	PESCADERO W S 115 43E 36BDA1S	9/12/73	26	0.	38.	31	188_0	65.00	63	14.00	658.	0.0	225.00	0.0	83.0	1,80	0.14	0.01	0,26	169	6.4	994	736.	197.	539.	15.4	1.0	-0.229	10
	BEAR LAKE H S 195 44E 15CCA15	5/ 9/72	48	0.	0.	35	210.0	55.00	180	61.00	256.	0.0	800.00	0.01	79.0	7.10	0.56	0.0	0.0	2039	6.6	1553	750.	540.	210.	32.1	2,9	1,937	3
														Bingha	<u>m Cou</u>	nty													
	YANDELL SPRINGS 35 37E 31D8B15	8/18/77	32	0.	568.	22	150.0	35.00	22	7,20	240.	0.0	330.00	0,02	29.0	0.90	0.0	0.0	0.05	950	7.1	714	518.	321.	197.	8,3	D.4	-0.755	10
	ALKALI FLAT W S 4S 38E 280001S	8/18/77	34	0.	0.	19	210.0	68,00	34	37,00	640.	0.0	340.00	0.03	17.0	0.90	0.0	0.0	1.10	1529	6.6	1040	804.	279.	524.	8.0	0,5	1.084	10
														Blaing	e Coun	ty													
	HAILEY H S																												
	2N 18E 1808B1S	7/11/72	59	0.	265.	85	2.0	0.0	68	1,50	88.	0.0	51.00	0.02	10.0	12.00	0,07	0.0	0.0	337	3. 7	272	5.	0.	72.	95.5	13.2	-5,164	3
	CLARENDON H S 3N 17E 270CB1S	7/11/72	47	0.	378.	80	2.2	0,10	81	1.70	29.	30,00	68,00	0.01	11.0	15.00	0.06	0.0	0.0	400	8 . Z	303	6.	0.	74.	95,6	14.5	~4.353	3
	GUYER H S 4N 17E 15AAC1S	7/11/72	71	0.	3785.	86	2.9	0.0	84	2.10	51.	25.00	72.00	0,02	11.0	16,00	0,06	0.0	0.0	421	8.0	324	7.	ο.	83.	94.8	13.6	-5,779	3
	WARFIELD H S 4N 17E 318BC1S	10/13/77	62	0.	378.	97	2.6	0.0	67	1.90	55.	37.00	35,00	0.01	8.1	14.00	0.0	0.0	0.01	370	8.7	289	6.	0.	107,	94,2	11.4	-11.009	10
	EASLEY H S		* 7	0	60							20.00	46.00			.													

CHALLEL FLOODECLS 0/ 0/ 0 37 0. 68. 54 3.8 0.10 69 0.60 24. 28.00 46.00 0.0 5.9 21.00 0.0 0.0 0.0 0 9.2 240 10. 0. 66. 93.4 9.5 -5.416 11 RUSSIAN JOHN H S 6N 16E 33CCAIS 0/ 0/ 0 35 0. 4. 54 2.3 0.10 70 0.60 25. 29.00 46.00 0.0 6.5 19.00 0.0 0.0 0.0 0.0 0 8.8 239 6. 0. 69. 95.7 12.3 -5.364 11 MAGIC H S LANDING WELL 1S 17E 23AAB1 6/21/72 71 79. 57. 100 22.0 1.30 330 19.00 766. 0.0 60.00 0.04 83.0 13.00 0.06 0.0 0.0 1499 6.4 1005 60. 0. 628. 89.5 18.5 -2.466 8

د **لايد ف**ر مع م<u>لك ت</u>قض . . .

77-7

-

.

15 21E 1400C15 8/ 8/72 52 0. 1310. 28 56.0 11.00 63 17.00 360. 0.0 28.00 0.01 14.0 1.70 0.05 0.0 0.0 653 7.3 395 185. 0. 295. 39.9 2.0 -0.676 - 1 MILFORD SWEAT H S 15 22E IDAB15 8/ 8/72 44 0, 76. 26 60.0 12.00 48 8.90 294. 0.0 63.00 0.03 6.5 2.30 0.0 0.0 0.0 591 7.3 371 199 0. 241. 33.2 1.5 -1.280 3 Boise County TWIN SPRINGS 4N 6E 248CB1S 7/ 0/55 67 0. 0. 90 2.0 0.0 52 0.80 22, 37.00 22.00 0.0 2.0 4.80 0.0 0.0 0.0 230 9.4 221 5. ٥. 80, 95,0 10,1 0,017 1 DANSKIN CREEK H S BN 5E 1BCC15 6/ 8/72 40 0. 8, 48 2,4 0,10 66 0,90 85, 1.00 42,00 0,01 5.1 3.10 0.25 0.0 0.0 317 8.8 210 0, 71, 95,0 11.3 6,821 б. - 3 HOT SPRINGS CAMPGROUND 8N 5E 6DCB1 10/20/77 48 0. 19. 64 3.9 0.0 73 1.30 71. 26.00 24.00 0.01 7.3 15.00 0.01 0.0 0.10 370 8.9 249 10. 0. 102. 93.3 10.2 -1.881 10 DONLAY RANCH H S 8N 5E 10B001S 8/18/72 55 0. 265. 59 1.9 0.0 68 1.10 40. 30.00 38.00 0.02 5.6 14.00 0.04 0.0 0.0 336 8.6 257 0. 63. 96.0 13.6 -4.113 5. 3 DEER H S 9N 3E 258AC1S B/ 4/72 80 0. 76. 120 4.5 0.0 130 4.80 160. 0.0 79.00 0.02 34.0 13.00 0.04 0.0 0.0 600 8.1 464 11. 0. 131. 94.2 16.9 0.585 3 KIRKHAM H S 9N BE 320AB15 7/14/72 65 0. 946. 69 1.9 0.10 66 1.30 46. 21.00 45.00 0.02 3.0 15.00 0.06 0.0 0.0 322 7.8 244 5. 0. 73. 95.5 12.6 -4.389 3 BONNEVILLE K S ION 10E 318CC15 8/18/72 85 0. 1374. 100 2.2 0.10 67 2.90 58. 21.00 52.00 0.03 7.2 17.00 0.02 0.0 377 B.1 0.0 297 0. 83, 93,8 12,0 -10,961 6. - 3 Bonneville County FALL CREEK MINERAL SPG IN 43E 9C8BIS 8/10/72 25 0, 265. 11 440.0 96.00 1110 120.00 1200. 0,0 390.00 0.04 1900.0 1.70 0.05 0.0 0.0 7949 6.3 4658 1493. 509. 983. 59.5 12.5 -0.170 3 BROCKMAN DREEK W S 25 42E 2600015 10/19/76 35 0. 49. 24 150.0 41.00 2100 34.00 1900. 0.0 2502.00 0.0 590.0 2.60 0.0 0.0 0.0 8649 6.4 6377 543. 0. 1557. 88.6 39.2 1.491 9 ALPINE W S 25 45E 19CAD1S 9/27/77 37 0. 38, 40 560.0 100.00 1500 180.00 880. 0.0 1000.00 0.53 2800.0 2.70 0.05 0.0 5.20 10499 6.5 6615 1808. 1087. 721. 61.5 15.3 -3.802 10 Butte County LEWIS ROTHWELL 3N 25E 320001 8/ 9/72 41 110. 45. 55 74.0 24.00 72 21.00 322. 0.0 170.00 0.02 21.0 3.20 0.12 0.0 0.0 898 6.3 598 283, 19, 264, 33,5 1,9 -1,295 3 BUTTE CITY WELL #1 3N 27E 9ABB1 8/ 9/72 35 145. 0. 33 64.0 24.00 31 7.70 315. 0.0 56.00 0.02 22.0 0.80 0.98 0.0 3 0.0 648 7.2 394 258, 0. 258. 20.1 0.8 -2.174 Camas County WARDROP H S IN 13E 32ABB15 6/20/72 66 0. 731. 73 1.4 0.0 54 3.00 51. 37.00 12.00 0.03 5,1 4,10 0,07 0,0 0.0 252 8.0 3 214 3. 0. 103. 94.1 12.6 -3.553 HOT SPRINGS RANCH 1N 13E 32ABC15 10/31/73 60 0. 0. 81 1.0 0.0 56 0,78 45, 36,00 11,00 0.0 5.7 3.70 0.03 0.0 0.00 226 9.2 217 97. 97.2 15.4 -0.719 8 2. 0. HOT SPRINGS RANCH IN 13E 32ABC2S 10/31/73 67 ο. 95. 78 1.0 0.0 56 2.00 58. 30.00 12.00 0.0 5.7 3.30 0.70 0.044 0.0 0.0 215 9.2 217 8 2. 0. 98. 96.0 15.4 HOT SPRING RANCH IN 13E 32ABC35 10/31/73 64 0. 0. 78 1.2 0.12 55 1.20 54. 32.00 11.00 0.0 5.7 3.20 0.09 0.0 0.0 220 9.2 214 98. 96.0 12.8 -0.638 я 3. 0. FLK CREEK H S 1N 15E 14ADA1S 10/30/73 55 0. 95. 82 2.2 0.12 91 2.00 65. 2.40 44.00 0.0 23.0 18.00 0,10 0.0 0.01 333 8.9 296 6. Ó. 57. 95.9 16.2 5,929 8 ELK CREEK H S IN 15E 14ADA2S 10/30/73 55 0. 6. 83 2.4 0.12 92 1.60 96. 1.20 44.00 0.0 23.0 16.00 0.10 0.08 0.01 376 8.9 310 0. 81. 95.9 15.7 1.546 8 б.

MAGIC H S LANDING WELL 15 17E 23AAB1 10/29/73 72 79, 38, 105 20.0 0,15 321 23.00 735. 0.0 52.00 0.01 85.0 10.00 0.56 0.06 0.08 1149 6.9 978 51. 0, 602. 89.7 19.6 -1.595

3

-205-

. :

CONDIE H S

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

tt.					Hardness		
rection ble stature stature stature Hed Well Dep Margers) tation (meters) ca	sium bun bun bun bun bun bun bun bun bun bun		t de	d) (d	te bonati		ota -ence*
Spring or Well Line 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	alc (Mc Calls (Mc Calls) (Mc	Bicer (HC Carbo (CO (Suffa (SO4 (Phosp	Chlour (C1 (C1 (F) (N) (N) Boron (B)	Ammon (NH3 Spe Condu	e e e e	20 2° ta t≚a	Da Refer

	<u>Camas</u> <u>County</u> (cont'd.)																								
ELK CREEK H S IN 15E 14ADA3S 10/30/73	45	0.	8.	78	2.2	0.0	92	1.60	96.	2,40	48.00	0.01	24.0 17.00	0,86	0.03	0,01	418	8.9	313	5.	0.	83.	96.4 17.1	-1.055	8
LIGHTFOOT H S 3N 13E 7DCA1S 10/14/77	56	0.	38.	72	1.7	0.0	82	2.00	110.	16.00	26.00	0.01	16.0 13.00	0.03	0.0	0.11	460	8.7	282	4.	۵.	117.	96.3 17.3	-4.026	10
BAUMGARTNER H 5 3N 12E 7DCD1S 10/14/77	44	0.	76.	44	2.5	0.0	54	0,80	80.	11,00	22,00	0.01	15.0 6.50	0.27	0.0	0.07	270	8,5	195	6.	0.	84.	94.2 9.4	-7.960	10
WORSWICK H S 3N 14E 28CAA1S 7/10/72	81	0.	1764.	96	1.8	0.0	69	1.90	51,	28,00	35,00	0,02	5.0 15.00	0.07	0.0	0.0	328	7,3	276	4.	0.	88.	95.6 14.2	-4.773	3
SHEEP H 5 15 12E 16CAB15 10/31/73	49	0.	0.	68	1.0	0.0	49	0.78	0.	57.00	7.70	0.0	4.2 2.00	0.04	0.0	0,00	208	9.9	189	2.	0,	95.	96,8 13,5	-2,290	8
WOLF H S 1S 12E 16CBA1S 10/31/73	45	0.	0.	68	0.8	0.0	49	0,39	5,	51,00	8,20	0.0	3.2 1.90	0.06	0.0	0,00	206	9.9	184	2.	0.	89.	97.7 15.1	0,706	8
KEITH STROM WELL 15 12E 31CBC1 6/20/72	31	122,	57.	36	0.6	0.0	32	0, 30	31.	26,00	3,30	0.04	2.1 0.80	0.03	0.0	0.0	150	9.2	116	۱.	0.	69,	97.4 11.4	-4,176	3
LEE BARRON WELL #1 15 13E 220001 11/ 1/73	26	58.	4.	78	3.0	0.61	86	Z.40	193.	0.0	5.30	0.03	10.0 9.80	0.0	1,30	0.02	450	7.8	290	10	0	150	07 6 11 0	0 899	P
LEE BARRON WELL #2	20	50.	••	,0	9	0.01	00	2,40		0.0	5.50	0.05	1010 9100	0.0	14.20	0.02	400	1.0	290	10.	0.	158.	93.5 11.B	-0.888	8
1S 13E 2700B1 11/ 1/73	35	58.	303.	83	3.0	0.12	94	1.60	205.	0.0	5,80	0.02	11.0 11.00	0,02	0,48	0.02	491	8.0	310	8,	0.	168.	95.3 14.5	-1,231	8
LEE BARRON WELL #3 1\$ 13E 27CCB2 11/ 1/73	45	120.	0.	64	2.2	0.12	99	2.00	215.	0.0	9.10	0.03	12.0 10.00	0.02	0.06	0.0	411	8.5	304	б,	0.	176.	96.2 17.6	-1.234	8
BARRON H S 15 13E 34BCB15 11/ 1/73	72	0.	38.	84	3.6	0.12	108	3.10	227.	0.0	13.00	0.01	13.0 13.00	0.0	0.05	0.02	335	8.2	349	9.	0.	186.	94.6 15.3	-0.881	8
LEE 8ARRON WELL #4 1S 13E 34BCC1 11/ 1/73	49	0.	0.	84	3.4	0.12	106	2.70	211.	0.0	12.00	0.0	14.0 13.00	0.19	0,02	0.02	347	8.3	339	9.	0.	173,	94.9 15.4	0.463	8
FAIRFIELD CITY WELL 1S 14E 9DAA1 8/ 9/77	21	0.	814.	26	5,6	1.10	35	0.60	88.	0.0	6,30	0.0	2.6 2.40	0.0	0.0	0.0	172	8.0	122	18.	0.	72.	79.8 3.5	3.036	12

 LEGNARD WELL #1 1N 2M 5ADD1
 SAC7/F
 2Z
 23
 0
 28
 45.0
 7.80
 57.0
 1.40
 0.00
 72.00
 0.00
 30.0
 0.30
 0.00
 0.00
 1.80
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00
 25.00

20 N

T. T. T.

and the construction of the second second

WESLEY SCHOBER WELL TEULE SUTTICE THE ALL 2010 THE 30 THE 0.0 650 8.7 401 9. 0. 213. 96.5 18.9 -6 272 10 CANNON FARMS WELL #4 ZN 3W 220CC1 5/ 6/54 30 0. 2952, 59 40.0 11.00 55 6.40 242, 0.0 62.00 0-0 7.9 0.50 0.0 0.0 0.0 509 8.2 360 145. 0. 198. 43.8 2.0 -0.551 0 CALDWELL MUNC. PARK WELL 4N 3W 28AAB1 10/ 5/77 28 67. 568. 49 11.0 0.10 5.4 1,50 0.04 0.0 0.09 280 7 7 203 79 0. 131. 79.1 4.4 10 53 2,00 160. 0.0 2.60 0.04 -0.058 CALDWELL CITY WELL 4N 3W 35ABD1 10/ 5/77 20 131. 3028. 29 19.0 1.80 37 1.60 140. 0.0 11.00 0.05 250 7.6 176 55. 0.04 6.9 0.80 0.30 0.0 0. 115. 58-6 2.7 -1.773 10 Caribou County BLACK FOOT PIVED W S 55 40E 148C015 9/27/73 26 0. 4. 33 674.0 245.00 147 217.00 2357. 0.0 1132.00 0.0 110.0 3.70 0.06 1.30 0.42 470 6.2 3720 2689. 758. 1932. 9.7 1.2 0.210 8 BLACKFOOT RESERVOIR W S 28.0 2.30 0.03 0.01 0.04 146 6.2 925 817. 34. 783. 6.3 0.4 -0.559 7 65 41E 1ADC1S 10/11/73 23 0. 568. 25 232.0 58.00 26 14.00 956. 70.00 0.0 0-0 CORRAL OREEK WELL #1 41.0 2.30 0.16 1.20 0.52 4519 6.5 3670 2830, 499. 2331, 6.6 0.8 7 0.383 65 41E 198AA1 9/12/73 42 40, 598, 28 701.0 263.00 101 237.00 2845. 0.0 898.00 0.0 CORRAL OREEK WELL \$2 9/12/73 41 37. 397. 30 620.0 246.00 97 242.00 2763. 0.0 908.00 0.01 43.0 3.50 0.24 1.90 0.47 4519 6.8 3548 2558. 294. 2264. 6.9 0.8 -3-111 7 65 41E 198A81 CORRAL CREEK WELL #3 6S 41E 198AC1 9/12/73 41 56. 79. 30 697.0 263.00 101 233.00 2723. 0.0 896.00 0.52 4589 6.6 3601 2820, 589, 2231, 6.6 0.8 1.731 7 0.0 40.0 2.40 0.14 1.30 CORRAL CREEK WELL #4 0.53 4399 6.6 3568 2660, 363, 2297, 6.8 0.8 -1-674 7 65 41E 198AD2 9/12/73 36 64. 42. 30 649.0 253.00 40.0 2.50 1.20 99 233-00 2803. 0.0 884.00 0.0 0.15 PORTNEUF RIVER W 5 1379 962. 93. 869. 14.5 1.1 -0.906 10 81 62.00 1060. 0.0 270.00 0.06 62.0 0.80 0-0 0.31 2399 6.2 75 38E 26CBD15 8/23/77 34 0. 189. 38 280.0 64.00 0.0 SODA SPRINGS GEYSER 0.05 1959 6.5 3207 2917, 776, 2141, 0.9 0.1 -0.258 7 95 41E 12ADD15 9/ 2/73 28 **0**. 4. 35 851.0 193.00 12 23.00 2613. 0.0 801.00 0.0 5.7 1.60 0.21 0_06 Cassia County SIX S RANCH WELL #1 IIS 25E 11CCA1 7/26/72 60 136, 7911, 60 8,2 0,50 110 3,90 125, 0,0 59.00 0.0 55.0 14.00 0.0 0,0 0,0 574 7.7 372 23. 0. 102. 89.7 10.1 -2.726 3 SIX S RANCH WEL1 #2 115 26E 2000D1 8/ 5/75 32 0. 5095. 46 31.0 0.50 0. 117. 46.7 1.7 -1.520 9 34 3.80 143. 0.0 5.9 1.60 29.00 n.n 0.0 0.0 310 7.9 777 70. 0.0 CRITCHFIELD WELL 11S 26E 28BCB1 7/25/75 35 0. 5095. 47 31.0 0.40 34 4.10 141. 0.0 13.00 0.0 20.0 1.40 0.0 0.0 0.0 0 7.6 220 79 0. 116. 46.7 1.7 -1.438 ġ C & Y RANCH WELL #2 11S 27E 58AB1 9/ 0/66 29 0, 188, 69,7 4,5 -4,275 0. 0. 78 26.0 7.20 100 0.0 230. 0.0 14.00 0.0 90.0 3.40 0.90 0.0 0.0 655 7.6 432 94. 1 LYLE DURFEE WELL 135 25E 228081 9/ 0/66 30 0. 77. 34.9 0.9 -3.515 0. 0. 18 22.0 5.40 19 0.0 94 0.0 13.00 0.0 22.0 1.40 0.80 0.0 0_0 238 7.3 147 77. 1 WARD SPR LNGS 135 26E 17CCD15 8/ 8/75 21 0, 322, 45 34.0 0,60 14 3.00 92. 0.0 9.50 0.0 25.0 0.50 0.0 0.0 217 8.2 176 12. 75. 25.0 0.7 -1.138 9 0.0 87. 145 21E 34BDC1 7/26/72 43 0. 189. 47 14.0 1.10 44 9-60 144 0-0 15.00 0.01 7.0 1.30 0.01 0.0 0.0 282 209 0. 118, 64.9 3.0 ~0.233 - 3 8.0 39. OAKLEY H S 14S 22E 27DCB15 10/26/72 47 0. 38. 70 2.7 0.0 87 2.20 43. 29.00 22.00 0.03 53.0 8.00 0.04 0.0 295 0. 84. 95.2 14.6 -0.952 3 0.0 421 9-6 7.

. 1

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

		9)epth -face																	р	Hardr	1055			rion		
Spring or Well Identification Number and Name	Sample Collection Date	Measured Surfa Temperature ^O C	Reported Well [below Land Sur (meters)	charge /min)	511ica (510 ₂)	Calcium (Ca)	Magnesium (Mg)	Sođium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Carlxonate (SO3)	Suifate (SO4)	Phosphate (PO ₄)	Chlarida (CI)	Flouride (F)	Boron (B)	Ammonia (_E NN)	Specific Conductance (field)	pH (field)	Total Dissolve Solids (TDS)	Carbonate	Non-Carbonate	Alkailnìty as CaCO ₃	Percent Sodium (\$Na)	Sodium Absorp ¹ Ratio (SAR)	Cation-Anion Balance	Data Reforence*

											Cassi	a Cou	nty (c	ont'd	•)												
SEARS SPRING 145 25E 68881S 8/ 5/75	28	0.	662.	22	29.0	7.50	15	3.30	120.	0.0	10.00	0.0	19.0	0.40	0.0	0.0	0.0	270	8.2	165	103.	5.	98.	23.3	0.6	0.365	9
GRIFFETH-WIGHT WELL 145 26E 18001 0/0/0	77 1	1982.	378.	64	5.0	12,00	14	2,50	116.	124.00	27.00	0.01	62.0	0.0	1.20	1.00	0.0	10000	8.4	368	62.	0.	302.	31.9	0.8	~62,093	10
HAROLD WIGHT WELL 14S 26E 1CDA1 6/14/77	63	٥.	0.	83	1.0	0.20	170	2.90	240.	36.00	25.00	0.0	72.0	7.30	0.50	0.0	0.08	600	9.3	515	3.	0.	257.	98.1	40.6	-3.683	12
HAROLD WARD WELL #1 145 27E 18CCC1 7/24/75	24	O.	3399.	90	55.0	2.20	170	29.00	131.	0.0	23.00	0.0	300.0	1.10	0.0	0.0	0.0	960	7,6	734	146.	39.	107.	66.8	6.1	-0.457	9
MORRIS MITCHELL WELL #2 15S 21E 25UCC1 9/22/77	46	0.	38.	28	2.0	.0.10	110	1.80	230.	11.00	21.00	0.02	17.0	2.40	0.03	0.0	0.08	475	8.7	306	5.	0.	207,	96.9	20.6	-2,673	10
HAROLD WARD WELL #2 15S 24E 220081 7/25/72	38	152.	378.	44	37.0	9.30	70	3.10	169.	0.0	33,00	0.03	80.0	2,90	0.56	0.0	0.0	606	7.4	362	131.	0.	138.	53.1	2,7	+1.377	3
BLM 155 25E 29CDC1 10/ 7/76	60	0,	0.	68	3.6	0.10	120	3.40	65.	20.00	40.00	0.0	82.0	7.60	0.0	0.0	0.0	540	8.9	376	9.	0.	87.	95.0	17.0	1.840	9
BLM 155 268 12ACC1 12/ 5/74	26	0.	0.	68	300.0	1.40	2000	270,00	58.	0.0	45.00	0.0	3900.0	3.90	0.0	0.0	0.88	998	7.8	6636	754.	707.	48.	79.8	31.7	-1.427	9
BLM 155 26E 220001 12/ 6/74	82	0.	189.	56	56,0	0,50	1300	14.00	63.	0.0	52.00	0.0	2000.0	5.00	0.0	0.0	0.04	6609	8.0	3514	142.	90.	52.	94.7	47.5	0.762	9
IVAN DARRINGTON WELL #1 155 26E 23AAA1 10/23/75	85	0.	15.	140	43.0	1,00	400	37.00	63,	0.0	40.00	0.0	680.0	9.10	0.0	0.0	0.0	1879	8,1	1381	ш.	60.	52,	84.6	14.5	-2.265	9
FRAZIER H S WELL 15S 26E 238BC1 5/18/72	95	126.	220.	90	53.0	0,40	560	22.00	55.	0.0	57.00	0.0	900.0	5,70	0,54	0.0	0.0	3049	7,4	1715	134.	89.	45.	88.3	21.1	-0.381	3
HARRIAT CRANK WELL 155 26E 23DDC1 5/18/72	90	165.	227.	97	130.0	0,40	1110	35.00	36.	0.0	61.00	0,01	1900.0	14,00	0.57	0.0	0.0	6089	7.7	3365	326.	296.	30.	86.7	26,7	-0.474	3
IVAN DARRINGTON WELL #3 15S 26E 23DDD1 7/30/75	33	0.	0.	53	140.0	8,30	450	19.00	174.	0.0	69,00	0.0	820,0	2.30	1.10	0.0	0.0	2459	7.0	1648	383.	241.	143.	70,6	10.0	0,265	12
REID STEWART WELL 155 26E 248AD1 7/24/75	32	0,	3399.	47	100.0	6.30	380	16.00	177.	0.0	65,00	0.0	650.0	1,90	0.0	0.0	0.0	2179	7.3	1353	275.	130.	145.	73.6	10.0	-0,596	9
IVAN DARRINGTON WELL #4 155 26E 24DCC1 7/29/75	31	0.	3399.	55	88.0	7.10	340	16+00	161.	0.0	52,00	0.0	560,0	2,50	0.0	0.0	0.0	1839	7.5	1199	249.	1)7.	132.	73,3	9,4	1.293	9
BLM 155 26E 25ACA1 1/14/75	30	0.	83.	88	35.0	3,90	370	34.00	176.	0.0	32,00	0.0	570+0	2,80	0.0	0.0	0.21	1949	7.7	1222	103.	0.	144.	84.6	15.8	-2,119	9
BLM 16S 26E 58BA1 3/28/75	40	0.	151.	37	58.0	9.00	240	13.00	138.	0.0	44,00	0.0	380.0	4.40	0.0	0.0	0.14	1539	6.8	853	182.	69.	113.	72.5	7.7	0,971	9

ŋ.

100,000

LIDY H S #1 9N 33E 288C15 8/25/72 50 0. 946. 34 87.0 16.00 27 15.00 179. 0.0 190.00 0.03 8.0 6.00 0.02 0.0 0.0 691 6.3 471 283. 136. 147. 16.3 0.7 -1.495 3 LIDY H S WELL 10N 33E 55CCC1 8/22/77 59 149. 6813. 37 55.0 14.00 24 12.00 180. 0.0 100.00 0.03 7.1 4.40 0.0 0.0 0.09 490 7.6 342 195. 47. 148. 19.9 0.7 -2.047 10 WARM SPRINGS 11N 32E 25AAC15 8/28/72 29 0. 7267. 17 54.0 19.00 9 2.90 209. 0.0 62.00 0.02 5.3 1.00 0.12 0.0 0.0 457 7.0 274 213. 42. 171. 9.0 0.3 -2.285 3

Clark County

Custer County

| BAIS | 8/17/72 | 43 | J. | 76. | 62

 | 22.0 | 4.50 | 84 | 6.40

 | 139. | 0.0 | 110.00 | 0.0 | 12.0 12.00
 | 0.0 | 0.0

 | 0.0 | 549 | 7.3 | 383
 | 73. | 0. | 114. | 68.5 4.3
 | -2,352 | 11 |
|-----------------|--|--|--|--
--
--
--
---|--|---|---
--
--
---|---|---
---|--|--|--
--
--
---|---|---|---
--	---	--
--		
S DBD1S	7/ 3/72	60

 | 1.8 | 0.10 | 73 | 1.00

 | 31. | 35.00 | 31.00 | 0.0 | 7.8 19.00
 | 0.0 | 0.0

 | 0.0 | 331 | 9.0 | 253
 | 5. | 0. | 84. | 96.3 14.3
 | -3.652 | 11 |
| IS
BCAIS | 7/12/72 | 51 | 0. | 95. | 43

 | 21.0 | 5.50 | 100 | 13.00

 | 234. | 0.0 | 94.00 | 0.02 | 26.0 8.40
 | 0,06 | 0.0

 | 0.0 | 651 | 6.7 | 426
 | 75. | ٥. | 192. | 70.4 5.0
 | ~6.316 | 3 |
| S
CAB1S | 7/12/72 | 41 | 0. | 416. | 55

 | 2.2 | 0,10 | 60 | 0,50

 | 30. | 28.00 | 31.00 | 0.01 | 5,0 14,00
 | 0.05 | 0.0

 | 0.0 | 293 | 8,8 | 210
 | б. | ٥. | 71. | 95.2 10.7
 | -4.042 | 3 |
| (HS
BADIS | 7/11/72 | 50 | 0. | 700. | 86

 | 8.1 | 0.10 | 83 | 4.50

 | 110. | 0.0 | 110.00 | 0.02 | 7,0 B,70
 | 0,03 | 0.0

 | 0.0 | 437 | 8.0 | 361
 | 21. | 0, | 90. | 87.3 8.0
 | -7.145 | 3 |
| S
BAAIS | 9/ 0/54 | 57 | 0. | 0. | 75

 | 1.0 | 0.30 | 72 | 2,40

 | 20. | 38,00 | 32.00 | 0.0 | 6,0 16,00
 | 0.0 | 0.0

 | 0.0 | 3 2B | 9.6 | 252
 | 4. | 0. | 80. | 95.8 16.2
 | ~0.602 | 1 |
| < W S
DDB15 | 7/ 3/72 | 38 | 0. | 0. | 88

 | 2.1 | .0.0 | 62 | 1.20

 | 23. | 35.00 | 38,00 | 0.0 | 4.3 14.00
 | 0.0 | 0.0

 | 0.0 | 304 | 8.8 | 255
 | 5. | 0. | 77. | 95.2 11.8
 | ~6.077 | 9 |
| D H S
AAB1S | 0/0/0 | 38 | 0. | 4. | 89

 | 2.2 | 0,10 | 62 | 1.30

 | 23. | 35.00 | 38,00 | 0.0 | 4.4 14.00
 | 0.0 | 0.0

 | 0.0 | 0 | 6.8 | 257
 | δ. | 0. | 77. | 94.7 11.1
 | -6.033 | 11 |
| S
CAB1S | 7/12/72 | 76 | 0. | 1681, | 91

 | 1.5 | 0.0 | 85 | 2.40

 | 119. | 0.0 | 54.00 | 0.02 | 12.0 15.00
 | 0.06 | 0.0

 | 0.0 | 413 | 8.5 | 319
 | 4. | 0. | 98. | 96.4 19.1
 | -4,741 | 3 |
| AR H S
DDC1S | 0/0/0 | 49 | 0. | 151. | 80

 | 2.0 | 0.40 | 77 | 3.60

 | 28. | 41.00 | 57.00 | 0.0 | 6.0 12.00
 | 0.0 | 0.0

 | 0.0 | ũ | 9.3 | 292
 | 7. | 0. | 91. | 93.7 13.0
 | -3.919 | 11 |
| S
BDD1S | 7/12/72 | 41 | 0. | 265. | 38

 | 49.0 | 11.00 | 170 | 15.00

 | 554. | 0.0 | 26,00 | 0.02 | 57.0 1.80
 | 0.06 | 0.0

 | 0.0 | 1069 | 7.0 | 640
 | 167. | 0. | 454. | 66,5 5.7
 | -0.873 | 3 |
| CAB15 | 7/13/72 | 29 | 0. | 643. | 18

 | 37.0 | 20.00 | 9 | 1.50

 | 181. | 0.0 | 35.00 | 0.03 | 4.0 0.50
 | 0.25 | 0.0

 | 0.0 | 364 | 7.8 | 214
 | 175. | 26, | 148, | 10.0 0.3
 | 0.937 | 3 |
| TON WE | LL
7/12/72 | 40 | 915. | 189. | 23

 | 55.0 | 21.00 | 45 | 7.60

 | 226 | 0.0 | 130.00 | 0.01 | 4.0 1.10
 | 0,10 | 0.0

 | 0.0 | 625 | 7.3 | 397
 | 224. | 38. | 185. | 29.6 1.3
 | 0.188 | 3 |
| | | 43 | 0. | 16. | 59

 | 4.5 | 0,0 | 91 | 1.60

 | 79. | 0.0 | 100.00 | 0.0 | 13.0 12.00
 | 0.0 | 0,0

 | 0.0 | 0 | 7.4 | 319
 | 11. | 0. | 65. | 93.7 11.8
 | -1,956 | 2 |
| EK
OAD15 | 7/ 4/71 | 43 | ο, | 257. | 81

 | 2,1 | 0.0 | 82 | 1.80

 | 54. | 28.00 | 63.00 | 0.0 | 10.0 12.00
 | 0.0 | 0.0

 | 0.0 | 377 | 9.0 | 306
 | 5. | 0. | 91. | 95.9 15.6
 | -4.483 | 2 |
| l
160615 | 7/ 4/71 | 49 | 0. | 30. | 72

 | 2.9 | 0,0 | 93 | 1.30

 | 314. | \$8 . 00 | 51.00 | 0.0 | 12.0 12.00
 | 0.0 | 0.0

 | 0.0 | 433 | 8.7 | 318
 | 7. | 0. | 123. | 95.8 15.0
 | -3.271 | 2 |
| | BD1S
SCA1S
ABIS
HSADIS
AAAIS
WSDD1S
AAAIS
WSDD1S
SABIS
SABIS
SABIS
SCADIS
CON WE
FLAT
HD0BIS
EK | BD1S 7/ 3/72
SCA1S 7/12/72
AB1S 7/12/72
AB1S 7/12/72
AB1S 7/11/72
AA1S 9/ 0/54
W S 7/ 3/72
AB1S 7/ 3/72
AB1S 7/ 3/72
AB1S 7/12/72
R H S 0/ 0/ 0
SCAB1S 7/12/72
CAB1S 7/12/72 | BD1S 7/ 3/72 60
S
CA1S 7/12/72 51
AB1S 7/12/72 41
H S
AD1S 7/11/72 50
AAJS 9/ 0/54 57
W S
7/ 3/72 38
CA1S 7/ 3/72 38
CABIS 7/ 3/72 38
CABIS 7/12/72 76
W C
AB1S 7/12/72 76
S
CABIS 7/12/72 41
CABIS 7/12/72 41
CABIS 7/13/72 29
CAN WELL
CABIS 7/12/72 40
FLAT H S
CAB S 0/ 0/ 0 43 | BD1S $7/3/72$ 60 $0.$ SCA1S $7/12/72$ 51 $0.$ AB1S $7/12/72$ 51 $0.$ AB1S $7/12/72$ 41 $0.$ H S $7/11/72$ 50 $0.$ AA1S $9/0/54$ 57 $0.$ AA1S $7/12/72$ 76 $0.$ SAB1S $7/12/72$ 41 $0.$ SAD1S $7/12/72$ 41 $0.$ CAB1S $7/12/72$ 40 $915.$ FLAT H S $0/0/0$ 43 $0.$ EX $0/0/0$ $0.$ $0.$ | BD1S $7/3/72$ 60 $0.$ $49.$ SA1S $7/12/72$ 51 $0.$ $95.$ AB1S $7/12/72$ 41 $0.$ $416.$ H S $7/12/72$ 41 $0.$ $416.$ AB1S $7/12/72$ 41 $0.$ $416.$ AA1S $9/0/54$ 57 $0.$ $700.$ AA1S $9/0/54$ 57 $0.$ $0.$ AB1S $7/12/72$ 38 $0.$ $0.$ AB1S $0/0/0$ 38 $0.$ $4.$ AB1S $7/12/72$ 76 $0.$ $1681.$ R H S $7/12/72$ 41 $0.$ $265.$ SAB1S $7/12/72$ 41 $0.$ $265.$ CAB1S $7/12/72$ 40 $915.$ $189.$ FLAT H S $0/0/0$ 43 $0.$ $16.$ EX $0/0/15$ $7/4/71$ 43 $0.$ $257.$ <td>BD1S $7/3/72$ 60 $0.$ $49.$ 70 SA1S $7/12/72$ 51 $0.$ $95.$ 43 AB1S $7/12/72$ 51 $0.$ $95.$ 43 AB1S $7/12/72$ 41 $0.$ $416.$ 55 H S $7/11/72$ 50 $0.$ $700.$ 86 AA1S $9/0/54$ 57 $0.$ $70.$ 86 AA1S $9/0/54$ 57 $0.$ $0.$ 75 N S $7/3/72$ 38 $0.$ $0.$ 88 AA1S $9/0/54$ 57 $0.$ $1681.$ 91 AA1S $9/0/70$ $0.$ $1681.$ 91 AB1S $7/12/72$ 41 $0.$ $265.$ 38 AB1S $7/12/72$ 41 $0.$ $265.$ 38 CAB1S $7/12/72$ 40 $915.$ $189.$ 23 FLAT H S $0/0/0$ 43 $0.$ $16.$ 59</td> <td>BD1S $7/3/72$ 60 $0.$ $49.$ 70 1.8 SA1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 AB1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 AB1S $7/12/72$ 41 $0.$ $416.$ 55 2.2 HS $7/11/72$ 50 $0.$ $700.$ 86 8.1 AA1S $9/0/54$ 57 $0.$ $0.$ 75 1.0 MS $7/3/72$ 38 $0.$ $0.$ 86 2.1 $MA1S$ $9/0/54$ 57 $0.$ $0.$ 86 2.1 $MASS$ $0/0/0$ $0.$ $0.$ 86 2.1 $MASS$ $0/0/0$ $0.$ $151.$ 80 2.0 $SABIS$ $7/12/72$ 41 $0.$ $265.$ 38 49.0 $SDO1S$ $7/12/72$ 40 $915.$ $189.$ 23 55.0 CABIS $7/12/72$ 40<</td> <td>BD1S $7/3/72$ 60 0. 49. 70 1.8 0.10
SCA1S $7/12/72$ 51 0. 95. 43 21.0 5.50
AB1S $7/12/72$ 41 0. 416. 55 2.2 0.10
H S 7/11/72 50 0. 700. 86 8.1 0.10
AD1S $7/11/72$ 50 0. 700. 86 8.1 0.10
AD1S $7/3/72$ 38 0. 0. 88 2.1 0.0
DD1S $7/3/72$ 38 0. 0. 88 2.1 0.0
WASTS 0/ 0/ 0 38 0. 4. 89 2.2 0.10
SAB1S $7/12/72$ 76 0. 1681. 91 1.5 0.0
RC H S 0/ 0/ 0 49 0. 151. 80 2.0 0.40
SCD1S $7/12/72$ 41 0. 265. 38 49.0 11.00
SCD1S $7/12/72$ 40 915. 189. 23 55.0 21.00
FLAT H S 0/ 0/ 0 43 0. 16. 59 4.5 0.0
EK DAD1S 7/ 4/71 43 0. 257. 81 2.1 0.0</td> <td>BD1S $7/3/72$ 60 $0.$ $49.$ 70 1.8 0.10 73 SA1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 5.50 100 AB1S $7/12/72$ 41 $0.$ $416.$ 55 2.2 0.10 60 $H S$ $7/11/72$ 50 $0.$ $700.$ 86 8.1 0.10 83 AA1S $9/0/54$ 57 $0.$ $0.$ 75 1.0 0.30 72 MS $7/3/72$ 38 $0.$ $0.$ 88 2.1 0.0 62 MS $7/3/72$ 38 $0.$ $4.$ 89 2.2 0.10 62 MS $7/12/72$ 76 $0.$ $1681.$ 91 1.5 0.0 85 $SDD1S$ $7/12/72$ 41 $0.$ $265.$ 38 49.0 11.00 170 CAB1S $7/12/72$ 41 $0.$ $265.$ 38 49.0<td>BD1S $7/3/72$ 60 $0.$ $49.$ 70 1.8 0.10 73 1.00 SA1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 5.50 100 13.00 AB1S $7/12/72$ 41 $0.$ $416.$ 55 2.2 0.10 60 0.50 HS $7/11/72$ 50 $0.$ $700.$ 86 8.1 0.10 83 4.50 AA1S $9/0/54$ 57 $0.$ $0.$ 75 1.0 0.30 72 2.40 MS $7/3/72$ 38 $0.$ 88 2.1 0.0 62 1.20 MAIS $0/0/0$ 38 $0.$ $4.$ 89 2.2 0.10 62 1.30 5.01 5.00 85 2.40 8.1 9.1 1.5 0.0 85 2.40 8.1 9.1 1.60 15.00 85 2.40 8.1 8.1 9.0 17.0 15.00</td><td>BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31.
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234.
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30.
H S AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 110.
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20.
W S 7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23.
BD15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119.
R H S 0/ 0/ 0 38 0. 4. 89 2.2 0.10 62 1.30 23.
SAB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119.
R H S 0/ 0/ 0 49 0. 151. 80 2.0 0.40 77 5.60 28.
SDD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554.
CAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226.
FLAT H S 0/ 0/ 0 43 0. 16. 59 4.5 0.0 91 1.60 79.
EX DAD15 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54.</td><td>BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31. 35.00
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30. 28.00
H S
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 116. 0.0
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00
W S
7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00
DB15 $7/3/72$ 38 0. 4. 89 2.2 0.10 62 1.30 23. 35.00
SAB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0
R H S
DD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.50 226. 0.0
FLAT H S
DD615 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 28.00</td><td>BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31. 35.00 31.00
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0 94.00
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30. 28.00 31.00
H S
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 116. 0.0 110.00
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00 52.00
BD15 $7/3/72$ 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00 38.00
SAB1S $7/3/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00
BC AB1S $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 26.00
SAB1S $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 25.00
SAB1S $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00
FLAT H S
DAD15 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 28.00 63.00</td><td>BD15 $\gamma/3/72$ 60 0, 49. 70 1.8 0.10 73 1.00 31. 35.00 51.00 0.0
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0 94.00 0.02
AB15 $7/12/72$ 41 0. 416, 55 2.2 0.10 60 0.50 30. 28.00 31.00 0.01
H 5
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 110. 0.0 110.00 0.02
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00 32.00 0.0
W S
7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00 38.00 0.0
W S
DD15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00 0.02
AB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00 0.02
BR H S
DD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 26.00 0.02
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00 0.01
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00 0.01
CAB H S
DA015 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 26.00 63.00 0.0</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>Anis 0,17/12 4,7 0,4 49,70 1,8 0,10 73 1,00 31,3 35,00 31,00 0,0 7,8 19,00 0,0 SCA15 7/12/72 51 0,95 43 21,0 5,50 100 13,00 234. 0,0 94,00 0,02 26,0 8,40 0,06 AB15 7/12/72 41 0.416. 55 2,2 0,10 60 0,50 30. 28,00 31,00 0,01 5,0 14,00 0,05 AB15 7/11/72 50 0.700. 86 8,1 0,10 83 4,50 110. 0,0 110.00 0,02 7,0 8,70 0,03 AA15 9/0/54 57 0. 0.75 1,0 0,30 72 2,40 20. 38,00 32,00 0,0 6.0 16.00 0,0 AB15 0/0/64 57 0. 0.88 2,1 0,0 62 1,20 23. 35,00 36,00 0,0 4.3 14,00 0,0 <t< td=""><td>And a probability of the probab</td><td>AATS 5/17/12 43 0. A.0. 0.2 22.0 41.0 0.10 1.51 0.0 1.60 0.0 7.8 19.0 0.0</td></t<><td>AAS A/Y A</td><td>$\frac{1}{2} 1$</td><td>ABIS 2/1 0. 0. 0. 0.0</td><td>$\frac{1}{2} 1$</td><td>$\frac{1}{2} 1$</td><td>$\frac{1}{2} 1$</td><td>$\frac{1}{2} \frac{1}{2} \frac{1}$</td><td>And 5 0/17/2 43 0. And 64 64 100</td></td></td> | BD1S $7/3/72$ 60 $0.$ $49.$ 70 SA1S $7/12/72$ 51 $0.$ $95.$ 43 AB1S $7/12/72$ 51 $0.$ $95.$ 43 AB1S $7/12/72$ 41 $0.$ $416.$ 55 H S $7/11/72$ 50 $0.$ $700.$ 86 AA1S $9/0/54$ 57 $0.$ $70.$ 86 AA1S $9/0/54$ 57 $0.$ $0.$ 75 N S $7/3/72$ 38 $0.$ $0.$ 88 AA1S $9/0/54$ 57 $0.$ $1681.$ 91 AA1S $9/0/70$ $0.$ $1681.$ 91 AB1S $7/12/72$ 41 $0.$ $265.$ 38 AB1S $7/12/72$ 41 $0.$ $265.$ 38 CAB1S $7/12/72$ 40 $915.$ $189.$ 23 FLAT H S $0/0/0$ 43 $0.$ $16.$ 59 | BD1S $7/3/72$ 60 $0.$ $49.$ 70 1.8 SA1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 AB1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 AB1S $7/12/72$ 41 $0.$ $416.$ 55 2.2 HS $7/11/72$ 50 $0.$ $700.$ 86 8.1 AA1S $9/0/54$ 57 $0.$ $0.$ 75 1.0 MS $7/3/72$ 38 $0.$ $0.$ 86 2.1 $MA1S$ $9/0/54$ 57 $0.$ $0.$ 86 2.1 $MASS$ $0/0/0$ $0.$ $0.$ 86 2.1 $MASS$ $0/0/0$ $0.$ $151.$ 80 2.0 $SABIS$ $7/12/72$ 41 $0.$ $265.$ 38 49.0 $SDO1S$ $7/12/72$ 40 $915.$ $189.$ 23 55.0 CABIS $7/12/72$ 40 < | BD1S $7/3/72$ 60 0. 49. 70 1.8 0.10
SCA1S $7/12/72$ 51 0. 95. 43 21.0 5.50
AB1S $7/12/72$ 41 0. 416. 55 2.2 0.10
H S 7/11/72 50 0. 700. 86 8.1 0.10
AD1S $7/11/72$ 50 0. 700. 86 8.1 0.10
AD1S $7/3/72$ 38 0. 0. 88 2.1 0.0
DD1S $7/3/72$ 38 0. 0. 88 2.1 0.0
WASTS 0/ 0/ 0 38 0. 4. 89 2.2 0.10
SAB1S $7/12/72$ 76 0. 1681. 91 1.5 0.0
RC H S 0/ 0/ 0 49 0. 151. 80 2.0 0.40
SCD1S $7/12/72$ 41 0. 265. 38 49.0 11.00
SCD1S $7/12/72$ 40 915. 189. 23 55.0 21.00
FLAT H S 0/ 0/ 0 43 0. 16. 59 4.5 0.0
EK DAD1S 7/ 4/71 43 0. 257. 81 2.1 0.0 | BD1S $7/3/72$ 60 $0.$ $49.$ 70 1.8 0.10 73 SA1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 5.50 100 AB1S $7/12/72$ 41 $0.$ $416.$ 55 2.2 0.10 60 $H S$ $7/11/72$ 50 $0.$ $700.$ 86 8.1 0.10 83 AA1S $9/0/54$ 57 $0.$ $0.$ 75 1.0 0.30 72 MS $7/3/72$ 38 $0.$ $0.$ 88 2.1 0.0 62 MS $7/3/72$ 38 $0.$ $4.$ 89 2.2 0.10 62 MS $7/12/72$ 76 $0.$ $1681.$ 91 1.5 0.0 85 $SDD1S$ $7/12/72$ 41 $0.$ $265.$ 38 49.0 11.00 170 CAB1S $7/12/72$ 41 $0.$ $265.$ 38 49.0 <td>BD1S $7/3/72$ 60 $0.$ $49.$ 70 1.8 0.10 73 1.00 SA1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 5.50 100 13.00 AB1S $7/12/72$ 41 $0.$ $416.$ 55 2.2 0.10 60 0.50 HS $7/11/72$ 50 $0.$ $700.$ 86 8.1 0.10 83 4.50 AA1S $9/0/54$ 57 $0.$ $0.$ 75 1.0 0.30 72 2.40 MS $7/3/72$ 38 $0.$ 88 2.1 0.0 62 1.20 MAIS $0/0/0$ 38 $0.$ $4.$ 89 2.2 0.10 62 1.30 5.01 5.00 85 2.40 8.1 9.1 1.5 0.0 85 2.40 8.1 9.1 1.60 15.00 85 2.40 8.1 8.1 9.0 17.0 15.00</td> <td>BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31.
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234.
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30.
H S AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 110.
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20.
W S 7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23.
BD15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119.
R H S 0/ 0/ 0 38 0. 4. 89 2.2 0.10 62 1.30 23.
SAB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119.
R H S 0/ 0/ 0 49 0. 151. 80 2.0 0.40 77 5.60 28.
SDD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554.
CAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226.
FLAT H S 0/ 0/ 0 43 0. 16. 59 4.5 0.0 91 1.60 79.
EX DAD15 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54.</td> <td>BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31. 35.00
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30. 28.00
H S
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 116. 0.0
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00
W S
7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00
DB15 $7/3/72$ 38 0. 4. 89 2.2 0.10 62 1.30 23. 35.00
SAB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0
R H S
DD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.50 226. 0.0
FLAT H S
DD615 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 28.00</td> <td>BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31. 35.00 31.00
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0 94.00
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30. 28.00 31.00
H S
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 116. 0.0 110.00
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00 52.00
BD15 $7/3/72$ 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00 38.00
SAB1S $7/3/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00
BC AB1S $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 26.00
SAB1S $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 25.00
SAB1S $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00
FLAT H S
DAD15 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 28.00 63.00</td> <td>BD15 $\gamma/3/72$ 60 0, 49. 70 1.8 0.10 73 1.00 31. 35.00 51.00 0.0
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0 94.00 0.02
AB15 $7/12/72$ 41 0. 416, 55 2.2 0.10 60 0.50 30. 28.00 31.00 0.01
H 5
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 110. 0.0 110.00 0.02
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00 32.00 0.0
W S
7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00 38.00 0.0
W S
DD15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00 0.02
AB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00 0.02
BR H S
DD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 26.00 0.02
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00 0.01
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00 0.01
CAB H S
DA015 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 26.00 63.00 0.0</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>Anis 0,17/12 4,7 0,4 49,70 1,8 0,10 73 1,00 31,3 35,00 31,00 0,0 7,8 19,00 0,0 SCA15 7/12/72 51 0,95 43 21,0 5,50 100 13,00 234. 0,0 94,00 0,02 26,0 8,40 0,06 AB15 7/12/72 41 0.416. 55 2,2 0,10 60 0,50 30. 28,00 31,00 0,01 5,0 14,00 0,05 AB15 7/11/72 50 0.700. 86 8,1 0,10 83 4,50 110. 0,0 110.00 0,02 7,0 8,70 0,03 AA15 9/0/54 57 0. 0.75 1,0 0,30 72 2,40 20. 38,00 32,00 0,0 6.0 16.00 0,0 AB15 0/0/64 57 0. 0.88 2,1 0,0 62 1,20 23. 35,00 36,00 0,0 4.3 14,00 0,0 <t< td=""><td>And a probability of the probab</td><td>AATS 5/17/12 43 0. A.0. 0.2 22.0 41.0 0.10 1.51 0.0 1.60 0.0 7.8 19.0 0.0</td></t<><td>AAS A/Y A</td><td>$\frac{1}{2} 1$</td><td>ABIS 2/1 0. 0. 0. 0.0</td><td>$\frac{1}{2} 1$</td><td>$\frac{1}{2} 1$</td><td>$\frac{1}{2} 1$</td><td>$\frac{1}{2} \frac{1}{2} \frac{1}$</td><td>And 5 0/17/2 43 0. And 64 64 100</td></td> | BD1S $7/3/72$ 60 $0.$ $49.$ 70 1.8 0.10 73 1.00 SA1S $7/12/72$ 51 $0.$ $95.$ 43 21.0 5.50 100 13.00 AB1S $7/12/72$ 41 $0.$ $416.$ 55 2.2 0.10 60 0.50 HS $7/11/72$ 50 $0.$ $700.$ 86 8.1 0.10 83 4.50 AA1S $9/0/54$ 57 $0.$ $0.$ 75 1.0 0.30 72 2.40 MS $7/3/72$ 38 $0.$ 88 2.1 0.0 62 1.20 MAIS $0/0/0$ 38 $0.$ $4.$ 89 2.2 0.10 62 1.30 5.01 5.00 85 2.40 8.1 9.1 1.5 0.0 85 2.40 8.1 9.1 1.60 15.00 85 2.40 8.1 8.1 9.0 17.0 15.00 | BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31.
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234.
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30.
H S AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 110.
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20.
W S 7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23.
BD15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119.
R H S 0/ 0/ 0 38 0. 4. 89 2.2 0.10 62 1.30 23.
SAB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119.
R H S 0/ 0/ 0 49 0. 151. 80 2.0 0.40 77 5.60 28.
SDD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554.
CAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226.
FLAT H S 0/ 0/ 0 43 0. 16. 59 4.5 0.0 91 1.60 79.
EX DAD15 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. | BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31. 35.00
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30. 28.00
H S
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 116. 0.0
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00
W S
7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00
DB15 $7/3/72$ 38 0. 4. 89 2.2 0.10 62 1.30 23. 35.00
SAB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0
R H S
DD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.50 226. 0.0
FLAT H S
DD615 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 28.00 | BD15 $7/3/72$ 60 0. 49. 70 1.8 0.10 73 1.00 31. 35.00 31.00
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0 94.00
AB15 $7/12/72$ 41 0. 416. 55 2.2 0.10 60 0.50 30. 28.00 31.00
H S
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 116. 0.0 110.00
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00 52.00
BD15 $7/3/72$ 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00 38.00
SAB1S $7/3/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00
BC AB1S $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 26.00
SAB1S $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 25.00
SAB1S $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00
FLAT H S
DAD15 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 28.00 63.00 | BD15 $\gamma/3/72$ 60 0, 49. 70 1.8 0.10 73 1.00 31. 35.00 51.00 0.0
SA15 $7/12/72$ 51 0. 95. 43 21.0 5.50 100 13.00 234. 0.0 94.00 0.02
AB15 $7/12/72$ 41 0. 416, 55 2.2 0.10 60 0.50 30. 28.00 31.00 0.01
H 5
AD15 $7/11/72$ 50 0. 700. 86 8.1 0.10 83 4.50 110. 0.0 110.00 0.02
AA15 9/ 0/54 57 0. 0. 75 1.0 0.30 72 2.40 20. 38.00 32.00 0.0
W S
7/ 3/72 38 0. 0. 88 2.1 0.0 62 1.20 23. 35.00 38.00 0.0
W S
DD15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00 0.02
AB15 $7/12/72$ 76 0. 1681. 91 1.5 0.0 85 2.40 119. 0.0 54.00 0.02
BR H S
DD15 $7/12/72$ 41 0. 265. 38 49.0 11.00 170 15.00 554. 0.0 26.00 0.02
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00 0.01
SAB15 $7/12/72$ 40 915. 189. 23 55.0 21.00 45 7.60 226. 0.0 130.00 0.01
CAB H S
DA015 $7/4/71$ 43 0. 257. 81 2.1 0.0 82 1.80 54. 26.00 63.00 0.0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Anis 0,17/12 4,7 0,4 49,70 1,8 0,10 73 1,00 31,3 35,00 31,00 0,0 7,8 19,00 0,0 SCA15 7/12/72 51 0,95 43 21,0 5,50 100 13,00 234. 0,0 94,00 0,02 26,0 8,40 0,06 AB15 7/12/72 41 0.416. 55 2,2 0,10 60 0,50 30. 28,00 31,00 0,01 5,0 14,00 0,05 AB15 7/11/72 50 0.700. 86 8,1 0,10 83 4,50 110. 0,0 110.00 0,02 7,0 8,70 0,03 AA15 9/0/54 57 0. 0.75 1,0 0,30 72 2,40 20. 38,00 32,00 0,0 6.0 16.00 0,0 AB15 0/0/64 57 0. 0.88 2,1 0,0 62 1,20 23. 35,00 36,00 0,0 4.3 14,00 0,0 <t< td=""><td>And a probability of the probab</td><td>AATS 5/17/12 43 0. A.0. 0.2 22.0 41.0 0.10 1.51 0.0 1.60 0.0 7.8 19.0 0.0</td></t<> <td>AAS A/Y A</td> <td>$\frac{1}{2} 1$</td> <td>ABIS 2/1 0. 0. 0. 0.0</td> <td>$\frac{1}{2} 1$</td> <td>$\frac{1}{2} 1$</td> <td>$\frac{1}{2} 1$</td> <td>$\frac{1}{2} \frac{1}{2} \frac{1}$</td> <td>And 5 0/17/2 43 0. And 64 64 100</td> | And a probability of the probab | AATS 5/17/12 43 0. A.0. 0.2 22.0 41.0 0.10 1.51 0.0 1.60 0.0 7.8 19.0 0.0 | AAS A/Y A | $ \frac{1}{2} 1$ | ABIS 2/1 0. 0. 0. 0.0 | $ \frac{1}{2} 1$ | $ \frac{1}{2} 1$ | $ \frac{1}{2} 1$ | $\frac{1}{2} \frac{1}{2} \frac{1}$ | And 5 0/17/2 43 0. And 64 64 100 |

Elmore County

CHARLES BAKER WELL 3N 10E 10ABA1 10/14/77 41 90. 19. 67 7.4 0.0 55 0.60 65. 52.00 18.00 0.05 1.9 2.40 0.06 0.0 0.05 260 9.7 236 18. 0. 140. 86.2 5.6 -9.694 10 PARADISE H S 3N 10E 33ACDIS 10/14/77 53 0. 946. 73 9.2 0.0 48 1.10 66. 34.00 15.00 0.01 3.2 3.30 0.01 0.0 0.03 230 9.2 219 23. 0. 111. 81.1 4.4 -4.079 10

Maria da d

ja l

												Elmore	e Coun	ty (cont'd	• >											
PARADISE H S WELL 3N 10E 33BDB1	8/29/72	38	0.	0.	69	1,5	0.10	50	1.00	45.	35,00	17.00	0.03	2,6 3.10	0,04	0.0	0.0	232	9.2	201	4.	0,	95.	95,2 10,7	-4,613	3
NINEMEYER H S SN 7E 24BODIS	8/17/72	76	0.	1321.	100	1,1	0,10	67	1.80	5.	51.00	31,00	0.03	2.9 10.00	0.02	0,0	0.0	295	8.5	267	3.	0.	69.	96.4 16.4	-0.688	3
DUTCH FRANK'S H 5N 9E 78BAIS		65	0.	1135.	72	2.2	0,20	57	1,20	17.	40.00	30,00	0.03	2.4 10.00	0.02	0.0	0.0	268	8,6	223	6.	0.		94.0 9.9	-3,980	3
ATLANTA H S 6N 11E 35DAD1S	7/ 0/55	38	0,	0.	78	3.0	0.40	65	1.60	41.	21,00	39,00	0.0	6.0 14.00	0,10	0.0	0.0		9.6	248	9,	0.		92.7 9.4	-1,439	1
JOHN MALOTA WEL 25 5E 238BC1	L 8/10/76	22	128.	0.	48	17.0	6,90	34	6,50		0.0	19,00	0.01	8.3 0.80	1.30	0.0	0.0	272		210	71.					,
LONG TOM RANCH WELL ∦1														005 0000	1.50	0.0	0.0	112	0.0	210	/1.	0.	114.	48.3 1.8	0,128	12
3S 7E 1ACA1	8/13/76	20	53.	0.	59	26.0	5,60	18	5,80	108.	0.0	15,00	0.01	14.0 0.70	2,60	0.0	0.0	273	7.5	199	88.	0,	89.	29.1 0.8	1,406	12
LESLIE BEAM WEL 35 BE 36CAD1	L 8/14/72	68	183.	2649.	86	1,5	0.0	87	0,80	74.	50.00	14.00	0.04	4,5 17.00	0.06	0.0	0.0	382	8.5	297	4.	0,	44.	97.5 19.6	-4.152	3
LATTY H S 3S 10E 31DDBIS	7/ 5/72	55	0.	0.	100	0.4	0.0	54	1.70	90,	33.00	10,00	0.04	2.7 7.00	0.07	0.0	0.0	243	8,4	253	1.	0.	129,	97.4 23.5	-14.838	3
ROBERT BRUCE WE 4\$ 5E 25BBC1	LL 8/16/76	24	162.	0.	41	13.0	2,60	9	3,00	72.	0.0	6,60	0.20	2.3 0.20	0.63	0.0	0.0	128	8 . Z] [4	44.	0.		30.0 0.6	4.394	12
BEVERLY OLSON W 45 7E 1990B1	ELL 8/10/76	26	184.	0.	65	23.0	8,10	27	5,60	144.	0.0	19,00	0.01	9.3 1.00	0,78	0.0	0.0	306	8.0	229	91.			37.5 1.2		12
NORTHWEST																0.0	0.0	200	040	663	210	v.	E CQ.	51.5 1.2	0,597	12
PIPELINE WELL 4S 8E 3689A1	6/ 6/72	38	579.	30.	86	3.2	0,20	160	3.70	447.	0.0	5,40	0,05	10.0 3.00	0.06	0,0	0.0	703	7.8	491	9.	0.	366.	96.3 23,5	-4.534	3
BILL DAVIS WELL 4S 9E 8ACA1	8/29/72	62	358.	0.	85	0,9	0.0	82	0.80	81.	41.00	14.00	0.03	3.2 16.00	0.05	0.0	0.0	387	9.2	282	2.	0.	135,	98.2 23.8	-4.076	3
GARY LAWSON WELL 55 3E 14C8B1	7/23/73	59	701.	238.	81	2.4	0,0	91	0,80	66.	42.00	10.00	0.05	18.0 23.00	0.0	0.0	0.10	419	9.6	300	б,	0.	124.	96.6 16.2	-3.904	5
MIKE WISSEL WELL 55 7E 16ABD1		21	137.	0.	73	51.0	14.00	33	7.80	202.	0.0	77.00	0.02	12.0 1.10	0.15	0.0	0.0	515	7.8	368	185.	19.	166.	26.9 1.1	-0.009	12
CHARLES BOYD WEI 55 8E 34BDC1	LL 7/ 5/72	34	402.	8.	58	9,1	1.00	320	11.00	797.	0.0	6,50	0.04	59.0 2.20	0+04	0,0		1339		858	27.	0.		94.5 26.9		3
MAGIC WEST														3775 1120		0.0	0,0	1,00		OLO	41.	0.		34.7 20,9	-0.812	2
CO. WELL 5S 10E 328081	6/22/72	38	285.	204.	46	2.5	0.20	130	0,90	270.	8.00	2.50	0.03	29.0 13.00	0.06	0.0	0.0	590	7.9	364	7.	0.	235.	97.2 21.3	3.885	3
CHARLES ANDERSON WELL	4																									
55 11E 7ACC1	6/19/72	32	396.	0.	42	2.5	0.0	79	0.90	115.	16.00	12,00	0.03	6.1 20.00	0.03	0.0	0.0	567	8.5	235	6.	0.	121.	95.9 13.8	-4,459	3

ىلىڭ بىلامىت.

Elmore County (cont'd.)

£ 8				Hardness	I I I	
Nammer Measured Surface Measured Surface Measured Surface Measured Surface Meterion Discharge ((//min) Silica	Potassium (X) (Blearbonate (HOG3) Carbonate (CG3) Suffate (SO4)	Phosphafe (PQ ₄) (PQ ₄) (C1) (C1) (C1) (C1) (C1) (C1) (C1) (C1	Ammonia Ammonia (NH ₅) Specific Specific Conductance (field) (field) Total Dissolved Scilds (TOS)	Carbonate Non-Carbonate Aikalinity as CaCO,	Percent Sodium (\$Na) Sodium Absorption Ratio (SAR) Cation-Anion Balance	Da Refer

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

翻行

...............................

بالمستحدثات

يمتسل أحسن أرأست

1.660-0010-0

We have the second seco

.

THE MUST OF LL C. 41																												
TREASURTON W S #1 12S 40E 36ACD15 9	/ 6/73	35	0.	38,	54	265.0	68.00	563	127.00	704.	0.0	788.00	0.01	632.0	2,20	0.93	1.30	3.40	4149	6.6	2846	941.	364,	577.	52.6	8.0	0,771	6
TREASURTON W S #2 12S 40E 36ADB1S 9	/ 6/73	55	0.	38.	52	259.0	64.00	517 1	137.00	704.	0.0	755.00	0,01	633.0	1,90	0.37	1.20	3,40	4 199	6.6	2765	909.	332.	577.	50,9	7.5	-1.101	6
CLEVELAND H S ∦1 125 41E 31CACIS 9	/ 6/73	66	٥.	76.	60	208.0	50.00	458	98.00	718.	0.0	533.00	0.01	532.0	1.90	0.11	1.60	2,80	3229	6,4	2294	725.	136.	588.	54.0	7.4	~1,334	6
CLEVELAND H S #2 12S 41E 31CCA1S 9	/ 6/73	56	0.	38.	63	172.0	50.00	460	100.00	583.	0.0	538.00	0.01	532.0	1.90	0.76	0.80	2.80	3189	ő . 5	2204	635.	157.	478.,	56.7	7.9	-0.856	6
CLEVELAND H S #3 125 41E 31COB1S 9	/ 6/73	61	0.	189.	64	176.0	50.00	460	102,00	576.	0.0	530.00	0.01	530.0	1.90	0.21	1,50	2.90	3379	6.5	2199	650.	178.	472.	56.2	7.9	0.194	6
MAPLE GROVE H S 13S 41E 7ACA1S 9	/ 5/73	78	0.	76.	84	85.0	30,00	492	82.00	494.	0.0	256.00	0.01	596.0	1,10	0.07	1.40	2.30	2909	6.6	1869	335.	0.	405.	70.8 1	1.7	-0.057	6
MAPLE GROVE H 5 13S 41E 7ACA2S 9	/ 5/73	72	0.	378,	85	93.0	29.00	501	82,00	495.	0.0	261,00	0.02	601.0	1.10	0.12	1.30	2.30	2979	6.8	1896	351.	0.	406.	70.5 1	1.6	0,670	5
MAPLE GROVE H S 135 415 7ACA35 9	/ 5/73	60	0. :	3539.	86	93.0	25,00	492	80.00	494.	0.0	251.00	0.01	584.0	1.00	0.06	0,90	2.30	2899	6.8	1854	335.	0.	405.	71,0 1	1.7	0,486	6
BEN MEEK WELL 145 39E 36ADA1 9	/ 5/73	40	4.	0.	89	24.0	6.60	368	22,00	513.	0.0	13.00	0.01	322.0	9.60	0.10	1.10	0.58	1809	6.9	1106	87.	0.	420,	87.4 1	7.2	0,144	6
ELDIN BINGHAM 155-596 70801 8	/ 24/ 77	63	0.	38.	68	320.0	36.00	4600	770.00	930.	0.0	48.00	0.12	7800.0	3.90	0.0	0.0	4,40	27999	6.2	14103	946.	184.	762.	83,8 6	5,0	0.469	10
BATTLE CREEK H 5 155 39E SBDC1S 9	/ 5/73	82	0.	189.	109	174.0	19,00	3161	552.00	696.	0.0	35.00	0.01	5241.0	6,00	0.11	7,60	3.50	16619	6.7	9 639	512.	0.	570.	84.96	0.9	0.613	5
BATTLE CREEK H S 15S 39£ 88DC2S 9	1/ 5/75	43	0.	8176.	107	165.0	15,00	3071	535.00	697.	0.0	29.00	0.01	5048.0	6.00	0.42	7.30	3.40	15439	6.5	9320	476.	0.	571.	85,2 6	1.2	0.786	6
BATTLE CREEK H S 15S 39E 8BDC3S 9	9/ 5/73	81	0,	٥.	109	162.0	19.00	3053	533.00	757.	0.0	37.00	0.01	5034.0	6.00	0.28	7,20	3.60	15949	6.5	9325	482.	0.	620.	85.1 6	i0 . 5	0.318	6
BATTLÉ CREEK H S 15S 39E 88DC4S 9	5/73	84	0,	19.	97	215,0	24.00	4184	686,00	610.	0.0	33.00	0.01	6967.0	6.40	0.06	10,00	5.30	18479	6.8	12512	635.	135.	500.	65.7 7	2.2	1.255	6
SQUAW H S WELL 15S 39E 17BCD1 9	4/73	84	2,	435.	124	279.0	24,00	4368	782.00	791.	0.0	35.00	0.02	7398.0	4,30	0.12	B.10	4.30	20459	6,5	13403	795.	147.	648.	84.1 6	7.4	0.836	6
SQUAW H S 15S 39E 17BDC1S 8	/22/73	69	0.	140.	126	271.0	23.00	4184	708.00	816.	0.0	27.00	0.03	6877,0	4.30	0.16	7.30	4.20	20519	6.5	12621	771.	102.	669.	84.4 6	5.6	1.833	6
SQUAW H S 155 39E 178DC2S 9	0/11/73	73	0.	450.	126	241.0	26.00	3844	533.00	866.	0.0	23.00	0.02	6396.0	4.80	0.06	9,70	4,60	16859	6,6	11619	708.	0.	710.	85.7 6	52,8	0.046	б
MYRON FONNESBECK WELL																												
	9/ 3/73	23	48.	*****	74	78.0	27.00	68	18.00	418.	0.0	4.30	0.03	91.0	0,50	0.08	0.10	0.42	889	6.8	566	306.	0.	343.	31.0	1.7	-0,017	6
													Fremo	nt Cou	nty													
DONALO TRUPP WELL 7N 41E 25CBD1 7	/20/76	32	0.	0.	76	23.0	3,30	88	12.00	181.	0.0	26,00	0.0	25.0	6,20	0.0	0.0	0.0	524	7,8	348	71.	0.	148.	68.9	4.5	9,829	9
WAYNE LARSEN WELL 7N 415 26ACC1 0	/ 0/ 0	22	0.	0.	94	19.0	2.70	93	12.00	243.	0.0	23,00	0.0	28.Q	7.10	0.0	0.0	0,10	531	8.1	398	59.	0.	199.	73.3	5.3	-1.445	13
HENRY HARRIS WELL 7N 41E 34ADD1 6	6/16/77	33	0.	0.	64	25.0	5,90	69	6.90	204.	0.0	26.00	0.0	22.0	5,70	0.83	0.0	0,15	450	7.6	325	87.	٥.	167.	61.1	3.2	0,083	12
NEWDALE CITY WELL 7N 41E 34DCD1 C)/ 0/ 0	32	99.	0.	71	31.0	6,40	73	8.60	236.	0.0	0.0	0.0	29.0	4.70	0.0	0.0	0.10	535	8.0	339	104.	0.	193.	58.1	3.1	4.706	13
WALLACE LITTLE WEL 7N 41E 35CDD1 8		36	122.	٥.	75	28,0	6.30	78	8.60	240.	0.0	33.00	0,02	24.0	5.40	0.79	0.0	0.0	538	7.9	377	96,	0.	197.	61.4	3,5	-0.853	3

Franklin County

-																													
				pth ace	ľ	I	T	1			I			Ţ				Ī					Hard	ness					
lde	∙ing or Wel antificatic or and Nam	n 850	. Measured Surface Temperature ^o C	Well De nd Surf	(meters) Discharge (i/min)	Silica	Calcium Calcium	Magnesium (Mg)	Sodium (Na.)	Potassium (K)	Bicarbonate (HCO3)	Carbonate (CO ₃)	Sulfate (904)	Phosphate (PO ₄)	Chiloride (CI)	Flouride (Fl	Nitrate (NO ₃)	Boran (B)	Ammonia (№13)	Specific Conductance (fleid)	pH (field)	Total Dissolved Solids (TDS)	Carbonate	Non-Carbonate	Alkalinity as CaCO ₃	Percent Sodium (\$Na)	Sodium Absorption Ratio (SAR)	Cation-Aníon Balance	Data Reference*
													Fremor	t Cour	nty (co	ont'd	i.)												
	E HAWS WELL 1E 360DA1	6/24/76	32	0.	0.	68	24.0	7,30	44	4.90	188.	0.0	16.00	0.0		3.00	0.0	0.0	0.0	375 7	1.5	271	90.	0.	154.	49.9	2.0	-1.575	9
	SWINDELMÄN 25 80441		32	0.	0.	65	38,0	14.00	22	4.80	205.	0.0	8.80	0.0	14.0	2.00	0,0	0.0	0.0	388 7	.6	269	152.	٥.		23.2		0.782	9
	GTON PRODUC 2E 1900A1	CE WELL 7/19/76	26	0.	0.	33	35.0	17.00	15	2,20	144.	0.0	22.00	0.0	24.0	2.20	0,0	0,0	0.0		.9		157.			16.9		3.179	9
ASHTON 9N 42	N H S 2E 23DAC1S	8/28/72	41	0.	8.	110	1. 1	0,10	36	1.60	92.	0.0	4.70	0.05	2,9	2,20	0.24	0.0	0.0	166 7		204	3.	0.				-4.591	3
81G SF 14N 44	PRINGS 4E 34BBC1S	8/28/72	12	0.	*****	47	5.6	0,60	14	3.00	46.	0.0	3,20	0.03	2.5	3.10	0.05	0.0	0.0	102 6		101	16.	0.		60.0		-4.456	3
															County					102 0	•	101	10.	υ.	50.	00.0	1.	-4.490	j
	ONE H S IE 80DAIS	11/24/72	55	0.	76.	120	8.7	0.60	160	7.70	187.	0.0	110.00	0.04	62.0 1	6.00	0.0	0.0	0.0	799	7.5	576	24.	0.	153.	91.1	14.2	-2.421	3
	ROYSTONE H 1E 9CDC1S		45	0.	0.	94	15.0	2.40	99	5.30	169.	0.0	57.00	0.02	30.0	8,00	0.67	0.0	0.0	529	7.6	394	47.	o.	138.	79.9	6.3	1.154	3
														Goodin	q Coun	itu													
	ANNON WELL														. <u></u> .														
	3E 28ABB1 ARROW H S	6/21/72	47	49.	0.	92	9.8	1.20	100	5.90	278.	0.0	19.00	0.05	8.2 1	2.00	0.49	0.0	0.0	497 7	•0	385	29.	0.	228.	85.5	8.0	-7.062	3
45 13	3E 30ADB1S ARCHER WELL		65	0.	3126.	97	1.2	0.0	91	1.60	141.	22.00	15.00	0.03	6,6 1	2.00	0.11	0.0	0.0	407 7	.5	315	3.	0.	152.	97.5	22.9	-1,598	3
	ZE JAAAI	6/19/72	57	211.	0.	62	1.6	0.10	90	0.80	83,	42.00	19.00	0.03	8.4 1	9,00	0.17	0.0	0.0	413 8	•6	283	4.	0.	138,	97.3	18.7	-4.755	3
														Idaho	County	į													
	ORF H S																												
	4E 1BDC1S NSHS	8/ 1/72	45	0.	613.	73	2,3	0.0	49	0.80	19.	41,00	18,00	0.02	3.0	2,00	0,03	0.0	0.0	218 8	8.1	198	6.	0.	64.	94.0	8,9	0.067	3
24N	2E 1408015	8/ 1/72	42	0.	189.	72	6.2	0,10	160	3.40	11.	25,00	300.00	0.02	0.0	2,10	0,02	0.0	0.0	812 E	8.6	582	16.	0.	51.	94.5	17.5	-1,703	3
	2E 180D 15	0/0/0	61	0.	742.	70	1.6	0.0	50	0.50	51.	29.00	5.30	0.0	3.6	5.70	0.0	0.0	0.0	0 9	0.0	190	4.	0.	90.	95.9	10,9	-1.300	2
28N 11	IVER H S DE 300015	8/21/72	55	0.	132.	76	2.7	0.0	81	1.60	36.	36.00	44.00	0.01	4.4 2	3.00	0.04	0,0	0.0	380 8	. 6	286	7.	٥.	89.	95.3	13.6	-4.630	3
	CREEK H S 1E 13BCC1S	8/23/72	48	0.	151.	49	3.3	0.0	29	0.50	21.	22,00	15.00	0.03	2.1	2,20	0.03	0.0	0.0	148 8	3.5	133	8.	0,	54.	87.7	4.4	-4,667	3
	JOHNSON H 3E 18ADD1S		48	٥.	1135.	49	2.7	0,20	37	0.40	24.	25,00	25,00	0.04	1.9	1.60	0.03	0.0	0.0	186 8	.7	154	8.	0.	61.	90.9	5.9	-3.915	3

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

1997 - 19

Jefferson County

HEISE H S 4N 40E 250DAIS	7/27/72	49	٥.	227,	30 ·	450.0	82.00	500 1	90.00	100.	0,0	740.00	0.04 2	2400.0	3,10	0.10	0.0	0.0	8839	6.7	5936	1460.	558.	901.	65.7	17.1	-1.000	3
													Jaron	ie Cour	,+ <i>i</i> ;													
ROYAL CATFISH INDUSTRY 95 17E 2908B1	5/24/73	43	0, 1	****	74	2.2	0.0	98	1,90	108.	42.00	17.00	0,10	16.0 1		0.0	0,0	0.0	454	9.0	315	5.	0,	158.	96.4	18.2	-1,775	9
													Lemhi	i <u>Count</u>	9													
CRONKS CANYON H 16N 21E 18ADC1S		46	0,	76.	37	11.0	1.40	160	11,00	339.	0.0	66.00	0.04	26.0	7.00	0.06	0.0	0.0	757	7.4	486	33.	0.	278.	88.0	12.1	-1.016	3
SALMON H S 20N 22E - 3ABDIS	8/24/72	45	0.	549.	33	23.0	11,00	190	28.00	565.	0.0	34.00	0.04	50,0	1.80	0,03	0.0	0.0	1059	6.3	648	103.	0.	463,	74.9	8.2	-1,960	3
SHARKEY H S 20N 24E 34CCC1S	8/24/72	52	0.	30.	91	7.3	0.60	270	17.00	470.	0.0	160.00	0.02	51.0	12,00	80.0	0.0	0.0	1269	7.4	540	21.	0.	385.	93.3	25.8	-2,196	ž
BIG CREEK H S 23N 18E 22CAD1S	7/13/72	93	0.	284.	150	5.3	0.20	220	14.00	488.	0.0	53.00	0.05	29.0	15,00	0.07	0.0	0-0	1009	7.5	726	14.	0.	400.	93.7	25.5	-2,482	3
												1	Madisc	on <u>Cour</u>	ity													
LAVERE RICKS WEL 5N 40E SCBA1	L 0/ 0/ 0	21	98.	٥.	42	34.0	12.00	18	3.10	174.	0.0	11.00	0.0	20.0	1.30	0.0	0.0	0.0	341	7,9	226	134.	0.	143.	22,1	0.7	-2.345	4
MARK RICKS WELL 5N 405 8BCC1	6/15/77	26	0.	0,	50	33.0	11.00	20	3.90	170.	0.0	12.00	0.0	12.0	1.70	0.81	0.0	0,03	0	7.6	227	128.	0.	139.	24.7	Q.8	0.489	4
PAULINE SMITH WE 5N 40E 9CCC1	LL 0/0/0/0	21	140.	0.	40	37.0	15.00	14	2.70	189.	0+0	11.00	0.0	16.0	0.60	0,0	0.0	0.0	365	8.0	229	154.	0.	155.	16.2	0.5	-0.920	13
GREEN CANYON H S 5N 43E 6BCA1S		44	0.	0.	25	140.0	32.00	3	3,60	167.	0,0	330.00	0.01	1.7	1.60	0.13	0.0	0.0	846	6.8	620	481.	344.	137.	1.7	r Q.1	0.412	3
WALZ ENTER. INC, WELL 6N 41E 10ACC1	0/0/0	26	0.	0.	65	31.0	6.90	65	9,00	232.	0.0	26,00	0.0	27.0	3.70	0.0	0.0	0.10	492	7.7	347	106.	0.	190.	54.7	1 2.7	-1,945	13
WANDA WOOD WELL #1 6N 41E 1088B1	0/0/0	24	81.	0.	66	33.0	7.20	64	8,60	240.	0.0	0.0	0.0	24.0	3,50	0.0	0.0	0,10	493	в.О	324	112.	0.	197.	53.1	2,6	4.162	13
WANDA WOOD WELL #2																												
6N 41E 100881	6/16/77	27	0.	0.	80	31.0	7,60	70	8,50	217.	0.0	26,00	0.0	25.0	4.50	1.10	0.0	0.13	470	7.6	360	109.	0.	178.	56.0	2.9	3.029	12
													Oneida	Count	ty													
KENT H S 12S 34E 368CB1S	5/17/72	24	0.	715.	33	56.0	19,00	15	4,30	226.	0.0	18.00	0.0	35.0	0.30	0,73	0.0	0.0	4 79	6.7	292	218.	33.	185.	12.	7 0.4	0.293	3
MALAD W S 14S 36E 27CDA1S	5/16/72	25	0.	167.	19	240.0	79.00	1200	210.00	958.	0.0	25,00	0.0	2100.0	0.40	0.95	0.0	0.0	7589	6.5	4345	924.	139.	785.	68.0	5 17.2	0.370	3
PLEASANTVIEW W S 155 35E - 3AABIS		25	0.	*****	21	110.0	33.00	280	29,00	331.	0.0	110.00	0.0	470.0	0.70	1,50	0.0	0.0	2189	6.8	1217	410.	139.	271.	57.3	7 6.0	0,229	ž
WOODRUFF H S 165 36E 10BBC1S	5/11/72	27	0.	0.	29	130.0	45.00	910	87,00	454.	0.0	58,00	0.03	1600.0	0.60	1.40	0,0	0.0	5369	7.3	3084	509.	137.	. 372,	76.	1 17.5	-1.735	3
													0wn how	e Coun	* * * 3													
													0.791100	<u>coun</u>	<u>.</u>													

GIVENS H S IN 3W 2188015 5/ 0/57 49 0. 0. 75 1.0 0.0 126 1.40 150. 35.00 31.00 0.0 23.0 14.00 0.20 0.0 0.0 582 9.2 380 2. 0. 181. 98.5 34.7 -0.890 1

and the later

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

																_	-		-				a service a	sansmang		aaaaaaaaaaaaaaaa	4000000201
			I	1 1										1					1 1		Hardı	ness		i	1 1		
	1	f∓ 3	1				1																	1	c .		
	9	9 <u>6</u> 4)	σ					~		
	ň.	់ខ្ 🗅 🦮	_																1 1	\$~	1 1	φ		E	a t		
1	5		s						Ð				i					o		10S 10S	1	te a		, p	່ຂີລລ	S.	#
1	8 4	기도 독 등	φ			Ę		E	te a	Ø		o								SSE	9	DO 10	÷ 2	S' C	9 t X	nce Ince	8
	0 0 - 0	ig ta g ⊐	202		£	2]	.2	5.0	ta ∼	9	~ o*	5	d€	0		o .	4.4.4	1 2	÷ 9	6	ar }	Ēĝ	±zĭ	<u></u>	1-r Tar	a ça
Spring or Well	ater	5 8 f 3	2 e ie	5 G	1.2	а (р	5 2	355 (X)	101	56	4) at	40 ⁵	120	Ξ.	te (n	5.0	Ξ.n	o pice	동풍	μΞ	ž i	ő	l a Da∩	θS	Ĕ.	2 P	e a
	STO N	8 E 10 E	- s -	= 2	100	£,≥	i pe	÷,	ŭ,5	4 <u>0</u>	÷S	S C	58	55	÷ž	28	¥Ź.	5 č Č	<u> </u>	100	5	Ŕ	i ki	Ъ.	8	*	ē.
Number and Name	S 2		ΞŬ	s:	õ	- X	ч	ď.	œ	ő	°s,	l á	ð	u.	z	ă _	Υ.	ŭ	1 7	щщ,	Ο	ž	≺ ë	പ്	ŵ.	ü	o≾
	<u> </u>				and the second state	CANCER STATE				1		<u>i</u>							and the second second	Brankow Strangerst	A	100/06/08/07	Reasonances	010000000000000000000000000000000000000	ferran a successful d	Constantia Constant	CONTRACTOR STATES

												Owyhee	Count	ty (con	t'd.,	,											
WESLEY HIGGINS IN 4W 12DBB1	WELL 6/13/72	36	195.	1552.	40	2,2	0.0	110	0.30	214,	0.0	8.60	0.01	28.0 7	7.90	0.04	0.0	0.0	483	7.2	302	5.	0.	175.	97.6 20.4	0.024	3
EARL FOOTE WELL 15 2W 7CCB1	6/ 5/72	46	518.	640.	32	1.9	0.0	120	1.20	187.	12.00	45.00	0,01	19.0 11	.00	0.04	0+0	0.0	545	8.7	334	5.	0.	173.	97.7 24.0	-1,631	3
ALFRED HEYWOOD 1 3S 1E 35DAC1	WELL 7/24/73	20	91.	0.	55	43.0	9,90	35	6.00	246.	0,0	25.00	0.07	7.7 2	2,10	0.01	0.0	0.06	440	7.8	304	148.	0.	202.	32.6 1.3	-3,394	ŝ
WILLIAM COX WELL #1 4S IE 25CCD1	7/24/73	30	0.	19.	120	25.0	2,90	310	29.00	952.	0.0	5.50	0.25	25.0 0	0.60	0.02	0.0	0+0	1419	7.3	986	74.	0.	780.	85.8 15.6	-2,564	5
WILLIAM COX WELL #2 4S 1E 26ABC1	6/ 8/73	27	518.	189.	96	13.0	2.80	250	29,00	763.	0.0	3.60	0,16	13.0 0	.60	0.01	0.0	0.78	1159	7.3	785	44.	0.	625.	87.0 16.4	-2.177	5
T. ADCOCK WELL 4S 1E 29CCD1	6/ 5/73	70	927.	5602,	83	1.2	0.0	100	0.80	69.	51.00	39.00	0.01	12.0 12	2.00	0.0	0.0	0,15	476	9.2	332	3.	0.	142.	98.2 25,1	-2,256	5
GEORGE KING WELI 45 1E 34BAD1	6/ 6/72	75	902.	0.	83	1.1	0.20	98	0.70	108,	33,00	40.00	0.03	12.0 12	2.00	0.05	0.0	0.0	454	7.9	333	4.	0.	144.	97.9 22.6	-3,963	3
G. CHRISTENSEN WELL 4S 2E 2908C1	7/27/73	28	305.	38.	100	21.0	6,90	330	24.00	1010.	0.0	4.50	0.0	31.0 0	.30	0.0	0.0	0.62	1389	7.4	1014	61.	0.	828.	86.6 16.0	-3.016	5
R. KETTERLING WI 4S 2E 32BCC1	ELL 7/ 9/73	43	824.	95.	110	5.8	0,70	150	8.50	363.	0.0	5,20	0.07	17.0 8	.70	0.70	0.0	0.0	699	6.8	494	17.			92.0 15.7	-2.134	5
C. STEINER WELL 55 1E 3AAB1	7/24/73	32	579.	0.	120	27.0	1.30	260	29.00	787.	0.0	7,20	0,22	18.0 0	.50	0.0	0.0	0.80	1229	7.8	850	73.			83.7 13.3	-0.399	5
E. LAWRENCE WELL #1 55 1E 108001	6/ 5/73	64	902.	4542.	83	2.2	0.0	100	0.70	63.	49.00	42.00	0,01	13.0 15	i.00	0.0	0.0	0.16		9.3	335	5.			97.1 18.6	-2,591	5
E. JOHNSTON WELL #2 55 1E 21CBC1	6/ 6/73	65	201.	1382.	77	1.3	0.0	100	0.70	57.	50,00	42.00	0.02	13.0 15	.00	0.05	0.0	0.17	468	9.2	327	3.			98.1 24.2	-2.404	5
E. LAWRENCE WELL #2 55 1E 24ACD1	7/ 9/73	65	756.	7646.	89	1.1	0.0	100	1,30	82.	39.00	41.00	0.01	14.0 15	.00	0.78	0.0	0.15	463	9.3	341	з.	0.	132.	98.0 26.3	-2.766	5
E. LAWRENCE WELL #3 55 1E 24ADB1	7/24/72	66	951.	4012.	82	1.2	0.10	100	0,80	105.	31.00	45.00	0.23	13.0 14	.00	0.04	0.0	0.0	459	7.9	338	3.	0.	138.	96.0 23.6	-4,260	3
OSCAR FIELDS WE 55 2E 18BC1		50	549.	95.	77	1.7	0.0	86	0,60	46.	59.00	7.10	0.0	16.0 15	.00	0.36	0.0	0.0	423	9.6	285	4.	0.		97.4 18.2	-3,567	5
CLARENCE HOPKIN WELL	S		360	70	00		2.00	250	22.00	67E	0.0	7 40	0.06	25 0 0	- 4 0	0.01		0.00	1000		276						_

WELE 55 22 200A1 6/ 7/75 37 750, 38, 89 9.9 2.00 250 22.00 675, 0.0 3.40 0.06 25.0 6.40 0.01 0.0 0.20 1099 7.5 739 33, 0. 555, 89.9 19.0 -0.335 5

COX AND LAWRENCE WELL -----55 27 58/01 6/ 5/73 43 613. 284. 110 5.2 1.10 150 6.70 223. 75.00 8.10 0.04 20.0 8.60 0.0 0.0 0.99 648 9.3 494 17. 0. 308. 92.6 15.6 ~2.234 9 H. DRISKEL WELL #1 55 25 13ADA1 6/22/73 23 533. 19. 110 13.0 2.60 260 28.00 767. 0.0 3.20 0.10 30.0 1.50 0.0 0.0 0.0 1250 7.6 0 620 97 9 17 7 _2 750 5 P25 43 N. MOKEFIH WELL 55 3E 20ADA1 7/13/73 60 738. 0.110 1.1 0.10 85 0.70 27. 61.00 6.40 0.01 15-0 19-00 0.09 0-0 0.78 396 9.6 311 3. 0. 174. 97.9 20.8 -3-594 BURGHARDT CO. WELL 55 3E 2088B1 7/23/73 27 738. 19. 110 42.0 3.90 230 19.00 705. 0.0 6.70 0.13 30.0 0.50 3.60 0.0 0.79 1129 7.2 791 121. 0 576 77 5 9 1 0 973 4 LEROY BEAMAN WELL 55 3E 22AAD1 6/22/73 25 396, 19, 140 19.0 3.40 250 18.00 683. 0.0 4 60 38.0 0.70 0.70 0.02 0.0 0.20 1270 7.3 000 £1 0. 560; 86.6 13.9 0.490 5 COOK'S GREENHOUSE WELL # 55 3E 26BCB1 6/ 7/73 83 905. 0, 110 2.1 0.0 110 1.70 22. 64.00 62.00 0.02 15.0 15.00 0.01 0.0 0.57 530 9.3 390 5. 0. 125, 97.0 20.9 -0.837 105 COOK! S GREENHOUSE WELL# 55 3E 268CB2 6/ 8/73 67 905. 0.100 1.5 0.10 110 1.50 35, 55,00 64.00 0.01 15,0 14,00 0.03 0.0 0.55 529 9.3 0, 120, 97,5 23,5 -0,151 205 378 4 D. BYBEE WELL #1 0, 117, 97,2 17,8 55 3E 278001 7/13/73 60 884. 0. 69 1.4 0.10 81 0.90 63. 39.00 12.00 17 0 20.00 405 9.4 271 -6.761 5 0.0 0.25 0.0 0.83 Δ. A. WHITTED WELL 55 3E 28BCC1 5/31/73 65 774. 0. 98 0.8 0.0 97 1.30 27. 67.00 9.80 0.02 15.0 21,00 0.0 0.0 0.62 437 9.4 323 7. 0, 134, 98,3 29,9 -1.421 5 D. BYBEE WELL #2 55 3E 350001 5/31/73 72 784. 0.100 2.2 0.0 100 1.10 54, 49.00 72.00 0.03 16.0 15.00 0.01 0,0 0,56 551 9.3 381 -7.947 0. 126. 96.9 18.6 5 5 IDAHO POWER OD WELL 55 4E 34CCB1 7/20/73 27 111. 0.0 240.00 0.13 0 0/ 85 0 7.90 83 12 00 227 0.03 18.0 1.70 0.0 0.0 845 8.3 653 24.4 58, 186, 41,0 2,3 -3.235 5 CHESTER TINDALL WELL 0.30 1649 7.2 55 5E 338801 7/31/73 22 76. 0. 40 86.0 66.00 170 6.90 425. 0.0 450.00 0.0 50.0 0.60 5.30 0.0 1083 486. 138. 348. 42.8 3.4 -1.695 CLAY ATKINS WELL 55 5E 34DDD1 7/31/73 25 270. 0. 87 29.0 12.00 190 25.00 625. 0.0 12.00 0.0 24.0 0.60 0.33 0.0 0.70 1099 7.5 6BB 172. 0. 512. 72.7 7.5 0 719 5 LOWER BIRCH SPRING 6S 1E 32B8A1S 7/12/73 25 0. 0, 45 37.0 8.50 22 1.60 126, 0.0 35.00 0.01 21.0 0.50 0,56 0,0 0.03 344 7.2 233 127, 24, 103, 27,0 0.8 1.067 L. POST WELL #1 65 3E 20881 5/31/73 62 930. 0, 99 1.2 0.0 120 2.80 86, 52,00 45.00 0.02 19.0 17.00 0.01 0.0 0.85 599 9.1 3. 0. 157. 97.5 30.2 -1.665 308 27 L. POST WELL #2 65 3E 20001 7/ 6/73 53 591, 2725, 100 1,2 0,10 110 4,00 120, 37,00 27,00 0,02 18,0 17,00 0,03 0,0 0.76 504 9.2 373 3. 0, 160, 96,6 25,9 -7-158 = W. BUNT WELL 65 3E 48CC1 6/ 4/73 48 512. 0. 110 1.6 0.0 110 6.40 58, 74,00 42,00 0.02 11.0 12.00 0.0 534 9.4 395 0. 171. 95.7 23.9 0.0 0.44 4. -2 106 5 J. AGENBROAD WELL 65 3E 5CAC1 6/ 4/73 61 1098. 0. 94 4.6 0.0 59 3.40 78, 12.00 20.00 0.01 9.7 11.00 0.08 0.0 0.15 320 8.6 252 11. 0. 84, 89,0 7,6 -1,290 5 NIELSON & CAROTHERS WELL 65 3E 9ACC1 6/ 4/73 39 434, 6283, 130 3,6 0,10 97 8,10 157, 25,00 42,00 0,06 11.0 9.10 0.0 0,0 0.42 516 8.8 403 9. 0, 170, 91,4 13,8 -4,844 5 TRIANGLE DAIRY WELL #1 65 3E 110A01 7/25/73 34 427. 0.120 5.6 0.30 86 6.10 155. 0.0 33.00 0.12 11.0 11.00 0.03 0.0 0.40 433 8.9 349 0, 127, 89,0 9,6 15. 0.639 5 LITTLE VALLEY IRR. WELL 65 4E 14ABC1 5/30/73 54 581. 5602. 140 5.0 0.10 110 4.70 20, 74.00 65.00 0.06 19.0 24.00 0.02 0.0 0.54 583 9.4 451 13. 0. 140. 92.7 13.3 -7.328 5

65 4E 258C1 6/26/73 20 534. 341. 73 41.0 2.30 95 13.00 129. 0.0 190.00 0.03 14.0 3.90 0.23 0.0 0.13 702 7.8 495 112. 6. 106. 61.7 3.9 0.012

5

KENT KOHRING WELL #1

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

			p th ace			Γ																Hardn	.əss			50		
Spring or Well Identification Number and Name	Sample Collection Date	Measured Surface Temperature ^O C	Reported Well Depth below Land Surface (meters)	Discharge (1/min)	Silica (Si0 ₂)	Calclum (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Blcarbonate (HCO ₃)	Carbonate (CO ₃)	Sulfate (SO ₄)	Pirosphate (PO ₄)	Chloride (CI)	Flouride (F)	Nitrate (NO ₃)	Boran (B)	Ammoniia (NH ₃)	Specific Conductance (field)	pH (field)	Total Dissolved Solids (TDS)	Carbonate	Non-Carbonate	Alkalinity as CaCO ₃	Percent Sodium (\$Na)	sorpti io R)	Cation⊸Anion Balance	Dafa Reference*
												Owyhee	Count	<u>:y</u> (cor	nt'ā.,)												
65 4E 35CDA1	6/26/73	33	303.	0,	96	4,6	0,10	47	8.90	96.	0.0	24.00	0.04	9.0 8	8.00	0.0	0.0	0.10	273	3.5	244	12.	0.	79.	81.5	5,9	-5.182	5
COLYER CATTLE CO. 6\$ 5E 100001	WELL 7/ 5/73	39	508,	19.	78	2.6	0,30	120	4,30	159.	19,00	24.00	0,02	15.0 25	.00	0.04	0.0	0,69	508 8	8.4	370	в.	0.	162.	95,2	18,8	-2.129	5
J.R.SIMPLOT WELL #1 65 5E 18CCB1	6/26/73	27	902.	0.	120	3.9	0.10	100	7.30	93.	25,00	52.00	0.03	20.0 13	\$. 00	0.13	0.0	0.54	520	7_6	387	10.	0.	118.	91.8	13.7	0,356	5
J.R.SIMPLOT WELL ∦2 6S 5E 20AAB1	5/30/73	44	0.	19.	59	4.7	0.10	110	5.60	198.	18.00	3.70	0.04	17.0 24	4.00	0.0	0.0	0.95	562 E	3.8	339	12.	0.	192.	92.5	13.7	-4.796	5
GEORGE HUTCHINSON WELL 6S 5E 24BCA1	6/25/73	34	334.	19.	89	3.6	0.0	120	4.60	149.	21.00	28.00	0.02	13.0 2	7.00	0.0	0.0	0,57	509 9	9.1	379	9.	0.	157.	94.6	17_4	-0,106	5
BRUNEAU CITY WELL 65 5E 2400B1		33	591.	٥.	79	2.8	0.0	99	2.30	127.	10.00	35.00	0.05	11.0 2	5 . 00	0.0	0.0	0.38	418 9	9.0	326	7.	0.	121.	95.6	16.3	-2,959	5
DON DAVIS WELL #1 65 5E 29DCC1	7/ 5/73	33	476.	19.	120	7.1	0.30	87	6.30	117.	4.00	42.00	0.04	15.0 1	9.00	0.05	0.0	0.40	435 8	3.8	358	19.	0.	103.	87.5	8.7	-0.672	5
CARL & HARRY LOOS WELL 6S 5E 35CCA1	7/19/73	22	140.	0.	73	38.0	3.30	54	6.60	166.	0.0	56.00	0.02	11.0	5,90	0.17	0.0	0.10	462 9	3. 1	342 1	08.	0.	136.	49.6	2.3	-0.773	5
	7/ 6/73	37	302.	0.	120	10.0	0.60	180	15.00	493.	0.0	3,60	0.07	19.0	5.90	3.00	0.0	0.10	843 8	3.2	599	27.	0.	404.	89.4	15.0	-1.910	5
MILDRED BACHMAN WELL 6S 6E 19CCD1	5/22/73	38	278,	19.	88	3.0	0.0	93	3.10	94.	19,00	38.00	0.01	10.0 26	5 . 00	0.01	0,0	0.34	457 9	₽.0	326	7.	0,	109.	94.6	14.8	-3.875	5
BRUNÉAU CEMENTARY WELL	,																											
ACE BLACK WELL	7/18/73	42	333.	0.	84	2.3	0.0	94	1.90	87.	24.00	28,00	0.0	10.0 26	i.00	0.02	0.0	Q.34	421 9	•.2	312	6.	0.	111.	96.2	17.1	-2.650	5
WILBUR WILSON	6/25/73	35	427.	95.	87	3,1	0,10	94	3.10	132.	8.00	28.00	0,02	11.0 27	.00	0.01	0.0	0.35	413 9	.3	326	8.	0.	122.	94.4	14.3	-4.688	5
	8/ 1/73	41	305.	19.	73	7.0	0.60	260	8.00	614,	0.0	3.40	0.0	62.0 4	4.40	0.0	0.0	0.50	239 8	8.0	720	20.	Ū.	503.	94.9	25.3	-1.045	5
WILBUR WILSON WELL #2 6S 7E, 10BD1	8/ 1/73	33	320.	38.	72	8.1	1,20	250	8.20	585.	0.0	3.60	0.0	79.0	5.20	0.02	0.0	0.90	169 8	8.0	712	25.	ο.	479,	93.9	21.7	-2.089	5
CARL JOHNSON WELL 65 7E 2CDD1	6/25/73	35	412.	19.	75	5.8	0.50	210	7.60	524.	0.0	2.80	0.01	56.0	7.60	0.30	0.0	0,70	951 8	8.0	623	17.	0.	429,	94.6	22.5	-5.056	5
SAND DUNES FARMS WELL 6S 7E 888A1	7/26/73	23	111.	0.	87	26.0	17.00	240	31.00	530.	0.0	250.00	0.04	17.0 (0.70	0,01	0.0	0.28	209 7	7.0	929 1	35.	0.	434.	75,0	9.0	-1.708	5

111

s. Marine de la compa - A.

 $\sum_{i=1}^{n}$

BILL BURGHARDT WELL #2 75 3E 4ACD1 6/ 8/73 34 245, 2725, 94 51.0 2.80 31 15.00 214, 0.0 36.00 0.02 7.2 1.70 0.02 0.0 0.08 437 7.4 343 139. 0, 175, 29.9 1.1 -1.210 5 KEITH THOMAS WELL 75 4E 1ACC1 5/21/73 40 549. 2896. 83 6.9 0.20 53 6,70 79.100.00 17.00 0.02 8.6 9.70 0.29 0.0 0.10 324 18. 0. 231, 81.2 5.4 -34.337 5 278 8.6 PETE MERRICX WELL #1 5 75 4E 3ABD1 6/28/73 42 348, 6283, 95 5.8 0.10 46 7.40 88, 5.00 20.00 0.01 8.7 8.90 0.12 0.0 0.12 272 8.4 240 15. 0. 80. 80.4 5.2 -5.188 PETE MERRICK WELL #2 75 42 108081 6/11/73 38 349, 1874, 99 7.2 0.10 47 8.30 106. 0.0 24.00 0.04 8.6 9.40 0.26 0.0 0. 87, 77,9 4.8 -6,581 5 0.11 284 8.6 256 18. FRANK MILLETT WELL #1 75 4£ 11CBC1 6/12/73 36 457, 7475, 99 16.0 0.30 45 9.00 113, 0.0 30.00 0.03 9.3 8.20 1.30 0.0 0.10 312 8.3 273 41. 0. 93. 65.0 3.1 -3.270 5 FARIA BROTHERS WELL 17.00 0.02 79. 80.5 5.2 1.994 75 4E 128001 5/21/73 43 337. 0, 96 7.0 0.10 51 7.00 97. 0.0 8.4 8.70 0.29 0.0 0.10 293 743 18. σ. 8.7 CLARENCE COOK WELL 75 4E 1380C1 7/26/73 59 323, 5602, 95 7,3 0,20 49 7,80 89, 6,00 20,00 0,06 19. 0, 83, 78.6 4.9 -1.866 8.0 9.00 0.26 0.0 0.10 289 9.0 246 DAVE LATHINEN WELL 75 4E 130CD1 5/30/73 40 305. 4750. 97 8.7 0.10 53 7.50 R0. 11.00 19.00 0.02 9.0 11.00 0.25 0.0 0.09 261 8.7 255 22. 0. 84. 78.4 4.9 0.200 5 FRANK MILLETT WELL #2 75 4E 14ABC1 6/12/73 39 349, 6283, 96 7.2 0,10 45 7.80 104, 0.0 18.00 0.04 8,1 6,00 1,20 0.0 0.11 275 8.6 240 18, 0. 85. 77.5 4.6 -2.830 5 ROBERT BLACK WELL 75 4E 15ACD1 6/12/73 33 325, ***** 100 23.0 0.80 48 9.90 123, 0.0 54.00 0.04 9,9 14.00 0.60 0.0 0.11 359 8.0 3Z0 61. 0. 101. 58.7 2,7 -9.081 5 BLAINE RAWLINS WELL #3 75 4E 230882 6/13/73 39 247. ***** 96 12.0 0.20 56 292 31. 0. 99. 75.1 4.5 -3.571 5 8.70 108. 6.00 36.00 0.0 11.0 10.00 1.10 0.0 352 8.4 0.0 BELL BRAND RANCHES WELL 75 4E 25ADC1 5/24/73 37 224, ***** 100 6.8 0.10 25 6.40 247 17. 0. 89. 68.0 2.6 -37.484 5 108, 0.0 29.00 0.04 11.0 15.00 0.58 0_0 0.12 364 8.9 GUTHERIES RANCH WELL 0. 84. 68.7 3.4 -1.873 5 75 4E 266C81 7/10/73 31 264. 4920. 91 13.0 0.40 45 8.30 103. 0.0 22.00 0.05 0.11 251 54 -12.0 8.20 0.82 0.0 300 8.2 DAVE LATHINEN WELL 0. 89. 64.5 3.0 -1.121 75 4E 278CC1 7/10/73 27 424. 5261. 76 16.0 1.30 46 7.70 109. 0.0 28.00 0.06 14.0 6.60 1.90 û.0 0.11 292 8.0 251 45. 5 ACE BLACK WELL #2 7S 5E \$DBC1 6/25/73 32 733, 95, 75 4,4 0,10 63 6,10 87, 4,00 48,00 0,02 9.5 8.20 0.0 0.0 0.17 332 9.0 261 11. 0. 78. 87.7 8.1 -2.290 5 DAVIS BROTHERS WELL #1 7S 5E 7ABB1 7/ 6/73 39 495. ***** 91 8.5 0.20 51 7.40 96. 0.0 17.00 0.04 9.8 9.70 0.95 0.0 0.09 279 8.5 24.2 22. 0. 79. 77.9 4.7 1.912 5 DAVIS BROTHERS WELL #2 75 5E 80001 5/21/73 40 457. 3066. 90 5.9 0.10 55 6,90 81. 11.00 19.00 0.01 9.3 11.00 0.25 0.0 0.11 291 8.7 248 15, 0. 85, 83.3 6,2 -1.580 HARRY LOOS WELL 75 5E 90001 6/14/73 40 630, 3406, 89 12.0 0.50 50 6.80 85. 9.00 18,00 0,0 9.0 11.00 0.71 0.0 0.06 290 8.6 247 32. 0. 85. 72.8 3.8 0.453 ROY DAVIS WELL #2 75 5E 13AAC1 7/17/73 25 46. 1325. 93 18.0 100, 0.0 50,00 0.04 10.0 10.00 0.15 0.12 361 8.4 292 54. ٥, 82. 62.6 3.0 0.301 5 51 9,20 0.0 2-30 CARL STEINER WELL 233 17. 0. 79. 80.8 5.3 -2.142 284 8.7 5 75 5E 13CBB1 6/21/73 36 596. 0.83 ó.7 0.0 50 7.10 86. 5.00 19.00 0.04 9.0 11.00 0.13 0.0 0.13 ROBERT TINDALL WELL 75 5E 16ACD1 5/30/73 40 462. 0. 90 6.7 0.10 53 6.50 101. 0.0 20.00 0.02 9.8 16.00 0.26 0.0 0.09 278 8.7 252 17. 0. 83. 81.9 5.6 -6.649 5

翻志工

1.1

			Depth urface	0.000					an la canada da canad	10.1100-10		, <u>18 </u>						CALINCE SHATE				Hardi	ness			5	They are an	
Spring or Well Identification Number and Name	Sample Collection Date	Measured Surface Temperature ^O C	de I	(meters) Discharge (!/wio)	Sf11ca (510 ₇)	Calciuma (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Sicarbonate (HCO ₃)	Carbonate (CU3)	Sulfate (SO4)	Phosphate (PO ₄)	Chloride (C1)	Flouride (F)	Nitrate (NO ₃)	Boron (B)	Ammonia (NH3)	Specific Conductance (field)	pH (field)	Total Dissolved Solids (TDS)	Carbonate	Non-Carbonate	Alkalinity as CaCO ₃	Percent Sodium (\$Na)	01 j	Cation-Anion Balance	Revenues automatication and a second se
BELL BRAND												Owyhee	Count	<u>y</u> (con	at'₫.)												
INC. WELL	7/23/73	37	232.	4428.	95	7.7	0.10	55	7,60	103.	0.0	24,00	0,0	11.0 12	2,00	0,24	0.0	0,11	309 8	.4	263	20.	0.	84,	80.3	5.4	-2,853	5
GENE TINDALL WELL 75 5E 28ACD1 5	5/24/73	34	306.	4239.	94	8,3	0,30	52	9,20	97.	0.0	24.00	0.01	9,5 11	1,00	Û., 23	0.0	0,11	297 8	•6	256	22.	0.	79.	77.0	4.8	-0.525	5
GEORGE TURNER WELL 75 6E 7AAC1 7	7/19/73	25	331.	0.	100	2.8	0.10	61	6.80	8Û,	16,00	23.00	0.03	10.0 10	0.00	0.01	0.0	0.14	310 !	9.2	269	7.	0.	92.	89.2	9,5	-3.063	5
COLYER CATTLE CO. WELL 3 75 GE 9BAD1 7	7/ 5/73	51	277.	0.	100	1,6	0,30	100	2,80	59,	43,00	27.00	0,04	10.0 24	1.00	0.06	0.0	0.21	461	9.4	337	5.	0.	120.	96,1	19.0	-0.312	0
R.L. OWENS WELL #2 7S 6E 16CDC1 €	6/14/73	43	156.	0.	81	7.4	0,40	49	5,10	99,	3,90	18.00	0.0	9.0 8	8.90	0,33	0.0	0,06	287 1	8.5	230	20.	0.	86.	60.0	4.8	-3.509	ę
HOT SPRINGS RANCH WELL 75 6E 21DBC1 6	6/14/73	43	232.	0,	82	5.9	0.30	54	4,60	91.	7.00	18,00	0.0	9.0 12	2.00	0.28	0.0	0.07	287 (3.5	237	16.	0,	86.	84.3	5.9	-4.179	5
R.L.DWENS WELL #4 75 6E 2388B1 11	1/ 0/53	47	0.	0.	75	9.0	1,20	51	6.10	110.	0.0	17.00	Ũ.O	9.0 IO	0.00	1.30	0.0	0.0	287	7,2	233	27.	٥.	90.	75.9	4.2	-0,854	1
ROSE WILLIAMS WELL 75 6E 23CAD1 5		44	396,	0,	100	12.0	1.10	53	7,20	125,	0.0	17,00	0.01	5.7	8,20	0,54	0.0	0,12	327 I	3.3	269	34.	0.	103.	72.5	3.9	1.103	5
R.L. OWENS WELL #7 75 6E 26ADA1 5	5/22/73	38	305.	3899.	82	16.0	2,80	36	6,90	134.	0.0	15.00	0.02	8,6	3,10	0.66	0.0	0.10	288	3.0	236	51.	0.	110.	56.5	2,2	-4,157	5
JAMES PRESCOTT WEI 75 6E 27AD81 (LL 6/19/73	43	122.	2044.	84	12.0	1.10	48	6,20	129,	0.0	17.00	0.03	8.6	5,40	0,59	0.0	0.08	287	9,2	246	34.	0.	106.	71.1	3.6	-1,244	5
JEAN PRESCOTT H S 7S 6E 34DCB1S (41	ο.	1703.	83	6.2	0.30	55	5.50	103,	6,00	18.00	0.03	8.8	8.50	0,46	0.0	0,01	288	9.1	24 2	17.	0.	94.	83.4	5,9	-2,243	5
PRESOTT W S 75 6E 35BBB15	7/18/75	40	0.	0.	89	13.0	1,80	43	6,70	126.	0.0	15.00	0.03	8,8	4,50	0,60	0.0	0.11	287	3.5	244	40.	0.	103.	65.9	3.0	~1,934	5
INDIAN BATHTUB H BS 6E 3BDD1S		39	0.	1699.	87	6.5	0,60	53	6.70	113.	5.00	15.00	0.06	9a1 i	6,00	0,66	0.0	0,08	300	3.3	245	19.	0.	101.	80,9	5.3	-2.145	0
INDIAN H S 125 7E 33C 15 1	6/ 2/72	69	0.	6548,	75	1.5	0.0	75	0.60	67.	30.00	24,00	0.04	8.4 1	4.00	0.06	0.0	0,0	360	9×0	261	4.			97.3		-3.409	ž
MURPHY H S 165 9E 24BBB15	5/23/72	51	٥.	265.	83	0,6	0,0	30	2.00	67.	1.00	4,70	0,10	2,3	3.60	0.64	0.0	0.0	137	7.1	160	1.	0.		94.1		-3,507	3

Power County

INDIAN SPRINGS 8S 31E 180AB1S 7/27/72 32 0.5829. 20 76.0 19.00 110 10.00 254. 0.0 19.00 0.02 220.0 0.70 0.13 0.0 0.0 1099 7.5 599 268. 60. 208. 46.0 2.9 -1.917 3

17

												T_W	<u>in Fal</u>	ls Count	2											
MIRACLE H S 85 14E 31ACB15	5/24/72	54	0.	1325,	93	2.2	0.0	120	1.50	63.	54.00	29,00	0,03	35.0 20.00	0.50	0.0	0.0	560	9.0	386	5.	0.	142.	97.2 22.3	-1.125	ڏ
HARRY HUTTANUS WELL #2 8S 14E 33CBA1	5/24/72	59	64.	227.	97	1.1	0.0	100	1.50	88.	38.00	26.00	0.03	27.0 15.00	0.54	0.0	0.0	479	8,5	349	з.	0.	135.	97,9 26,3	-4,029	3
ED KERPA WELL 9S 14E 9ADD1	10/ 8/76	31	0.	1699.	51	7.3	0.30	61	3.20	120.	5.00	27.00	0.0	16.0 3.20	0.0	0.0	0.10	300	9.3	234	19.	0.	108.	84.9 6.0	-3,949	9
SAM HIGH AND 50 WELL 11S 19E 3300D1	NS 5/25/72	33	189.	7305.	63	27.0	3.90	17	8,60	118.	0.0	12.00	0.04	15.0 0.30	1.00	0.0	0.0	266	6.6	205	83.	0.	97.	28,1 0,8	-1,971	3
T. STURGILL WEL HIS 20E 34CCC1	L 9/ 0/52	32	0.	Q.	28	43.0	8.90	11	7.40	186.	0.0	13.00	0.0	5.0 0.7	0.60	0.0	0.0	3 26	7.5	209	144.	٥.	152.	13.5 0.4	-0.515	ł
125 17E 6CB81	9/28/77	37	0.	7570.	28	37.0	9.90	45	11.00	250.	0.0	20,00	0.01	5.8 2.2	0.09	0.0	0.14	430	7.3	282	133.	٥.	205.	40.5 1.7	0,779	10
NAT-500-PAH W 5 125 175 318AB15		36	0.	114.	19	34.0	14.00	43	11.00	266.	0.0	18.00	0.01	8.0 1.9	0.02	ű.Ö	0.0	469	7.6	279	142.	٥.	215.	37.4 1.6	-0,602	3
IDAHO STATE WEI 125 18E 18BA1		38	236.	2055.	67	18.0	2.00	16	6.00	95,	0.0	9.30	0.26	8.0 0.6	0.63	0.0	0.0	196	7.6	174	53.	0.	78.	36,4 1.0	-2,647	3
HOLLISTER VILLA WELL 13S 17E 7BABI	\GE 9/28/77	35	0.	946.	22	34.0	10.00	44	12.00	250,	0.0	15.00	0.0	5.5 2.2	0.04	0.0	0.13	450	7,2	267	126.	ŋ.	205.	40.4 1.7	0,630	10
MAGIC N S 165 F7E 30ACAI	5/23/72	2 46	Q.	1457.	23	30.0	8.90	13	4.50	162.	0.0	15.00	0.03	3.8 0.3	0.42	0.0	0.0	261	6.4	178	111.	0.	133.	19,4 0,5	-4.542	3
													Valley	County												
BUILING SPRING 12N SE 22BBCI		85	0.	ā25.	94	1.9	0.10	71	1.70	81.	24.00	12.00	0.02	12.0 13.0	0.04	0.0	0.0	331	8.8	269	5.	0.	106.	95.5 13.6	-2,902	3
SILVER OREEK PLUNGE 12N 5E 360BA1	S 10/ 0/55	5 39	0.	0.	53	2.0	0.40	52	5.10	70.	12,00	20.00	0.0	6.0 7.5	0,20	0.0	0.0	254	9.0	192	7.	0.	77.	89.6 8.8	-0.760	1
CABARTON H S 13N 4E 31CABI	\$ 8/3/7:	2 71	0.	265,	78	1.7	0.0	100	1.90	70.	26.00	46.00	0.02	49.0 11.0	0.05	0.0	0.0	511	7.7	348	4.	0.	101.	97.0 21.1	-5.041	3
CASCADE CITY W 14N 3E 35ABD1		2 43	15.	0.	45	1.6	0.0	58	0.40	62.	22,00	17.00	0.04	15.0 3.8	0 0,09	0.0	0.0	275	9.2	195	4.	0.	87.	96,6 12,6	-2.346	3
VULCAN H S 14N 6E 11BDA1	5 в/ 2/7:	Z 87	0.	1892,	120	1.8	0.10	94	3.00	120.	0.0	43.00	0.02	17.0 24.0	0 0.05	0.0	0.0	451	8.5	361	5.	0.	98.	95.9 18.5	-3,955	3
ARLING W S 15N 3E 13BBC1	s 8/ 2/7.	Z 34	0.	3020.	60	1.3	0.10	60	0,60	17.	45.00	16.00	0.02	16.0 2.6	0 0.0	0.0	0.0	279	9.8	209	4.	0.	89.	96.7 13.7	-0,475	3
MOLLY'S H S 15N 6E 14ABB1	S 8/ 2/7	z 59	0.	76.	87	2.0	0.0	70	1,50	48.	30.00	17.00	0.02	10.0 17.0	0 0.03	0.0	0.0	3 26	7.7	258	5.	0.	89,	95.7 13.6	-2.277	3
SOUTH FORK PLU 15N 6E 14CDB1		5 55	0,	0.	62	4.0	0.30	60	1,30	59.	22,00	14.00	0.0	9.0 12.0	0 0.20	0.0	0.0	284	9.3	213	n_{*}	0.	85.	91.0 7.B	-0,737	1
PISTOL CREEK H 16N 10E 14DBC2) 46	0.	13.	67	5.0	0.0	83	1,40	98,	0.0	67.00	0.0	12.0 10.0	0 0.0	0.0	0.0	0	6.3	293	12.	0.	80.	92.7 10.2	0, 241	2
SUNFLOWER FLAT 16N 12E 158BB1		1 65	0.	136,	82	3.0	0.10	77	1,60	51.	30.00	41.00	0.0	9,0109.0	0 0.0	0.0	0.0	369	8.8	377	8.	0.	92.	94.4 11.9	-42,244	12
RIVERSIDE H S 16N 12E 16CBB1	5 7/ 4/7	1 43	0.	0.	75	3.2	0.0	79	1.80	62.	19,00	56,00	0.0	8.9 9.9	0 0.0	0.0	0,0	377	8.8	283	8.	0.	82.	94.4 12.2	0.466	2

ROCKLAND WARM SPRINGS 10S 30E 13CDC1S 7/27/72 38 0. 1582, 22 92.0 33.00 62 14.00 160. 0.0 23.00 0.02 250.0 0.80 0.02 0.0 0.0 1109 7.6 575 365, 234, 131, 26.0 1.4 0.795 3

-219-

ſ

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

	1	l	±۵	T	Γ	<u> </u>	1				Γ					1	Τ	r—				Hardn	ess				r	Γ
Spring or Well Identification Number and Name	Sample Sample Colfection Date	Measured Surface Temperature ^O C	Reported Well Ocpth below Land Surface	Discharge (I/min)	Silice (Si0 ₂)	Calcium (Ca)	Magnes i um (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HOU _S)	Carbonate (CO3)	Sulfate (SO4)	Phosphate (PO ₄)	Chloride (D1)	Flouride (F)	Nitrate (NO ₃)	Baren (B)	Ammonia (N ³⁴ 5)	Specific Conductance (field)	pH (field)	Tatal Dissolved Solids (TDS)	Carbonate	Non-Carbonate	Alkatinity as CaCO3	Percent Sodium (\$Na)	Sodium Absorption Ratio (SAR)	Cation-Anion Balance	Data Reference*
												Valle	u Cour	ity (co	nt'd	.)												
HOLDOVER H S 17N 68 2BAA1S 1	0/18/77	46	٥.	95.	67	1.6	0.0	60	1.00	62.	34.00	9.90	0.01	9.8 (0.02	0.0	0.05	280 9	9.0	222	4.	0.	107.	96.1	13.1	-6.623	10
KWISKWIS H S 17N 10E 11BBAIS -	0/0/0	69	ΰ.	57.	77	2.3	0.0	110	2,00	87.	22.00	73.00	0.0	19.0 1	7.00	0.0	0.0	0.0	0 8	3.7	365	ó.			96,6		-1.588	2
MID FK INDIAN CRK HS																			5		505		v.	100,	50.0	20.0	-14 200	Z
17N 11E 16ACB1S	0/0/0	72	0.	5.	110	2.1	0.0	120	3.70	116.	25,00	64.00	0.0	14.0 1	7.00	0.0	0.0	0.0	08	3,7	412	5.	0.	137.	96,3	22.8	0.410	0
7N 11E 218 15 (0/ 0/ 0	88	0.	151.	110	2.0	0.0	110	3.60	131.	14.00	62.00	0.0	14.0 18	8.00	0.0	0.0	6.0	0 ε	1.6	398	5.	0.	131.	96.1	21.4	-2.802	2
COX H S 17N 13E 27AAC15 (0/ 0/ 0	55	٥.	68.	69	1.9	0.0	84	1.00	83,	20.00	42,00	0.0	9.0 15	5.0U	0.0	0.0	0.0	08	.8	282	5.	0.	101.	96.8	16,8	-2.213	2
HOSPITAL H S 17N 14E 5CBC1S (0/0/0	0	0.	8.	55	3.4	0.0	87	1.30	149.	0.0	43.00	0.0	14.0 13	5.00	0.0	0.0	0.0	0 6	.3	289	8.	0.	122.	94.9	13.0	-5,208	2
TEAPOT H S 18N 6E 9ADC15 10	0/18/77	60	0.	95.	69	2.3	0.0	63	1.20	66.	31.00	12.00	0.01	6.2	9.90	0.0	0.0	0,07	360 i	3.9	227	6.	0.	106.	95.0		-3.033	10
OT CREEK W S 8N 8E 178DA1S 9			0.	0.	60	3.0	0.0	63	1.80	-		45,00	0.0	10.0 6		0.0	0.0	0.0	343 8		229							
		22	••	0.	90	2.0	0.0	00	1400	<i>.</i>	12,00			on Cou		0.0	4.0	0.0	, C+C		229	7.	0.	06.	93.3	10.0	0.151 .	1
COVE CREEK H S 10N 3W 9CCC15	8/ 0/7%	74	0.	10	130	20.0	0.20	320	72.00	107																		
ELVIN ORAIG WELL									22,00	107.		310.00	0.12	310.0		0.0	0.0	7.50	1939	.4	1169	51.	0.	88.	89.8	19.5	-5.286	4
TIN 2W 16AABT	8/14/75	20	41.	0.	81	31.0	19.00	26	13.00	28.3	0.0	11.09	0.0	2.2	0.30	0.0	0.0	0.0	440 6	8.0	322	155.	0.	232.	24.7	0.9	-3.909	9
TIN 3W 78081S -	8/ 2/73	92	0.	19,	180	29.0	0.50	280	18.00	201.	0.0	250,00	0,0	200.0	3,20	0.01	0.0	10.00	1629 7	.8	059	74.	0.	165.	86.2	14.1	-0.795	4
11N 3W 780825	8/ 2/73	57	0.	19.	190	29.0	0,60	280	19.00	202.	0.0	250.00	0.0	200.0	3.20	0.03	0.0	10,00	1569 8	.0 1	071	75.	0.	166.	86.0	14.1	-0,762	4
DOUGLAS MCGINNIS WELL 11N 5W 2060D1 -	8/ 9/73	21	59.	0.	54	31.0	5.30	21	6,90	136.	0.0	25,00	0.0	6.8	0.50	1.80	0.0	0,00	271 7		219		0		~ 7	~ ~	· ·-·	
																			211 1	• 4	219	99,	0.	111.	29.7	0.9	0.684	4
GLENN HILL WELL	8/ 8/73		183.		542	4.4	0.0	120	0.60	67.	0.0	180.00	0.03	28.0	1.90	0.01	0.0	2.00	624 8	•6	909	н.	0.	55.	95.7	15.8	-2.680	4
11N 6W 3DCB1 WEISERHS	8/ 7/73	25	66.	0.	577	4.0	0.10	130	1.20	15.	36.00	150.00	0.0	55.0	0.60	0.0	0.0	2,40	579 7	.4	961	10.	0.	72.	96,0	17,5	-2.274	4
11N 6W 10ACB15	8/ 6/73	22	0.	19.	31	12.0	1.80	50	1.40	44.	0.0	53.00	0.08	17.0	1.20	8.00	0.0	0,82	335 7	.3	197	37.	1.	36.	73.5	3.6	7.097	4
GEOSOLAR GROWERS WELL #1 1∃N 6W 10CCA1 :	8/ 2/73	78	28.	0.	140	2.6	0.0	140	4.80	32.	37.00	150.00	0.0	56,0	2.90	0.01	0.0	2.10	734 9	.2	549	6.	0.	88.	96.0	23,9	-2.265	4

17

- Andrew Martin

..... قى مىڭ يەلىك كەلكە تەركە تەكلەر مىڭ بەر يەكىك تەكلەر بەركە تەكلەر بەركە تەكلەر بەركە تەكلەر بەركە تەكلەر بەركە

· · · · ·

فكرة سفرية بالاذرب

ষ	-13	M)	2	~	~	£
~2,698	-2,856	1.122		1.830	-1.722	-2,676
22.8	22+6	÷.4	2.	13,3	р •	7,2
95.5	1.16	74.5	94.7 12.1	90.1 13.3	90,5 11.7	37.1
.65	92.	84.		53.	155.	1 89
ć	ċ	5	0. 187.	•	ġ.	ð
r.	7.	23°	ġ.	£3.	r.*	-22
541	255	318	283	666	263	312
· •	5.6	8,3	6 . 5	3,8	8.7	មា ស
683	7259	336	375	555	905 209	40 5
2, 20	2.20	0"0	0-0	010	0.0	0*0
0*0	0.0	0*0	0*0	0.0	0.0	0-0
0.01	1.00	0,04	0 * 0\$	0,06	0.04	0.50
3, 90	3.30	0,70	0.70	06*1	1.00	0.80
52.0	56.0		3,2	0.641	ко *	15.0
0.01	0.06	0.04	0.03	0°0	0,04	0°02
	2 °-0 0	14-00	14. 00	200-00	15, 00	110-00
41.00 150.00	00*051 ND785	0.0	20*00	20*00 24	16.00	1.60 1
<i></i>	39.	8	188	24		81 .
5,30	5,00	25-00	0,70	3.80	6.80	1.90
140	9	52	꾫	002	73	8
0" JD	0.0	0.80	0,20	0,10	0, 20	0.80
2,7	2.9	£*#	7.5 7	0,11	2.6	0°8
20	0. 140 2.9	0. 84 &.₹	0, 73 J.5	72	20	52
ů,		•0		1631.	°	226.
31.	1221	294.	412.	ೆ	282.	ి
11	70	彩	R	<u>07</u>	8	20
8/22/13	8/ 2/72	L 6/28/72	00 . 6/28/72	6/28/72	ELL 6/28/72	21/12/9
GEOSOLAR GROWERS WELL #2 11N 6# 100C/XZ 8/22/73 77 31, 0, 130 2,7	GEOSOLAR GROWERS WELL #3 114 6# 1900043 8/ 2/72 70 1224	MIDVALE CITY WELL 13N 3N 80001 6/28/72 28 294	FAIRCHILD LIMBER CO. 13N 4M 138AC1 6/28/72 28 412.	LAKEY H 5 14N 2M 686A15 6/28/72 70 6, 1631, 72 17.0	CAMBRIDGE CITY WELL 14N 3W 300C1 6/28/72 26 282, 0, 70 2.6	FAIRCMILD H S 14N SM 190015 6/27/72 50 0. 220. 55

francisco de la composición de

(anca

BASIC DATA TABLE 2

jiina.

už.

BASIC DATA TABLE 2

ESTIMATED AQUIFER TEMPERATURES, ATOMIC AND MOLAR RATIOS OF SELECTED CHEMICAL CONSTITUENTS, FREE ENERGIES OF FORMATION OF SELECTED MINERALS, PARTIAL PRESSURES OF CO2 GAS AND R VALUES FROM SELECTED THERMAL SPRINGS AND WELLS IN IDAHO

														A	tomic R	atios					Mola	r Ratio	5		Fre F	e Energi ormation	ies of n of	_	<u> </u>
	950	d Surface ture (^o C)	Aq	ulfer T Estin	empe ated	from	res and F 1 Geochem 2 footnot	nical Th	age of Narmome	Cold N eters	later	Sodium Potassium	Sodium Calcium	<u>Magnesium</u> Calcium	Calcium. Fluoride	Chloride Boron	Chioride Fluoride	<u>Calcium</u> Sodium	Calcium Bicarbonate	Chloride Carbonate & Granworte	Ammonia Chioride	Anmonia Fluoride	Chioride Sulfafe	A Calcium Sodium	Quartz	Chalcedony	Amorphous Stitca	Partial Pressure of CO ₂ Gas (atmospheres)	R= Magnesium Hagnesium Calcium Potassium
Spring/Well Identification Number & Name	0ischar (1/min.	Measured Temperatu	T ₁	ī ₂ т ₃	⊺4	, т ₅	т _б т _т	1 ₈	19 T10	⊤ ₁₁ ≴	9 ^{\$} 1	Na K	Na Ca	Mg Ca	Ca F		CI F	<u>Ca</u> Na	<u>Са</u> НСО _З	C03 + HC03	CI	NH4 F	<u>C1</u> S04	∕Ca Na	⊖ G Quartz		Amor- y phous	- PC0 ₂	Mg ** Mg+Ca+K
															<u>Ada</u>	Count	<u>y</u>												
LILLIE COLLIAS IN IE IADCI	WELL O.	25	80	84 -31	49	48	48 122	113	97 91	999 8	60	31.4	3,80	0.43	13.02	0.0	14.90	0.26	0.22	0.19	0.0	0.0	1,40	11.22	0,93	0,34	-0.38	0.00119	0.0
NICHOLSON WELL IN IE 250BA1	0.	25	89	91 -24	58	45	45 154	120 1	54 128	103 9	288	22,2	3.08	0.25	9.11	0.0	20,15	0,33	0.22	0.10	0.0	0.0	1,23	15.78	1.05	0,47	-0.26	0.00155	0.0
AGRI-CON WELL #4 IN 1E 36AAD1	4 0.	22	97	99 -17	67	232	232 346	232 2	65 167	229 9	696	6.1	2,05	0,46	577,65	0.0	661.92	0.49	0.0	0.0	0.0	0,0	1.49	5.02	1.23	0.63	-0.08	0.0	28.2
IDU LAND AND BEI 1N 2E 6ABA1	EF 0.	25	78	81 34	40	50	50 102	50 9	99 72	999	0 0	39.7	6.10	0.34	7.80	0.0	6.03	0,16	0,16	0.20	0.0	0.0	1.97	8.77	0,88	0.29	-0.43	0.00067	0.0
TOM BEVINS WELL 2N 1E 2200B1	0.	31	73	77 -37	41	195	185 196	129-9	99 47	999	0 0	15.3	6.92	0.04	76.04	0.0	66.37	0,14	0,06	0.06	0.0	0.0	0.61	1.93	0.73	0.16	-0.58	0.04476	3.5
GEORGE WHITMORE WELL 2N IE 24DADI	0.	27	79	83 -32	48	192	177 203	114 9	99 83	999	0 0	14.4	3.89	0.19	373.26	0,0	319,14	0.26	0.08	0.10	0.0	0.0	0.76	2,65	0.91	0.33	-0.40	0.15199	14.5
WARREN TOZER WE 2N 3E 108CB1		20	82	85 -30	50	21	21 157	21 1	17 108	999-9	4 0	21.6	1.44	0.41	13.04	0.0	26,86	0.70	0.34	0.16	0.0	0.0	1.24	33.82	1.04	0,44		0.00093	0.0
ST. TRANS. DEPT WELL 2N 3E 28CAC1	o.	22	95	97 -19	65	27	27 164	105 2	43 161	224 9	б 96	20,2	1.44	0.35	8.22	0.0	36.34	0,69	0.29	0,07	0.0	0.0	1,64	28.99	1.20	0,60		0.00471	0.0
FERD KOCH WELL 3N 2E ZCBD1	76.	49	90	92 -23	59	34	34 -67	34 1	09 103	999 6	2 0:	2040.9	418.41	0.05	1.26	0.0	0.46	0,00	0.05	0.12	0.0	0.0	0.79	0.28	0,42	-0.10	-0.88	0.00009	0.0
BEARD WELL 3N 2E 11ABC1	568.	76	125	122 6	97	62	62 37	62 1	64 131	75 5	8 0	108.1	28.21	0.0	0.10	10.49	0.15	0.04	0.07	0.04	0.0	0.0	0.40	3.05	0.56	0.12	-0.70	0.00065	0.0
WARM SPRINGS WATER DIST 3N 2E 12CDD1	727.	75	123	121 5	95	79	79 42	69 1	62 130	75 5	8 0	98.1	65.38	0.0	0.21	0.0	0.04	0.02	0,02	0,11	0.0	0.0	1.09	2.17	0.71	0,27	-0.55	0.01609	0.0
OLD PENITENTIAR 3N 2E 13AC01	Y WELL 2649.	#1 59	93	95 -20	63	68	68 15	68 1	11 104	999 5	30	167.9	83,90	0.01	0.27	5.42	0.04	0.01	0.02	0,13	0.01	0.00	0.0	1.89	0.38	-0,11	-0.91	0.00028	0.0
BOISE WATER CORP. WELL 3N 2E 36ABC1	0.	21	68	73 -41	36	22	22 115	89 9	99 999	999	0 0	34.0	2.02	0.07	6.32	59.92	18.01	0.50	0.30	0.10	0.0	0.0	1.14	22.75	0.84	0.24		0.00480	0.0
DENNIS FLAKE WE 4N 1E 24DCC1		27	110	110 -6	81	68	68 215	131 9	99 174	262	0 95	13.2	3.33	0.16	2,32	7,20	17.38	0.30	0.17	0.02	0.0	0.0	2.27	12.82	1,30	0.72	-0.01	0.00538	0.0
CARL RUSH WELL 4N 2E 480C1	0.	29	75	79 -36	43	18	18 97	77 9	99 55	999	0 0	42.5	1.54	0.15	1,05	59.41	8.06	0.65	0.35	0.04	0.0	0.0	0.29	22.32	0.79	0.22		0,00829	0.0
EDWARDS GREENHO WELL 4N 2E 29ACO1	0. 0	47	97	99 -17	67	78	78 104	91 1	26 117	91 7	056	39,0	21.31	0.11	0.24	0.0	0.21	0.05	0.05	0.05	0.0	0.0	0.57	4.43	0.82	0.29		0.01732	7.9

					Ň																·*******															
SHADOW VALLEY WELL SN 16 2580C1 1703.	28	8	9 9	1 -	24	58	42	42	215		42 1	39 1	21	97	88	83	13.2	1,28	0.	19	1.22	31.23	5 10.	51	0.78	0.39	0.05	0.0	0.0	0.21	25,28	0.95	0.37	-0.36	0.00036	0.0
BEN STADLER WELL 5N 1E 260C01 3406.	z	8	2 {	35 -	-30	50	54	54	17	7 1	130	98	94	999	82	0	18,0	2.9	3 U.	, 14	0.74	292.4	72.	98	0.34	0.30	0.07	0.0	0.0	0.28	14.56	0.58	0.31	-0.42	0.00151	0.0
JULIUS JEKER WELL 5N 1E 35ACA1 83.	40	8	3 8	16 -	29	52	87	87	139	1	18	95	93	999	67	0	26.0	19.8	7 0.	.0	0,24	0.0	υ,	19	0.05	0.06	0.07	0.0	0.0	0,58	4.86	0.72	0,19	-0,58	0.00476	0.0
JERRY DAVIS WELL #1 IN 1W 7ACC1 0.	2	9	6 9	98 -	-18	66	59	59	22	5 1	44 5	99	170	260	0	97	12,5	1.6	30,	.63	115.23	0.0	123,	25	0.60	0.46	0.43	0.0	0.0	1.16	16.56	1.22	0.62	-0.09	0.00155	0.0
CLATER FORSGREN WELL IN 1W 7BCC1 0.	2) 9	4	96 -	-19	64	61	61	18	5	115 !	999	171	262	0	97	16.7	2.3	z 0	.66	48.24	0.0	71.	11	0.43	0.26	0,17	0.0	0.0	0,66	12,84	1.22	0.62	-0.09	0.00970	0.0
IRVIN BOEHLKE WELL IN 1W 8DBAI 3028.	2	2 8	5 1	88 -	-27	54	43	43	18	6	120 1	144	123	100	93	90	16.6	1.1	50	.21	147.39	239.3	7 165,	92	0.87	0.97	0.85	0.0	0.0	1.15	20.89	1.06	0.47	-0.25	0.00330	0.0
SHANE BUES WELL 1N 1W 15DAA1 O.	2	; 9	8 16	. 00	-16	68	66	66	213	2 1	49 :	255	164	227	96	95	13.5	3.4	0 0	.58	26.80	0.0	31.	60	0.29	0.23	0,20	0.0	0.0	1.10	13.17	1.21	0.62	-0.10	0.00101	0.0
TERRY TLUCEK WELL #1 IN IW 2200D1 0.	2	5 8	8	90 -	-25	57	205	194	25.	3:	119	161	130	105	93	90	10.2	2,4	0 Q	.22	792,30	0.0	884,	.21	0.42	0.10	0.09	0.0	0.0	0.95	4.02	1.10	0.51	-0,21	0.22100	16,1
BISCHOF REALTY WELL 3N 1W 25ADD1 0.	2	1 8	2	85 -	-30	50	27	27	10	9	73	113	105	999	92	Đ	36,5	1.1	4 0	.37	46.45	113.1	6 140.	64	0.88	0.44	0.14	0.0	0.0	0,50	18.68	1.03	0.44	-0.28	0.02867	0.0
LETHA FISHER WELL 5N 1W 16CAB1 O.	2	0 11	21	11	-5	83	70	70	41	5 1	179 9	999	222	999	0	0	4.6	1.2	8 0	.39	4.50	0.0	32.	24	0.78	0.22	0,03	0.0	0.0	0.71	26.78	1.42	0.83	0,11	0.00278	25.6
HARRY CHARTERS WELL 1S 1W 5ABC1 0.	2	; c	4	96.	-19	64	71	71	18	1	71	189	14.1	134	93	90	17.4	5.2	3 1)	.71	16.08	0.0	15	17	0.19	0.18	0,19	0.0	0.0	0.99	9.57	1.10	0.52	-0.21	0,00085	38.2
INITAL BUTTE WELL IS IN 3668C1 0.						50			3 16		68						20.0				21.44				0.20	0,25			0,0	0.87		0.96	0.39		0.00088	
																					Adam	<u>s</u> <u>Co</u> u	inty													
WHITE LICKS H S 16N 2E 33BCC15 114.	6	5 14	2 1	37	21	116	145	145	59	Ð	117	201	150	186	73	71	42.0	18.7	70	.01	9.14	0.0	2	10	0.05	0.84	3.58	0.0	0.0	0.62	1.71	1.10	0.62	-0.18	0.00296	1.0
KRIGBAUM H S 19N 2E 2200A1S 151.	4	3 12	20 1	18	2	91	96	96	5 6	0	96	169	137	127	81	74	72,2	46.0	50	.06	4.98	0.0	0.	90	0.02	0.10	0.49	0.0	0.0	0.37	1.89	1.02	0.48	-0.29	0.00012	4.5
ZIM'S RESORT 20N JE 26DDA1S 0.	6	51	3 1	12	-3	84	83	8	34	7	83	121	117	86	52	27	89.8	27.6	0 0	.01	7.46	0.0	2	47	0.04	0.39	0,97	0.0	0.0	0.26	2.09	0.61	0.13	-0.67	0.00017	1.2
STINKY W S 21N IE 23ABA1S 38.	3	5 10	61	06	-10	76	85	8	5 7	4	85	123	114	97	85	80	58,2	22.6	6 Û	. 28	7.15	8.3	1 2	63	0.04	0.19	0.50	0.0	0.0	0.28	2.79	1.16	0,59	-0.14	0.0	19.0
BOULDER CREEK RESORT 22N 1E 340A015 19.	2	5	34	96 ·	- 19	64	8	i	9	4	8	999	999	999	0	D	212.6	5.1	30	.0	2,68	0.0) 8	.06	0.20	0.56	0.11	0.0	0.0	0.34	9.47	0.84	0.25	-0.47	0.0	0.0
STARKEY H S 16N 1W 34DB015 492.	5	61)7 1	07	-9	77	70	7) 4	6	70	116	109	86	58	40	91.4	33.3	2 0	.0	8,34	0.0) 2	37	0.03	0.11	0.36	0.0	0.0	0,25	2.83	0,66	0.16	-0,63	0.00018	0.0
																					Banno	<u>ck</u> Co	ounty													
SHOAL SUBDIVISION WEL 55 34E 26DBA1 378.		6 8	9 9	91 -	-24	58	187	187	22	ə 1	31	18	108	999	86	0	12.0	3.3	0 G	69	45.26	0.0	16.	33	0,30	0.33	0.91	0,0	0.0	3.96	6,29	1.05	0,47	-0.26	0.02061	37.9
ROBERT BROWN WELL #1 55 34E 26DAB1 57.	4	6	3 (58 -	-46	31	185	185	22	7 1	36 \$	99	999	999	0	0	12.1	3.7	1 0.	.59	14.57	0.0	10.	37	0,27	0.22	0,31	0.0	0.0	2.48	6.41	0,39	-0,15	-0.91	0,01166	33.8
T1=SILICA TEMP ASSUMI T2=SILICA TEMP ASSUMI T3=SILICA TEMP ASSUMI	NG	QUAP	TZ	EQU	11,18	RIU	4 ANI	D AD	I ABA	TIC	EXP.	DLIN ANSI	IG (ON	NO S AT C	TEA	M LC FANT	ISS) ENTH	ALPY (MAX 5	TEAM	1 LOSS)				T9=F0 T10=F0	URN I ER-	-TRUESDI -TRUESDI	ELL MIX	ING MODE	EÉ 1 TEN EL 2 TEN	4P (QUAR	TZ-NO STE TZ-STEAM CEDONY-NO	LOSS)			

T3=SILICA TEMP ASSUMING EQUILIBRIUM WITH AMORPHOUS SILICA T4=SILICA TEMPERATURE ASSUMING EQUILIBRIUM WITH CHALCEDONY AND CONDUCTIVE COOLING (NO STEAM LOSS) T5=NA-K-CA TEMP T6=NA-K-CA TEMP CORRECTED FOR MG. IF T₅ = T₆, THERE WAS NO CORRECTION T7=NA-K TEMP

#II=FOUNTER-TRUESDELL MIXING MODEL 1 TEMP (CHALCEDONY-NO STEAM LOSS)
#S=PERCENTAGE OF COLD WATER IN T9 CALCULATION
#I=PS9 NEANS HOT WATER CALCULATION NOT POSSIBLE
** =R NOT CALCULATED IF T5 <70°C</pre>

Maria to a total

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

				A	tomic Ra	ntios					Molar	Ratios			free Fo	Energie rmation	s of	+	
Aquifer Temperatures and Percentage 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	e of Cold Water rmometers	Sadium Potassium	Sodium Carcium	Magnesium Caictum	Catcium Fluoride	Chieride Ligron	Chriaride Filuoride	Calcium Sodium	Calcium Bicarbonate	Chloride Carbonate & Bicarbonate	Ammonia Chioride	Annonia Fiuoride	Chloride Sulfate	≺Catcium Sodfum	Quartz	Chalcedony	Amorphous Silica		R= Magnesium Magnesium -+ Calcium - pPotassium
Spring/Well 55 Identification Number & Name 2017 55 T1 T2 T3 T4 T5 T6 T7 T8 T9	- T ₁₀ T ₁₁ گو\$	Na K	Na Ca	Mg. Ca	Ca F	<u>61</u> <u>B</u>	CI F	Ca Na	<u>Ca</u> HCO ₃	CO3 + HCO3		NH4 F	<u>C1</u> \$04	-√Ca Na	G Quartz	G Chal- cedony		PC02	<u>Мд</u> ** Мд+Са+К

Bannock County (cont'd.)

			A A SUPPLY AND	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
DEAN MORRIS WELL 98 366 30001 0, 22 72 76 -39	9 40 18 18 233	111 999 999 999 0 0 11,6	0.52 0.34	128,63 0,0 208	8.50 1.94	0.47 0.28	0,0 0,0	5.00 58.59	0.87 0.27	~0.44 0.00884	0.0
LAVA H S 98 30E 2100A1S 0, 45 82 85 -30	50 211 211 307	126 82 81 999 51 C 7.4	2,47 0,44	145,48 0.0 8	1.27 0,40	0.34 0,59	0.0 0.0	4,68 7,40	0,63 0,10	-0.67 0.17410	27.4
DOWNATA H S 125 375 12CCD1\$1855. 43 78 81 -34	4 46 63 63 472	145 999 69 999 0 0 3.7	0.81 0.57	26.80 0.0 5	û,96 1,23	0.31 0.16	0.0 0.0	3,01 37,65	0.60 0.05	-0.71 0.05768	0.0
				Bear Lake Cou	inty						
PESCADERO W S 115 435 3680A15 38, 26 80 84 ~3	1 49 58 58 301	105 145 120 99 38 81 7.7	0,58 0.57	24,71 97,26 4	9.51 1.71			1 22 24 22			
BEAR LAKE H S	1 47 26 26 201	100 140 120 22 00 01 127	11.00 01.00	24,11 97,20 4	2021 1011	0,43 0,21	0.00 0.01	1.00 24,99	0.93 0.35	-0.38 0.24883	0.0
155 44E 130CA15 0. 48 85 88 -2	7 54 232 232 391	149 113 104 999 62 0 5.0	i.49 0.43	5.96 0.0 1	4.0Z 0.67	1.25 0.52	0.0 0.0	0.27 9.25	0.64 0.11	-0.66 0.08206	27.5
YANDELL SPRINGS				<u>Bingham</u> Cour	<u>sty</u>						
3\$ 37E 3108815 568. 32 67 72 -4	3 35 34 34 382	134 999 80 999 0 0 5.2	0.26 0.38	17.27 176.70 7	9.01 3,91	0.95 0,20	0.0 0.0	0.24 63.93	0.62 0.05	-0.69 0.02025	0.0
ALKALI FLAT W S 48 38E 2800018 0. 34 61 67 -4	7 29 79 79 899	170 999 62 999 0 0 1.6	0.28 0.53	10.12 4.71 11	0,61 3,54	0.50 0.04	0.0 0.0	0.14 48.94	0,50 -0.06	-0.81 0.17022	۶ 2. 9
				Blaine Count	<u>y</u>						
HAILEY H S 2N 18E 1808B1S 265, 59 128 125	9 100 83 83 56	83 189 142 151 71 63 77.1	59.27 0.0	0,45 0,0	0.08 0.02	0.03 0.19	0.0 0.0	0.53 2.39	0.85 0.35	-0.44 0.00021	0.0
CLARENDON H S 3N 17E 270CB1S 378, 47 125 122	6 97 87 45 53	87 203 148 160 79 74 81.0	64.19 0.07	0,39 0.0	0.07 0.02	0.12 0.32	0.0 0.0	0.44 2.10	1,13 0,60	-0.17 0.00021	5.1
GUYER H S 4N 17E 15AAC153785。 71 128 125	9 101 88 88 64	68 172 135 129 61 48 68.0	50.50 0.0	0.37 0.0	0.09 0.02	0.09 0.25	0.0 0.0	0,41 2,33	0,80 0,34	-0,47 0.00092	0.0
WARFIELD H S						0.07 0.16					
4N 17E 31BBC1S 378. 62 135 131 1	5 108 85 85 72	85 200 147 159 71 64 60.0	44,93 0.0	0.31 246.77	0.09 0±02	0.07 0.15	0.0 0.0	0.63 2.76	0,88 0,39	-0.41 0.00009	0.0
EASLEY H S 5N 16E 100BC1S 68, 37 105 105 -1	0 75 43 43 8	43 164 131 123 80 73 195.6	31.66 0.04	0,15 0.0	0.09 0.03	0.24 0.19	0.0 0.0	0.35 3.24	0.79 0.24	-0,51 0.00000	0.0
RUSSIAN JOHN H S 6N 16E 33CCAIS 4. 35 105 105 -1	0 75 52 52 7	52 169 134 126 82 76 198.4	53.06 0.07	0,18 0.0	0.06 0.02	0.14 0.20	0.0 0.0	0.38 2.49	0.99 0.43	-0,31 0,00003	0.0
MAGIC H S LANDING WELL 1S 17E 23AAB1 57。 71 137 132 1	6 110 162 96 127	81 192 143 153 65 56 29.5	26.15 0.10	3.42 0.0	0,80 0.04	0.04 0.18	0.0 0.0	3.75 1.63	0.96 0.50	-0.31 0.61434	5,3
MAGIC H S LANDING WELL 15 17E 23AAB1 38. 72 139 135 1	9 113 174 172 148	99 196 145 157 65 57 23.7	27.98 0.01	4.56 323.70	0,95 0,04	0.04 0.20	0.00 0.01	4.43 1.60	0.97 0.52	~0,29 0,18928	0.8

-226-

21.9	0.0		0"0	C C	2	0.0	0.0	0,0	0, v		24.0	28 ° 8	20.2		31,8	0.0		0*0	0.0	0.0	5 5	9 * 5	ç, B	0,0	0.0	0.0
0.02715	0,01972		C° D	0.00014	2	0.0	0,00013	/ 07.00.*0	cc100.0		0,50716	0.77384	0,26729		* 20374	0.02306		0*00031	0.0	0,0000	0.0	0, 00006	0.00012	0.00011	0,0	0.0
-0,85	-0.80		-1,04 0	-0.49					-0°-28 -0°-28 -0°-29		-0,96 0	-0,66	-0.58 0		-0.27 0.	-0.49 0		-0,50					-0.47 0			
0,10	-0.05		-0*54	0.27		0.29	0.21	0.44			-0.23	0.08	0,37		0.49	0.25		0.30	0.02				0.32			
0,42	0.51		0.23	0.82		0.81	0.72	/0•n	0.65		055	0.64	0.93		1,03	0,81		0,77	0.51	0.32		~	0.82	0,99	0.80	0.80
15.64	18,53		3.12	2,70		3.11	2,53	2.40	2.54		2°17	0.67	1.61		13 • 72	29.63		2.52	2.05	2,05	2, 29	1.87	1.93	1.85	1.83	3.36
1.35	0.28		0,25	0.33	:	0.62	0+0	1.10	0.37		13.19	0.64	7,58		0.33	1.06		i.15	1.40	1,29	1.40	1.42	1.42	ڙڏي1	1.67	1.85
0.0	0.0		0.0	0.0	:	n n		0-0	0.0		0.0	0.0	0.0		0.0	0"0		0*0	0.0	0.0	0.0	0.0	0.01	0.00	0.0	0.0
0*0	0*0		0*0	0.0				0 0			0.0	0*0	0*0		0.0	0*0		0.0	0.0	0.0	0.0	0.0	0*01	0.00	0*0	0*0
0.07	0.04		0.06	0.10	1		0.36	0-08	0.15		2.68	0,53	5.39		0.11	0.12		0,10	0.12	0.11	0.11	0, 58	0.40	0.41	0.21	0.28
0.24	0,31		0.14	0.04	d d	on • 0	0.04	0.06	0,06		0.56	0.12	16.0		0,35	0.31		0.04	0.03	0*03	£0 . 0	5U*0	0.04	0.05	0.02	0*02
0.51	0.72		0.02	0.02	20		0.02	0.02	0.02		0.23	0.04	0.21		0.59	1,18		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.03
15.62	12.37	<u>nty</u>	0.20	0.37	0		0.16	0,06	0.06	County	122,70	27.35	98.32	<u>t y</u>	10.96	37,92	7	0.16	0.13	0,14	0 . 18	0 . 06	0.07	0,06	0.06	0.18
0-0	0.0	e <u>County</u>	0.0	0*0	40 CC			0.0	0.0		0.0	0*0	164.04	County	0*0	0.0	County	0*0	434.13	0.0	0"0	700.71	500.50	522.26	44.31	65.28
4,41	1.51	Boise	0.22	0.88	ć		1.40	0.11	0.23	Bonneville	20°665	121.67	555,82	Butte	3,52	14.74	Canas	0.67	0.83	0.93	0 . 95	0.68	0.77	0.76	0 . 66	1.24
0.32	0.53		0.0	0.07	0		0.0	0.09	0.07	BC	0.36	0.45	0.29		0.53	0.62		0.0	0.0	0.0	0.16	60°0	0.08	0.0	0.0	0.0
1.96	1.59		45.33	47.94	52.63	0 - C - C - C - C - C - C - C - C - C -	50.36	60.56	53.09		4.40	24.41	4.67		1-70	0.84		67,24	97.63	97 . 63	79.90	72,11	66.83	72.90	84.09	37.66
6.3	9.2		110.5	124.7	45. 5	105	46.1	86.3	č.9č		15.7	105.0	14.2		5.8	6.8		30.6	122.1	47.6	78.0	77.4	97.8	97.8	69.7	114.8
- 35 0	0		69 60	78 68	28 69	: 3	3 99	63	56 56		0	66 U	79 68		82 75	73 0		***29	11 60	64 50	67 54	76 70	76 70	62 28	72 61	67 0
78 999	666 OL		141 151	125 100	135 129			128 197	137 152		666 666	666 98	122 100		121 127	94 999		128-467	137 129	131 122	133 124	142 150	143 151	148 159	133 124	666 101
145 78	128 999		60 189 141	63 144	65 173	14.8	203	93 IS5	142 176		102 999 999	50 89	114 146 122		126 171	132 97		154 150 128	74 174	136 161	64 165	94 187 142	84 189	86 201	99 164 133	26 107 101
339	69Z		35	62	44	ξţ	5	49	14.2 103 1		1 561 161	58	206		356	322		124	30	88	55	22	42	42	62	34
68 68	64 64		60 60	63 63	o5 65		-	95 61			161 161	611 - 611	00 200		16 15	54 54		154 154	74 74	136 136	84 84	94 57	84 54	86 86	66 66	56
46	4		11 104 4	69	54	80	122	88	16 110 142		φ	58	002 19 2		76	52		16	67	95	95	38	66	56	16	65
60 -35	72- 71			100 -15	112 -3		141 26	115 0	132 16		5063	75 -40	93 -22		106 -10	86 -29		118 2	123 6	121 5	121 5	123 7	124 7	121 5	117	97 - 19
52 76	44 75		67 151 127	40 99	46 113		147	65 117	121 28		25 42	35 70	57 91		4) 106	35 85		66 120	60 125	67 123	64 123	55 126	55 127	45 123	56 119	44 95
	5 76,		°0	່ ຜູ້	្តុំ		76.	40.				5 49.	38,		4 5 5	đ			ó	95.	°	95.	а, 20	° 8	38,	76。 4
CONDIE H S 15 ZIE 14000151310.	MALECKU SWEAT H : 15 22E ROARIS	Tarts confision		DANSKIN UREEV H S BN DE TECCIS	HOT SPRINGS CAMPGROUND BN 5E 63081	DONLAY RANCH H S 84 55 1080015 265.	DEER H S 9N 3E 25BAC1S	KIRKHAM H S 9N 8E 32CA815 946	BONNEVILLE H S 10N 10E 318CC151374.	FALL CREEK	MINERAL SPG 14 43E 9CBB15 265.	~	ALPINE W S 25 46E 19CADIS	LEWIS ROTHWELL	WELL 3N 25E 320001	0017E 011Y Mell #1 3N 27E 9A001		WAKDROP H S 14 13£ 32A8815 731.	HOT SPRINGS RANCH IN 13E 52ABC15	HDT SPRINGS RANCH IN 13E 32NBC2S	HOT SPRING RANCH IN 13E 32ABC3S	ELK CREEK H S IN 15E 14ADAIS	ELK CREEK H 5 IN 15E 14ADA2S	ELK CREEK H S IN 15E 14ADA3S	LIGHTFUOT H S 3N 13E 7DCA1S	BAUMGRETNER H S 3N 126 70001S

-227-

A.

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

						A	tomic R	atlos					Molar	Ratios				e Energie Armation		ŧ	
	af	Surface ure (^O C)	Aquifer Temperatures and Percentage of Cold Water Estimated from Geochemical Thermometers (see footnotes)	Sodium Potassium	Sodium Calcium	Magnesium Calcium	Calcium Fluoride	Chioride Boron	Chiloride Filuoride	Calcium Sodium	Calcium Bicarbonate	Chloride Carbonate & Bicarbonate	Ammonia Chioride	Annon ia Fluoride	Chloride Sulfate	√Calcium Sodtum	Quartz	Chal cedony	Amorphous Silica	rtial (atm (atm	R= <u>Magnesium</u> Hagnesium Calcīum + Potassium
Spring/Well Identification Number & Name	har in.		^T 1 ^T 2 ^T 3 ^T 4 ^T 5 ^T 6 ^T 7 ^T 8 ^T 9 ^T 10 ^T 31 ≸9 ^{\$} 11	Na K	Na Ca	Mg Ca	Ca F		CI F	Ca Na	<u>Са</u> нС0 ₃	CI CO3 + HCO3	NH4 CI	NH4 F	<u>C1</u> S04	_ <mark>_∕Ca</mark> Na	<u>∆</u> G Quartz	∆ G Chal- cedony		PC02	<u>Mg</u> ** Mg+Ca+K

Camas County (cont'd.)

WORSWICK H S 3N 14E 28CAA1S1764.	81 134 130 14 107 93	93 93 70 93 171 136 132 57 45 61.8 66.83 0	0.0 0.18 0.0 0.06	0.01 0.05 0.11 0.0	0.0 0.39 2.23 0.	.76 0.33 -0.49 0.00620 0.0
SHEEP H S 1S 12E 16CAB1S 0.	49 116 115 -1 88 73	73 73 37 73 167 134 125 77 68 106.8 85.42 0	0.0 1.13 639.77 0.24	0.01 0.0 0.12 0.0	0.0 1.48 2.34 -0.	.02 -0.55 -1.33 0.0 0.0
WOLF H S 1S 12E 16CBA1S 0.	45 116 115 -1 88 57	57 57 4 57 174 137 129 80 73 213.7 106.78 0	0.0 0.90 243.72 0.20	0.01 0.25 0.10 0.0	0.0 1.06 2.10 0.	.11 -0.42 -1.20 0.0 0.0
KEITH STROM WELL 1S 12E 31CBC1 57.	31 87 89 ~26 56 51	51 51 11 51 999 63 999 0 0 181.4 92.98 0	0.0 1.41 0.0 0.36	0.01 0.03 0.06 0.0	0.0 1.72 2.78 0.	.70 0.12 -0.61 0.00001 0.0
LEE BARRON WELL ∦1 IS I3E 220001 4.	26 123 121 5 95 92	92 92 71 98 999 189 999 0 0 60,9 49,98 0	0,34 0,55 190,41 0.15	0.02 0.02 0.09 0.27	0.15 5.11 2.31 1.	47 0.88 0.16 0.00322 19.2
LEE BARRON WELL ∦2 15 13E 27CCB1 303.	35 127 124 7 99 79	1 79 79 41 79 269 168 253 92 91 99.9 54.63 0	0.07 0.54 197.13 0.13	0.02 0.02 0.09 0.09	0.05 5.14 2.12 1.	.36 0.80 0.05 0.00022 4.9
LEF HARRON WELL #3 1S 13E 270082 0.	45 113 112 -3 84 95	95 58 51 95 165 133 124 79 71 84.2 78.45 (0.09 0.64 0.0 0.10	0.01 0.02 0.09 0.01	0.01 3.57 1.72 0.	.98 0.44 ~0.33 0.00089 5.8
BARRON H S 1S 13E 34BCB1S 38.	72 127 124 8 99 127	27 127 73 102 165 133 124 61 47 59.3 52.30	0,05 0.54 198.03 0.13	0.02 0.02 0.10 0.01	0.01 2.71 2.02 0,	72 0.27 -0.54 0.00286 3.7
LEE BARRON WELL #4 IS I3E 34BCC1 0.	49 127 124 8 99 96	96 96 65 104 205 149 160 82 76 66.8 54.35 (0.06 0.58 236.95 0.12	0.02 0.02 0.11 0.00	0.00 3.16 2.00 1.	.11 0.59 -0.19 0.00150 4.0
FAIRFIELD CITY WELL IS 14£ 90AA1 814.	21 73 77 -37 41 31	31 31 42 31 999 999 999 0 0 99.2 10.90 (0.32 0.58 0.0 1.11	0.09 0.10 0.05 0.0	0.0 1.12 7.76 0.	.90 0.30 -0.41 0.00086 0.0
			Conver County			
LEONARD TIEGS			<u>Canyon</u> <u>County</u>			
WELL #1 IN 2W 5ADD1 0.	22 76 80 -35 45 40	40 40 174 125 999 999 999 0 0 18.5 1.43 0	0.29 53.60 0.0 71.11	0.70 0.47 0.35 0.0	0.0 1.13 20.82 0	.92 0.33 -0.39 0.00138 0.0
DON TIEGS WELL #2 IN 2W BACCI 0.	22 85 88 -27 54 52	52 52 232 135 999 999 999 0 0 11.7 1.15 (0.21 147.39 239.37 165.92	0.87 0.97 0.85 0.0	0.0 1.15 20.89 1.	.06 0.47 -0.25 0.00330 0.0
MELBA CITY WELL IN 2W 36CAA1 757.	25 93 95 -20 63 83	83 83 103 117 999 999 999 0 0 39.4 16.86 (0.42 6.51 0.0 3.08	0.06 0.07 0.14 0.0	0.0 1.35 3.94 1,	.10 0.52 -0.21 0.00127 25.6
WESLEY SCHOBER WELL 2N 2W 34BDA1 2271,	48 89 91 ~24 58 66	66 66 2 66 999 999 999 0 0 222.8 69.21 (0.10 3.66 0.0 0.38	0.01 0.02 0.20 0.0	0.0 1.12 1.59 0.	54 0.01 -0.76 0.00059 0.0
CANNON FARMS WELL #4 2N 3W 22DCC1 2952.	30 109 109 -7 80 63	63 63 202 141 999 999 999 0 0 14.6 2.40 (0.45 8.47 0.0 37.92	0.42 0.25 0.06 0.0	0.0 0.35 13.21 1.	.29 0.70 -0.02 0.00150 0.0

-228-

CALOWELL CITY WELL 4N 3W 35ABD1 3028.	20	78	81 -34	46	36	36 103	93 999	999-99	900	39.3	3.39	0.16	4.62	42.04	11.26	0.29	0.21	0.08	0.0	0.0	1.70	13.53	0,99	0.39	-0.33	0.00338	0.0
BLACKFOOT													Carib	оц Соц	nty												
RIVER W S 5S 40E 14BCD1S 4.	26	83	86 - 29	52 3	29	3291191	175 999	70 99	900	1.2	0,38	0.60	15.93	79,79	86.35	2,63	0.44	0,08	0.02	0.39	0,26	20,28	0.98	0.40	-0.33	1.25606	34.0
BLACKFOOT RESERVOIR W S 65 41E 1ADC15 568.	23	72	76 -39	40	46	46 529	119 999	999 <u>9</u> 9	900	3.2	0,20	0.41	6.52	213.26	47.82	5,12	0.37	0.05	0,00	0.00	1.08	67.27	0.86	0.27	-0,45	0,54346	0.0
CORRAL CREEK WELL #1 65 41E 198AA1 598.	42	76	80 -35	45 3	62	3622087	198 999	59 99	900	0.7	0,25	0.62	9.55	24.02	144.48	3.98	0.38	0.02	0,06	0,58	0,12	30.10	0.61	0.07	-0.69	0.91403	34.5
CORRAL CREEK WELL ∦2 65 418 198AB1 397.	41	79	83 ~32	48 3	69	3692295	213 999	68 99	900	0.7	0.27	0,65	6,58	27.87	83.97	3.67	0.34	0.03	0.09	0.61	0.13	29.48	0.67	0.12	-0,64	0.44635	35.3
CORRAL DREEK WELL #3 65 41E 19BAC1 79.	. 41	79	83 -32	48 3	560	3602036	201 999	68 99	900	0.7	0.25	0,62	8.93	23.43	137.67	3.96	0.39	0.02	0.07	0,60	0.12	50.02	0.67	0.13	-0.64	0.68542	34.7
CORRAL OREEK WELL #4 6S 41E 19BADZ 42.	. 36	79	83 -32	48 3	563 .	3632097	203 999	62 99	900	0.7	0.27	0.64	8.58	22.99	123.06	3.76	0.35	0.02	0.06	0,54	0,12	29.55	0.75	0.20	-0.55	0.67345	35.2
PORTNEUF RIVER W S 75 38E 26CED15 189.	. 34	89	91 -24	58 2	268	268 679	147 101	100 99	9780	2.2	0.50	0.38	41,54	60.93	165.92	1,98	0.40	0.10	0,0	0.0	0.62	23,72	0,92	0.36	-0.38	0.69332	25.3
SODA SPRINGS GEYSER 95 41E 12ADD15 4.		85	88 -27	54	30	301590	152 999	88 99	900	0.9	0.02	0.37	1.91	34.73	252,14	40.68	0,50	0.00	0.02	0.04	0.02	279,16	0,98	0.40	-0.33	0.70321	0.0
													Cassi	a Coui	۰ <i>۴</i> 13												
SIX S RANCH WELL #1 11S 25E 1100A1 7911.	60	110	1106	81	89	79 88	101 136	120 9	5 61 42	48.0	23.39	0,10	2,11	0.0	0.28	0,04	0.10	0.74	0.0	0.0	2,52	2.99	0.77	0.28	-0.52	0,00436	7.5
SIX S RANCH WELL #2 11S 26E 20DDD1 5095.	. 32	97	99 -17	67	49	49 197	130 129	117 9	68376	15.2	1.91	0.03	1.98	0.0	9,18	0.52	0.33	0.07	0.0	0.0	0.55	18.81	1.05	0.48	-0,26	0.00205	0.0
CRITCHFIELD WELL 11S 26E 28BC81 5095.	. 35	98	100 -16	68	51	51 207	126 126	117 9	5 80 72	14,1	1,91	0.02	7.66	0.0	10,50	0.52	0.33	0,24	0.0	0.0	4.17	18.81	1.02	0,46	-0.28	0.00428	0.0
C & Y RANCH WELL #2 11S 27E 58AB1 0.	. 29	123	121 5	95	0	0 0	0 999	178 99	900	0.0	6,71	0.46	14.19	0.0	3.63	0.15	0.17	0.66	0.0	0.0	17.41	5.86	1.43	0.85	0.12	0,00621	35,3
LYLE DURFEE WELL 13S 25E 228CB1 0.	. 30	59	65 -49	27	0	0 0	0 999	999 99	900	0.0	1.51	0.40	8,42	0.0	7.45	0,66	0.36	0.40	0.0	0.0	4.58	28,35	0,53	-0.04	-0.78	0.00534	34.7
WARD SPRINGS 135 26E 17CCD15 322	. 21	96	98 -18	66	34	34 294	34 173	136 12	:9 95 9 3	5 7,9	0.72	0.03	26,80	0.0	32.24	1.39	0.56	0.46	0.0	0.0	7.13	47.83	1.21	0.62	-0.10	0.00054	0.0
145 21E 3480C1 189	43	98	100 -16	68	97	97 297	173 122	2 111 - 2	86 72 51	7.8	5.48	0.13	2,89	0.0	5.11	0.18	0,15	0.08	0.0	0.0	1.26	9,77	0,88	0.34	-0.43	0.00195	8.8
OAKLEY H S 14S 22E 270CB1S 38	. 47	118	116 0	89	92	92 65	92 180) 139 13	51 79 73	2 67.3	56.18	0.0	3.55	0.0	0.16	0.02	0.10	1.25	0.0	0.0	6.52	2,17	0.38	-0.14	-0,92	0.0	0.0
			116 C		92 39	92 65 39 <i>2</i> 99) 139 13 9 999 9				0.0 0.43	3.55 25.46	0.0 0.0	0.16 34.37	0.02 1.11	0+10 0+37	1.25 0.27	0.0 0.0	0.0 0.0		2,17 41,23	0.38 0.66	-0.14 0.08	-0.92 -0.64		0.0 0.0

HAROLD WIGHT WELL 14S 26E 10DA1 0. 63 127 124 7 99 121 121 41 121 175 137 130 69 58 99.7 296.37 0.33 5.29 274.19 0.06 0.00 0.01 0.44 0.0 0.0 7.80 0.68 0.35 -0.13 -0.93 0.00010 11.7

CALDWELL MUNC. PARX WELL 4N 3W 28AAB1 568, 28 100 101 -14 70 54 54 92 95 999 999 99 0 0 45.1 8.40 0.01 1.93 18.28 3.48 0.12 0.10 0.06 0.0 0.0 5.62 7.19 1.16 0.58 -0.15 0.00350 0.0 CALDWELL CITY

e gr

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

						A	tomic R	atios					Molar	Ratios				Energie rmation		+	
	de }	d Surface ture (^O C)	Aquifer Temperatures and Percentage of Cold Water Estimated from Geochemical Thermometers (see footnotes)	Sodium Potassium	Sodium Calcium	<u>Magnesium</u> Caicium	Calcium Fluoride	Chloride Boron	Chioride Fluoride	Calcium Sodium	Calcium Bicarbonate	Chloride Carbonate & Bicarbonate	Annonia Chioride	Amenonia Fluoride	Chloride Sulfate	Calcium Sodium	Quartz	Chalcedony	Amorphous Silica	artíal 0 (atm	R= Magnosium + Calcium + Potassium
Spring/Well Identitication Number & Name	Schar ∕min.	isur e	T ₁ F ₂ F ₃ T ₄ T ₅ T ₆ T ₇ T ₈ T ₉ T ₁₀ T ₁₁ \$9 \$11	<u>Na</u> K	Na Ca	Mg Ca	<u>Ca</u> F	<u>C1</u> B	• <u>C </u> F	Ca Na	Ca HCO3	C1 C03 + HC03	NH4 CT	NH4 F	<u>Ci</u> S04	_ <mark>_∕Ca</mark> Na	∆ G Quartz	∆ G Chal∽ cedony		PCO _Z	<u>Mg</u> ** Mg+Ca+K

HAROLD WARD			<u>Cassia</u> <u>County</u> (cont'd.)		
WELL #1 145 27E 180001 3399. 24	4 131 127 11 104 201	180 256 165 999 213 999 0 0 10.0 5.39	0.07 146.17 0.0 23.70	0.19 0.64 3.88 0.0	0.0 35.32 5.01 1.59	9 1.00 0.28 0.00317 4.9
MORRIS MITCHELL WELL ∦2 195-21E 25DCC1 - 38, 46	6 76 80 - 35 45 94	52 39 94 999 56 999 0 0 103,9 95,89	0.08 3.80 64.74 0.40	0.01 0.01 0.12 0.0	0.0 2.19 1.48 0.39	9 -0,14 -0.92 0,00059 5,3
HAROLD WARD WELL ∦2 155 246 220081 378. 38	8 95 97 -19 65 47	47 105 89 119 108 999 76 0 38.4 3.30	0.41 14.79 0.0 6.05	0,30 0,33 0.80 0,0	0.0 6.56 9.98 0.94	0.39 -0.37 0.00834 0.0
BLM 155 25€ 290001 0. 60	0 116 115 -1 88 128	128 72 128 151 127 126 66 69 60.0 58.11	0.05 5.78 0.0 9.22	0.02 0.08 1.63 0.0	0.0 5,55 1.82 0.59	0.10 -0.70 0.00007 3.0
	6 130 126 10 102 220	213 222 220 999 201 999 0 0 12.6 11.62	0.01 535.97 1351.71 36.47	0.09 7.87 113.85 0.0	0.0 234.70 0.99 1.56	0.98 0.25 0.00074 0.5
BLM 153 268 220001 189, 82	2 107 107 -9 77 103	103 18 103 112 109 75 29 0 157.9 40.47	0.01 214.39****** 5.31	0.02 1.35 53.75 0.0	0.0 104.16 0.66 0.31	-0.11 -0.93 0.00092 1.3
174N DARRINGTON WELL #1 155 26E 234AA1 15, 85	5 156 149 34 132 185	183 175 185 219 153 216 65 65 18.4 16.22	0.04 40.05 0.0 2.24	0,06 1.04 18.27 0.0	0.0 45.04 1.88 0.89	0.47 -0.35 0.00069 2.6
FRAZIER H S WELL 155 26E 2308C1 220, 95	5 131 127 11 104 146	146 95 146 150 127 107 40 12 43.3 18.42	0.01 84.63 0.0 4.41	0.05 1.47 27.71 0.0	0.0 42.76 1.49 0.51	0.11 -0.71 0.00476 1.0
HARRIAT URANK WELL 155 26E 2300C1 227, 90	0 135 151 15 10B 139	120 79 139 165 132 123 49 30 53.9 14.89	0.01 72.74 0.0 4.40	0.07 5.50 89.36 0.0	0.0 84.35 1.18 0.60	0,20 -0.62 0.00102 0.4
17AN DARRINGTON WELL #3 155-26E 250001 - 0 33	3 104 104 -11 74 94	92 101 94 164 132 123 86 81 40.3 5.60	0.10 191.08 0.0 28.86	0.18 1.22 7.98 0.0	0.0 32.18 3.02 1.14	0,58 -0.17 0.01823 8.4
REID STEWART WELL 155 26E 24BA01 3399. 32	2 98 100 -16 68 94	94 101 100 136 120 98 84 77 40.4 6.62	0.10 183.36 0.0 24.95	0.15 0.86 6.22 0.0	0.0 27.08 3.02 1.08	0.51 -0.23 0.00931 8.8
IVAN DARRINGTON WELL #4 155 26F 240001 3399₊ 31	il 106 106 ~10 76 95	96 110 109 180 139 131 89 85 36.1 6.74	0.13 120.06 0.0 16.69	0.15 0.83 5.89 0.0	0.0 29.16 3.17 1.19	0.62 -0.12 0.00528 10.9
BLM 155 266 25ACA1 83. 30	0 130 126 10 102 185	145 174 149 999 186 999 0 0 18.5 18.43	0.18 109.11 830.88 5.93	0.05 0.30 5.48 0.0	0.0 48.24 1.84 1.48	0.91 0.18 0.00364 10.9
ЭЕМ 165 26Е 56ВА1 151. 40	0 68 90 -25 57 94	94 122 97 83 88 999 60 0 31.4 7.21	ù.26 46.29 832,87 6.25	0.14 0.64 4.66 0.0	0.0 23.39 3.64 0.80	0.26 -0.50 0.02705 18.7
			Clark County			
LIDY H S∦1 ∋N 33E 289C1S 946. 50	0 84 87 - 28 53 66	66 540 144 89 91 999 46 0 3.1 0.54	0.30 0.71 0.0 6.87	1,85 0,74 0,08 0,0	0.0 0.11 39.67 0.58	0.06 -0.72 0.12949 0.0
LIDY H S WELL 10N 33E 35CCC1 6813, 59	9 88 90 -25 57 68	68 503 176 89 95 999 34 0 3.4 0.76	0.42 0.86 24.03 5.93	1.31 0.47 0.07 0.0	0.0 0.19 35.49 0.47	-0.02 -0.82 0.00738 0.0

877

د. د شیسهه به کند. برد استا ب

......

WARM SPRENGS 11N 320 25AAC157267.	29 57 63 -50) 25 23	23 357	124 999 9	99 999 0	0 5.8	0,32	0.58	2.84	0.0	25.60	3.13	0,39	0.04	0.0	0.0	0.23	85,24	0.52	-0,06	-0,79	0.02255	0.0
									Custe	<u>r</u> <u>Cou</u>	nty												
HOWERY H S 7N 17E 6ABA1S 76.	43 112 111 -5	83 89	89 184	124 193 1	43 153 84 8	0 17.0	6.66	0,34	0.54	0.0	0.87	0,15	0.24	0.15	0.0	0.0	0.30	6,41	1.07	0.53	-0.23	0,00945	22.0
PIERSON H S 8N 14E 27D8D15 49.	60 118 116 C	69 73	64 30	73 170 1	34 126 71 6	D 124.2	70.70	0.09	0.22	0.0	0.04	0.01	0.09	0,20	0.0	0.0	0.65	2.11	0.55	0.06	-0.74	0.0	6.7
WEST PASS H S 8N 17E 328CA1S 95.	51 94 96 -19	64 185	185 216	117 119 1	10 999 65	0 13.1	8.30	0.43	1.66	0.0	1,19	0.12	0.14	0.19	0.0	0.0	0.75	5,26	0.71	0.20	-0,59	0.07181	24.7
STANLEY H S ION 13E - 3CABIS 416.	41 106 106 -10	76 47	47 6	47 175 1	37 130 84 7	7 204.1	47.55	0.07	0,19	0.0	0.07	0.02	0.11	0.15	0.0	0.0	0.44	2,84	0.88	0.34	-0,42	0,00003	0.0
SLATE CREEK H S 10N 16E 30BAD1S 700.	50 128 125 9	9 10 1 91	91 122	124 230 1	56 220 84 8	3 31.4	17.86	0,02	0.43	0.0	0.44	0,06	0,11	0.11	0.0	0.0	0.17	3,94	1.14	0.63	-0,16	0.00160	1.6
ELKHORN H S 11N 13E 36BAA1S O.	57 121 119	3 93 137	137 83	137 187 1	41 133 75 6	6 51.0	125.52	0,49	0.20	0.0	0.03	0,01	0,08	0.13	0.0	0.0	0,51	1,59	0.15	-0.35	-1,14	0.0	18.2
BASIN CREEK W S TIN 14E 21DDB1S - 0.	38 130 126 10	0 102 73	73 48	73 999 1	78 999 0	0 87.9	51.47	0.0	0.16	0.0	0,07	0,02	0.14	0.13	0.0	0.0	0,31	2,68	1.23	0.68	-0.07	0+00001	0.0
MORMON BEND H \$ 11N 14E 29AABIS 4.	38 130 127 1	1 103 75	46 53	75 999 1	79 999 0	0 81.1	49,13	0.07	0.17	0.0	0,07	0.02	0.15	0.13	0.0	0.0	0.31	2.75	1.24	0.69	-0.06	0.00001	5.4
SUNBEAM H S 11N 15E 19CAB1S1681.	76 131 128 12	2 104 129	129 72	129 180 1	38 136 63 5	2 60.2	98,79	0.0	0.43	0.0	0,05	0+01	0,02	0,17	0.0	0.0	0.60	1.65	0.65	0,20	-0,61	0.00064	0.0
ROBINSON BAR H S 11N 15E 27DDCIS 151.	49 125 122	5 97 148	148 109	148 219 1	153 216 83 8	3 36.4	67.12	0,33	0,27	0.0	0.08	0.01	0,11	0.15	0.0	0.0	0.29	2.11	0.68	0.16	-0.62	0.0	14.6
SULLIVAN H S 11N 17E 27BDD1S 265.	41 89 91 -24	4 58 99	99 169	103 115 1	106 999 73	0 19.3	6.05	0.37	16.97	0.0	12,90	0,17	0.13	0.17	0.0	0.0	5.94	4.73	0.80	0.26	-0.50	0.07063	24.2
BARNEY W S 11N 25E 23CAB15 643.	29 59 65 -4	9 27 13	13 252	123 999 9	999 999 0	0 10.2	0.42	0.89	4.29	0.0	35.08	2.36	0,31	0.04	0.0	0.0	0.31	77.61	0.54	-0.04	-0.77	0,00307	0.0
BILL JOHNSTON WELL 14N 19E 34DAA1 189.	40 68 73 -4	1 ,36 60	60 254	127 999	36 999 0	0 10.1	1.43	0,63	1.95	0.0	23.70	0.70	0.37	0.03	0.0	0.0	0.08	18.93	0.50	-0.04	-0.80	0,01423	0.0
SUNFLOWER FLAT H S 16N 126 BODB1S 16.	43 109 109 -	7 80 71	71 43	78 184 1	139 132 83 7	7 96.7	35.25	0.0	0.58	0.0	0,18	0.03	0.09	0.28	0.0	0.0	0.35	2.68	1.04	0.50	-0,27	0,00434	0.0
THOMAS CREEK RANCH H S 16N 12E 17DAD15 257.	43 125 123	ō 97 90	90 56	90 248	162 225 88 8	37 77.5	68.07	0.0	0.45	0.0	0.08	0.01	0,06	0,21	0.0	0.0	0.43	2.03	1.01	0.47	-0.30	0.00003	ն₊Դ

LOWER LOON CREEK H S 17N 14E 1980B1S 30.	49	119 117	1	91	73	13 .	31	73 19	9 14	5 158	817	6 121.	7 55	.91	0.0	0.54	0.0	0.11	0.02	0.04	0,15	0.0	0.0	0.64	2.10	0.93	0.41	-0.37	0.00027	0.0
																Elmor	e Cour	ity												
CHARLES BAKER WELL 3N 10E 10ABA1 19.	41	115 114	-1	87 3	30 2	50 1	18	30 19	8 146	158	83 7	9 155.9	9 12.	.96	0.0	0.42	11,58	1.46	0,08	0,17	0.03	0.0	0.0	0.29	5,68	0.47	-0.07	-0.83	0.0	0.0.
PARADISE H S 3N IOE 33ACOIS 946.	53	120 118	2	91 4	10	40 5	58	40 18	3 140	132	75 ó	6 74.	29.	.10	0.0	0.52	32,50	1.32	0.11	0.21	0.05	0.0	0.0	0.58	7,26	0.62	0.11	-0.67	0.0	0.0
PARADISE H \$ WELL 3N IOE 33BDB1 0.	38	117 115	0	88	73	73 :	50	73 21	6 153	214	86 8	6 85.	58.	.11	0.11	0.45	0.0	0,23	0.02	0,05	0.06	0.0	0.0	0,41	2.81	0.50	-0.00	-0.79	0.00000	7_6
NINEMEYER H S 5N 7E 24B0D151321.	76	137 132	16	110 1.	26 '	91 é	69	126 18	9 142	2 150	63 5	3 63.	3 106,	.19	0,15	Û.16	0.0	0.05	0.01	0.33	0.09	0,0	0.0	0,25	1.80	0,72	0.27	-0.54	0.0	7.5
DUTCH FRANK'S H S 5N 9£ 7BBA1S1135.	65	119 117	1	91	72	72	53	72 16	1 13	1 - 77	63**	* 80.	8 45.	.17	0,15	0.13	0.0	0.10	0.02	0,20	0.07	0.0	0.0	0.22	2,99	0.66	0.18	-0,62	0.0	10.5
ATLANTA H S 6N 115 350ADIS 0.	38	123 121	5	95	76	76 (63	76 24	3 16	2 224	88 8	17 69 .	1 37.	.77	0.22	0,23	0.0	0.10	0.03	0.11	0.16	0.0	0.0	0.42	3.06	0.71	0.16	-0.60	0.0	14.7
JOHN MALOTA WELL 2S 5E 2308C1 0.	22	99 100	-15	69	77	77 2	74	165 23	24 15	5 218	94 9	94 8.	93	49	0.67	5,56	0.0	10.07	0.29	0,19	0.10	0.0	0.0	1.18	13,93	1.24	0.65	-0,07	0.00135	35.9

WARM SPRINGS 0.0 Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

													A	tomic Ra	atios					Molar	- Ratio	s			e Energi Armation		of I	
Ð	i Surface ure (°C)			ted fr	rom G	and Pe eochem ootnote	ical T		Cold Wa aters	er	Sodium Potassium	Sodium Calcium	Magnesium Calcium	Caicium. Fluoride	Chioride Boron	Chloride Fluoride	Calcium Sodium	Calcium Bicarbonate	Chloride Carbonate & Bicarbonate	Anmonia Chloride	Anmonia Fluoride	Chloride Suitate	≁Calcium Sodium	Quartz	Chalcedony	Amorphous Silica	ressure Gas pheres)	R= Magnesium Magnesium + Calcium + Potassium
Spring/Weli Identification Number & Name G	Measured Temperatu	⊤ _i 1	2 ^T 3	T ₄	Т5	τ ₆ τ ₇	Тâ	T ₉ T ₁₀	^T 11 ≸9		Na K	Na Ca	Mg Ca	<u>Ca</u> F	<u>CI</u>	<u>CI</u> F	Ca Na	Ca HCO3	CI CO3 + HCO3	NH4 CI	NH4 F	<u>Ci</u> 504	-/Ca Na	<u>∆</u> G Quartz		∆G Amor- phous	PC0 ₂	Mg ** Mg+Ca+K
													Elmo	ore Co	unty ((cont'a	ł.)											
LONG TOM RANCH WELL #1 3S 7E TACAT 0.	20 1	09 109	9 -7	SO 5	58 :	58 379	166	999 188	999 0	0 !	5.3	1.21	0.35	10.72	0,0	17.61	0.83	0.37	0.22	0.0	0.0	2.53	32.53	1.40	0.80	0.09	0.00327	0.0
LESUIE BEAM WELL 35 8E 36CAD1 2649.	68 1	28 12	\$ 9	101 7	11.	71 10	71	179 138	133 66	54 18:	5.0	101.12	0.0	0.14	0,0	0.04	0 . 01	0.03	0.06	0.0	0.0	0.87	1.62	0.76	0.29		0,00033	0.0
LATTY H S 3S TOE 3100B15 0.	55 1	37 13:	2 16	110 13	57 1.	37 79	137	229 157	220 80	79 54	4.0	235.35	0.0	0.21	0.0	0.03	0.00	0.01	0.04	0.0	0.0	0.73	1.34	1.11	0.61		0.00050	0.0
ROBERT BRUCE WELL 45 5E 25BBC1 0.	24	92 94	4 -21	62 4	17 4	47 376	47	164 131	106 90	85	5.3	1,26	0.35	6.16	0+0	30.81	0.79	0.27	0.05	0.0	0.0	0.94	44.05	1.11	0.52		0.00046	0.0
BEVERLY OLSON WELL 45 7E 19BDB1 0.	26 1	14 11	3 - 3	85 6	i 5 i	63 288	161	999 173	265 0	94 4	3.2	2.05	0,58	4,98	0.0	10,90	0,49	0.24	0.11	0.0	0.0	1.33	20,40	1.35	0.77	0.04	0,00148	0.0
NURTHWEST PIPELINE WELL 45 8E 36BBA1 30.	38 1	28 129	59	101 12	24 :	74 59	89	268 169	252 89	88 7	5.5	87,17	0,10	1.79	0.0	0.51	0.01	0.01	0.04	0.0	0.0	5.01	1.28	1.34	0.79		0.00887	6.1
BILL DAVIS WELL 45 96 BACAI 0.	62 1	28 125	59	100 E	32 8	82 13	82	188 142	150 71	63 174	1.3	158.84	0.0	0.11	0.0	0.03	0.01	0.02	0,04	0.0	0.0	0.62	1.33	0.49	0.01		0.00002	0.0
GARY LAWSON WELL 55 JE 14CBB1 238.	59 1	25 12	5 6	97 6	52 t	52 8	62	187 141	134 72	61 193	3.5	66.10	0.0	0,42	55.39	0.05	0.02	0.06	0.28	0.0	0.0	4.87	1.95	0.14	-0.35	-1.15		0.0
MIKE WISSEL WELL 55 7E 16ABD1 0.	21 1	ZO 118	3 2	91 ć	50 G	60 312	156	999 205	999 0	0	7.2	1,13	0,45	5.85	0.0	21.98	0.89	0,38	0.10	0,0	0.0	0.42	24.85	1.51	0.91	0,19	0.00298	0,0
CHARLES BOYD WELL 55 BE 34BDC1 8.	34 1	08 108	3 -7	79 14	14 1:	24 86	99	197 146	157 87	84 49	9.5	61.31	0.18	14.37	0.0	1,96	0.02	0.02	0.13	0.0	0.0	24.58	1.08	1,17	0.60	-0.14	0.01817	10,1
MAGIC WEST CO. WELL 55 TOE 328081 204.	.38	97 99	9 -17	67 6	58 6	68 1	56	141 122	99 78	68 24	5.7	90.66	0.13	1.20	0.0	0.09	0.01	0.01	0.18	0.0	0.0	31.41	1.40	0.95	0.40	-0.35	0,00428	0.0
CHARLES ANDERSON WELL 55 11E 7ACC1 0.	3.7	93 95	7 0	63 6	1 6	34 20	64	38 121	97 82	74 149	- 3	55,09	0.0	0.16	0.0	0,06	0.02	0.03	0.08	0.0	0.0	1.38	2,30	0.95	0.38		0.00040	0.0
ve the most of	52			05 0		20					•-			rankl										,		0.00	0100040	010
TREASURTON W S #1 12S 40E 36ACD1S 38.	35 1	05 105	5 -10	75 22	27 23	27 504	136	197 '145	156 89	86	7.5	3.70	-	153.97		. .	0,27	0.57	1.52	0.00	0,66	2.17	3.32	1.13	0.57	-0.18	0.18195	25.4
TREASURTON ₩ 5 #2 125 40E 36ADB15 38.	33 1	03 104	1 -12	73 23	36 2	36 335	. 143	198 145	157 90	87 (5,4	3.48	0.41	178.56	56.72	64.62	0.29	0.56	1.52	0.00	0.70	2.27	3.57	1.14	0.57		0.17751	24.3
CLEVELAND H S #1 12S 4IE 3ICAC1S 76.	66 1	10 110) -6	81 22	2 2	22 294	123	140 121	95 59	35	7.9	3.84	0,40	150.07	57.88	51.90	0.26	0.44	1.25	0.01	0.94	2.70	3.62	0,70	0.23		0.44521	24.2
CLEVELAND H S #2 125 41E 31CCA15 38.									119 72		7.8	4.66		150.07			0.21	0.45	1.54	0.00	0.47	2.68	3,27	0.89	0.39		0.25944	27.0

1

CLEVELAND H S #3 125 41E 3100B15 189, 61 113 112 -3 84 226 226 300 131 155 128 118 67 62 7.7 4.51 0.46 149.51 55.68 44.41 0.22 0.47 1.56 0.01 0.88 2.71 3.33 MAPLE GROVE H S 135 41E 7ACA15 76, 78 127 124 8 99 217 217 252 217 168 133 124 59 42 10.2 10.09 0.58 290.40 78.95 36.63 0.10 0.26 2.04 0.00 1.42 6.30 2.15 MAPLE GROVE H S 135 41E 7ACA25 378, 72 128 125 9 100 215 215 249 131 176 137 130 65 51 10.4 9.39 0.51 292.83 79.61 40.08 0.11 0.29 2.06 0.00 1.32 6.24 2.21	0.82 0.33 -0.47 0.27131 26.4 0.73 0.29 -0.52 0.23960 28.0 0.83 0.38 -0.43 0.14033 26.2 1.03 0.54 -0.26 0.12159 23.5	0
135 416 7ACA15 76. 78 127 124 8 99 217 217 252 217 168 133 124 59 42 10.2 10.09 0.58 290.40 78.95 36.63 0.10 0.26 2.04 0.00 1.42 6.30 2.15 MAPLE GROVE H S	0.83 0.38 -0.43 0.14033 26.2 1.03 0.54 -0.26 0.12159 23.9	2
	1.03 0.54 -0.26 0.12159 23.5	-
		5
MAPLE GROVE H S 135 41E 7ACA353539. 60 128 125 9 101 214 214 248 132 199 146 158 76 69 10.5 9.22 0.44 313.00 77.36 44.09 0.11 0.29 2.00 0.00 1.00 6.30 2.25	1.35 0.90 0.04 0.09032 23 6	
BEN MEEK WELL 145 39E 36ADA1 0. 40 130 127 11 103 165 165 130 101 999 175 285 0 91 28.4 26.73 0.45 17.98 169.14 1.19 0.04 0.07 1.06 0.01 0.13 67.08 1.53	1.00 0.00 0.00002 20.0	б
ELDIN BINGHAM 135 39E 708C1 38, 63 116 115 -1 88 252 159 253 136 161 130 175 67114 10.2 25.06 0.191071.93 540.07 38.90 0.04 0.52 14.20 0.0 0.0 440.06 0.45	0.88 0.40 -0.41 0.79178 7.7	7
BATTLE CREEK H S 155 39E 880C15 189. 82 142 136 21 115 254 154 259 254 195 144 155 63 53 9.7 31.67 0.18 468.17 456.20 13.75 0.03 0.38 12.75 0.00 1.41 405.51 0.48	0.88 0.45 -0.37 0.24452 6.4	4
BATTLE CREEK H S 155 39E 8BUC258176. 43 141 135 20 114 253 150 259 150 999 182 999 0 0 9.8 32.25 0.15 450.93 452.32 13.12 0.03 0.36 12.26 0.00 1.36 471.39 0.48	1,46 0.92 0,15 0,24464 5.3	3
алттые Очеек н S 155 39E 88003S 0. 81 142 136 21 115 254 155 259 254 197 145 156 64 54 9.7 32.85 0.19 449.68 426.01 12.80 0.03 0.33 11.26 0.00 1.34 368.44 0.48	0.89 0.46 -0.35 0.42626 6.	.7
BATTLE OREEX H S 195 39E BBDC45 19. 84 135 131 15 108 253 154 250 253 176 137 143 57 51 10.4 33.93 0.18 583.45 400.48 15.93 0.03 0.54 19.34 0.00 1.74 571.72 0.40	0.77 0.35 -0.47 0.16304 6.1	.5
SQUAM H S WELL 158 39E 178001 435, 84 149 143 28 124 258 153 263 258 211 150 199 65 65 9.5 27.29 0.14 922.11 524.15 30.76 0.04 0.54 15.83 0.00 2.10 572.40 0.44	0.95 0.53 -0.29 0.41959 5.1	,5
SQUAW H S 155 39E 1780C15 140. 69 150 143 28 125 253 150 255 144 245 161 224 77 74 10.1 26.92 0.14 857.17 498.84 29.88 0.04 0.51 14.27 0.00 1.89 689.75 0.45	1.19 0.75 -0.08 0.40100 5.0	,6
SQUAW H S 155 39E 1780C25 450. 73 150 143 28 125 238 150 225 137 235 158 222 74 72 12.3 27.81 0.18 714.18 423.60 23.80 0.04 0.42 12.50 0.00 2.25 753.07 0.46	1.13 0.68 -0.13 0.33000 7.	.7
MYRON FONNESBECK WELL		
165 38E 24ABC1 ***** 23 121 119 2 92 84 84 335 133 999 223 999 0 0 6.4 1.52 0.57 97.55 66.01 73.95 0.66 0.28 0.37 0.00 0.22 57.31 14.91	1.49 0.90 0.18 0.06322 33.1	8

Fremont County

DONALD TRUPP WELL 7N 41E 25CBD1 0.	32 122	120	3 94	184	184 223	150 99	9 169 20	52 0 92	12.5	6.67	0,24	2.16	0.0	1.76	0.15	0.19	0.23	0.0	0.0	2.60	6.26	1.36	0.79	0,05	0.00324	15.7
WAYNE LARSEN WELL 7N 41E 26ACC1 0.	22 133	129	13 100	5 184	179 215	157 99	9 225 99	39 O O	13.2	8.53	0.23	2.11	85,30	1.27	0.12	0.12	0.20	0.0	0.0	3,30	5.38	1.63	1.04	0.32	0,00184	15.0
HENRY HARRIS WELL 7N 41E 34ADD1 0.	33 113	112	-384	4 78	78 184	126 22	3 154 2	18 89 89	17.0	4.81	0.39	2.07	44.68	2.08	0,21	0,19	0.18	0,0	0.0	2,29	8.32	1.24	0.68	-0.06	0.00593	25.4
NEWDALE CITY WELL 7N 41E 34DCD1 0,	32 118	117	0 9	0 81	81 204	141 25	9 164 2	28 91 90	14.4	4.11	0.34	3.31	88,35	3.13	0,24	0.20	0.21	0.0	0.0	0.0	8,76	1.31	0,74	0.00	0.00262	23.0
WALLACE LITTLE WELL 7N 41E 350001 Q.	36 121	119	39	3 84	84 195	136 24	6 160 2	25 89 88	15.4	4.86	0.37	2.38	0.0	2.46	0,21	0.18	0.17	0.0	0.0	1.97	7,79	1.29	0.73	-0.02	0.00359	24.3
CLAUDE HAWS WELL 7N 41E 360DA1 D.	32 116	115	-18	8 63	63 196	123 24	6 160 Z	25 91 90	15.3	3.20	0.50	2.14	0.0	3.79	0.31	0.19	0.11	0.0	0.0	2.03	12.79	1.30	0.73	-0.01	0.00683	0.0
OSAN SWINDELMAN WELL 7N 42E 8CAA1 0.	32 114	113	-38	5 48	48 297	140 2	5 157 2	22 90 90	7.8	1.01	0.61	3.75	0.0	9.01	0.99	0.28	0.12	0.0	0.0	4.31	32,18	1.27	0.70	-0.04	0.00582	0.0
REMINGTON PRODUCE WEL 7N 42E 19CCA1 0.	L 26 83	86 -	29 5	2 26	26 233	131	18 95 9	99 82 0	11.6	0,75	0.80	5.85	0.0	7.54	1.34	0.37	0.28	0.0	0.0	2.95	45.29	0.95	0.37	-0,36	0.00185	0.0
ASHTON H S 9N 42E 25DAC15 8.	41 142	137	Z1 11	691	86 105	111-9	9 180 9	99 0 0	38.3	57.06	0.15	0.71	0.0	0.24	0,02	0.02	0.05	0.0	0.0	1.67	3.35	1,46	0.91	0,15	0+00314	7.9
816 SPRINGS 14N 44E 348801S*****	12 98	100 -	16 6	8 66	66 294	136 99	9 307 9	99 0 0	7.9	4.36	0.18	0,43	0.0	0.86	0,23	0,19	0.09	0.0	0.0	2,12	19.41	1,40	0.78	0.08	0.01584	0.0

Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation	
of Selected Minerals, Partial Pressures of CO ₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)	

									Ι		A	omic Ra	atios					Molar	Ratios	5		e Energia ormation	of			
g	Aquifer Temperatures and Percentage of Cold Water Estimated from Geochemical Thermometers (see footnotes)						sođium Sođium	Sodium Calcium	Magnesium Calcium	Calcium Fluoride	Ch for ide Boron	<u>Ch for ide</u> Fluoride	Catclum Sodium	Calcium Bicarbonate	Chioride Carbonate & Bicarbonate	Ammonia Chioride	Anamonia Fluoride	Chioride Sulfafe	≺Calcium Sodium	Quartz	Chalcedony	Amorphous Silica	Partial Pressure o CO ₂ Gas (atmospheres)	R* Magnesium Magnesium + Calcium + Potassium		
Spring/Well 57 Identification 27 Number & Name 2	Measured Temperatu	τ ₁ τ ₂	T3	т ₄ т <u>з</u>	5 [†] 6	Ť7	¶ ₆ T ₉ T ₁₀	^۳ 11 % و %	<u>,Na</u> K	Na Ca	Mg Ca	Ca P	CI B	ÇL F	Ca Na	<u>- Ca</u> सट0 ₃	C1 C03 + HC03	NH4 CI	NH4 F	<u>CI</u> SO ₄	_ <mark>_∕Ca</mark> Na	<u>∆ G</u> Quartz	∆ G Chal- cedony	<u>∆G</u> Amor- phous	PC02	<u>мд</u> ** Мg+Са+к
												Gem	Count	<u>y</u>												
ROYSTONE H S 7N IE BODAIS 76.	55 1	17 141	26 13	22 150	98 1	12 1	09 273 17) 258 84 8	3 35,3	32,06	0.11	2.08	0.0	0,26	0.03	0.07	0.56	0.0	0.0	1.53	2.12	1.31	0.80	0.01	0.00954	7.3
EAST ROYSTONE H 5 7N 1E 9CDC1S 0.	45 1.	3 129	13 10	06 84	84 1	21 1	09 261 16	5 228 87 8	5 31.5	11,51	0.26	2.01	0.0	0,89	0.09	0.14	0,30	0.0	0.0	1.43	4.49	1.30	0.77	-0.0t	0.00592	18.3
												Coods														
J. SHANNON WELL 45 13E 28ABB1 0,	47 1	52 128	12 1	05 98	98	20	07 243 16	1 224 85 8	3 28,8	3 17.79	0,20	0,37	<u>ng Co</u> 0.0	0,39	0.06	0.05	0.0 5	0,0	0.0	1,17	3,59	1.26	0.74	-0.04	0.04091	13.4
WHITE ARROW H S 45 13E 30ADB153126.				05 112				7 160 72 6			0.0	0.29	0.0	0.05	0.01	0.01	0.07	0.0	0.0	1.19	1.38	1.01	0.54		0,00866	0.0
DAVE ARCHER WELL 55 12E 3AAA1 0.				83 70				7 110 67 5			0.10	0.24	0.0	0.04	0_01	0.03	0,11	0.0	0.0	1,20	1.61	0.97	0.43		0.00024	7.5
												Idah	<u>o Cou</u> ,	nty												
BURGDORF H S 22N 4E 160C1S 613.	45 1	20 118	2	91 57	57	39	57 191 14.	3 152 78 7	2 104.2	37.14	0.0	0,80	0.0	0,55	0.03	0.18	0.05	0.0	0.0	0.45	3.55	1.11	0.58	-0.19	0.00017	0.0
RIGGINS H S 24N 2E 14DBD15 189.	42 1	19 117	1	91 95	95	54	95 195 14	5 156 80 7	5 80.0	44.99	0.03	2.04	0.0	1.40	0,02	0,86	0.36	0.0	0.0	0.07	1.79	1.08	0,54	-0.22	0.0	2.0
BARTH H S 25N 12E 1800 1S 742.	61 1	18 116	0	89 51	51	14	51 157 12	9 203 6312	7 170.	54,48	0.0	0.34	0.0	0+13	0,02	0.05	0.08	0.0	0.0	1.84	2.91	0,53	0,05	-0.75	0.00002	0.0
RED RIVER H S 28N 10E - 3DDD15 132.	55 1	22 120	3	94 80	80	50	80 175 13	8 130 70 6	0 86.	52.30	0.0	0.10	0.0	0,06	0.02	0.11	0.10	0.0	0.0	0,27	2.33	0.88	0.38	-0.41	0,00008	0.0
WEIR OREEK H S 36N 11E 13BCC1S 151.	48 1	00 101	-14	70 34	34	42	34 124 11	6 91 63 4	8 98.0	5 15.32	0.0	0,51	0.0	0,71	0.07	0.24	0.08	0.0	0,0	0.38	7.19	0.75	J . 23	-0.55	0.00006	0.0
JERRY JOHNSON H S 36N 13E 18ADD151135.	48 1	00 101	-14	70 33	33	18	33 124 11	6 91 63 4	8 157.	23.89	0.12	0.64	0.0	0.80	0.04	0,17	0.07	0.0	0.0	0,21	5.10	0.70	0.18	-0.60	0.00004	0.0
												leffer	son Ci	ountu												
HEISE H S 4N 40E 25DDA1S 227.	49	79 83	-32	48 206	206	213 1	19 999 8	3999 0	0 13.4	5.81	-	414.94		68.81	0.17	0.62	3.69	0.0	0.0	8.78	1.62	0.54	0.02	-0.76	0.24894	19.8
ROYAL CATFISH INDUSTRY 95 17E 290BB1 *****	43 1	21 119	2	92 93	93	48	93 206 14	8 161 82 7	8 87.3	77.66	0+0	<u>Jero</u> 0.78	<u>ne</u> <u>Cou</u> 0.0	nty 0.09	0.01	0,03	0.18	0.0	0.0	2,55	1.74	0.95	0.41	-0.35	0.00010	0.0

-234-

ų

	DROMES CANYON H S																								
	CRONKS CANYON H S 16N 21E 18ADC15 76.	46 88 90	-25 57 165	150 144	115 124 112	75 65 42	24.7	25,36	0.21	1.99	0.0	0,74	0.04	0.05	0.13	0.0	0.0	1.07	2.38	0.70	0.17	-0.61	0.01918	12.2	
	SALMON H S 20N 22E 3ABO15 549.	45 83 86	-29 52 203	203 234	112 117 107	999 64 O	11.5	14.40	0.79	14,89	0.0	6.06	0.07	0.06	0.15	0.0	0.0	3.98	2,90	0,65	0.12	-0.65	0.38936	32,7	
	SHARKEY H S ZON Z4E 34CCC1S 30,	52 131 128	12 104 173	98 135	117 234 156	221 80 78	27.0	64.48	0.14	2.28	0.0	0.29	0.02	0.02	0.18	0.0	0.0	0.86	1.15	1.18	0.66	-0.12	0.02860	5,8	
	816 CREEK H S 23N 18E 22CAD1S 284.	93 161 152	38 137 173	173 136	173 224 153	218 60 59	26.7	72,37	0.06	1.04	0.0	0.17	0.01	0.02	0,10	0.0	0.0	1.48	1.20	0.87	0.48	-0.34	0.04292	2.6	
	Madison County																								
	LAVERE RICKS WELL 5N 40E SCBAT 0.	21 93 95	-20 63 36	36 257	139 273 167	7 257 96 96	9,9	0.92	0.58	8,25	0.0	12.40	1,08	0.30	0,19	0.0	0.0	4.92	37,20	1,18	0.58	-0.13	0.00207	0.0	
	MARK RICKS WELL 5N 40E 8BCC1 0.	26 101 102	-14 71 44	44 278	138 258 162	2 227 94 93	8.7	1.06	0,55	3.78	121.86	9.20	0.95	0.30	0,12	0.0	0.0	2.71	32.98	1,21	0,62	-0 . 10	0.00445	0.0	
	PAULINE SMITH WELL 5N 40E 9CCC1 0.	21 91 93	-22 61 30	30 276	142 254 161	227 96 95	8.8	0,66	0.67	14.29	0.0	29,23	1.52	0.30	0,14	0.0	0.0	3.94	49.89	1.15	0,55	-0,16	0.00177	0.0	
	GREEN CANYON H S 5N 43E 6BCAIS O.	44 72 76	-39 40 7	7 7 785	150 79 80	0 999 51 0	1.8	0.05	0.38	0.57	0.0	41,48	20.59	1,28	0,02	0.0	0.0	0,01	348.40	0.49	-0.05	-0,81	0.03367	0.0	
	WALZ ENTER. INC. WELL 6N 415 10ACC1 0.	26 114 113	-3 85 81	i 81 225	140 999 185	5999 D O	12,3	3.66	0.37	3,91	82.26	3.97	U.27	0.20	0.20	0.0	0.0	2.B1	9.84	1.36	0.78	0.05	0.00476	24.2	
	WANDA WOOD WELL #1 6N 41E 10BB81 0.	24 115 114	-2 66 78	3 78 221	146 999 19	5999 0 0	12.7	3.38	0.36	3,68	73.12	4,47	0.30	0.21	0.17	0.0	0.0	0.0	10.31	1,40	0,81	0,08	0.00236	24.1	
)	WANDA WOOD WELL #2 6N 41E 10D881 0.	27 125 122	6 97 80) 80 207	133 999 194	8 999 0 0	14.0	3,94	0.40	2.98	58.59	3,27	0.25	0.22	0.20	0.0	0.0	2.60	9.13	1.47	0.89	0.16	0.00570	26.2	
1																									
Oneida County																									
	KENT H S 125 34E 368C815 715.	24 83 86	-29 52 3	5 35 352	122 999 99	9 999 0 0	5.9	0.47	0.56	62.53	0.0	88,49	2.14	0.38	0,25	0.0	0.0	5.27	57.29	1.00	0.41	-0.31	0.04489	0.0	
	MALAD W S 145 36E 27CDA1S 167.	25 61 67	-47 29 223	3 228 260	133 999 99	9 999 0 0	9.7	8.72	0,542	813.82	0.0	284.43	0.11	0.38	3,71	0.0	0.0	227.48	1.48	0.67	0,09	-0.64	0,26290	27.3	
	PLEASANTVIEW W S 155 35E 3AA81S*****	25 65 70	-44 33 17	5 176 188	114 999 99	9999 O C	16.4	4.44	0.49	359.86	0.0	74,49	0,23	0.51	2,40	0.0	0.0	11.57	4.30	0,72	0.13	-0,59	0.04960	30.4	
	WOODRUFF H S 165 36E 108BC1S 0.	27 78 81	-34 46 19	2 192 178	135 999 99	9 999 0 C	17,8	12.20	0.571	429.24	0.0	102.71	0.08	0.44	5,97	0.0	0.0	74.70	1.44	0.88	0,30	-0,43	0.02094	29,8	
	Owyhee County																								
	GIVENSHS 1N 3W 21BBD1S 0.	49 121 119	3 93 100	0 100 19	100 189 28	3 150 81 75	153.1	219.66	0.0	0,88	0.0	0.03	0.00	0.01	0,21	0.0	0.0	2,01	0.91	0.71	0,19	-0,59	0.00008	0.0	
	WESLEY HIGGINS WELL IN 4W 120881 1552.	36 91 93	-22 61 39	7 39 -35	22 81 99	9 999 68 0	623.6	87.17	0.0	1,90	0.0	0.13	0,01	0.02	0.22	0.0	0.0	6.62	1.55	0,91	0.36	-0.39	0,01687	0.0	
	EARL FOOTE WELL 15 2W 7CCB1 640.	46 82 85	-30 50 8	5 83 14	83 999 99	9 999 0 0	170.1	110,11	0.0	0,93	0.0	0.08	0.01	0,02	0.16	0.0	0.0	1.14	1.32	0.47	-0.06	-0.83	0.00048	0.0	
	ALFRED HEYWOOD WELL 3S 1E 35DAC1 0.	20 106 106	-10 76 5	5 56 257	141 999 41.	3999 0 0	9,9	1.42	0,38	1,97	39.76	9.71	0.70	0.27	0.05	0.0	0.0	0.83	21.51	1,36	0,76	0.04	0.00362	0.0	
	WILLIAM COX WELL #1 4S 1E 250CD1 19.	30 147 141	26 122 186	5 144 176	121 999 48	399900	18.2	21,62	0.19	22.33	0.0	19,75	0.05	0.04	0.04	0.0	0.0	12,31	1.85	1.68	1.10	0,37	0,05103	10.7	
	WILLIAM COX WELL #2 45 1E 26ABC1 189.	27 134 130	H 14 107 20	0 178 202	200 999 46	4999 O C	14.7	33.53	0.35	11,61	5.08	10.27	0.03	0.03	0.03	0.0	0.0	9.78	1.66	0.0	0,0	0.0	0.0	14.2	

A state of the second sec

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

						A	tomic R	atios					Molar	Ratios				Energie Armation		ŧ	
20	, [d Surface ture (9C)	Aquifer Temperatures and Percentage of Cold Water Estimated from Geochemical Thermometers (see footnotes)	Sodium Potassium	Sodium Calcium	Magnesium Calcium	Calcium Fluoride	Chioride Boron	Chloride Fluoride	Calcium Sodfum	Calcium Bicarbonate	Chloride Carbonafe & Bicarbonafe	Anmonia Chioride	Annonia Fluoride	Chloride Sulfate	Calcium Sodium	Quartz	Chalcedony	Amorphous Silica	Partial Pressure o 202 Gas (atmospheres)	R≖ Magnesium Magnesium + Calcium + Potassium
Spring/Well Identification Number & Name	(1/min.	Measure Tempera	T ₁ T ₂ T ₃ T ₄ T ₅ T ₆ T ₇ T ₈ T ₉ T ₁₀ T ₁₁ \$9\$11	Na K	Na Ca	Mg Ca	<u>Ca</u> F	CI CI	CI F	Ca Na	Ca HCO3	<u>C1</u> CO3 + HCO3	NH4 CT	NH4 F	<u>CI</u> 504	/Ca Na	<u>A</u> G Quartz	∆ G Chal- cedony	∆ G Amor- phous	PC02	<u>Mg</u> ** Mg+Ca+K

<u>Owyhee</u> <u>County</u> (cont'd.)	
---------------------------------------	--

											- /											
T. ADCOCK WELL 45 1E 29CCD1 5602.	70 127 124	7 99 77	77 4	77 167 260 125	64 50 212.6	145.28	0.0	0,54	24.54	0.05	0.01	0.03	0.17	0.0	0.0	0.83	1.26	0.29	-0.17	-0.98	0.00000	0.0
GEORGE KING WELL 45 1E 348AD1 0.	75 127 124	7 99 75	75 0	75 161 253 75	59 0 238.1	155.32	0.30	0.54	0.0	0.04	0,01	0.02	0,14	0.0	0.0	0.81	1.23	1.78	1.15	0.46	0.00003	18.4
G. CHRISTENSEN WELL																						
45 2E 29DBC1 38. R. KETTERLING WELL	28 137 152	16 110 175	175 149	115 999 461 999	0 0 23.4	27.40	0.54	55,38	15.26	33.18	0.04	ű.03	0.05	0.0	0.0	18,66	1.59	1.60	1.02	0,29	0.04147	25.5
45 2E 328CC1 95.	43 142 137	21 116 160	130 126	160 999 374 999	0 0 30.0	45.09	0.20	1.05	0.0	0.32	0,02	0.02	0,08	0.0	0.0	8.85	1.84	1.28	Q.74	-0.03	0.00069	10,2
C. STEINER WELL 55 IE BRABI O.	32 147 141	26 122 192	173 197	140 999 462 999	0 0 15.2	16.79	0,08	19.29	6.86	25.60	0.06	0.05	0.04	0.0	0,0	6,77	2,30	1.64	1.07	0.33	0,01369	4,9
E. LAWRENCE WELL #1	<i></i>	7 00 4-																				
55 1E 108DD1 4542. E. JOHNSTON	64 127 124	7 99 61	61 0	61 173 269 129	69 58 243.0	79,24	0.0	0,46	24,91	0.07	0.01	0.05	0,20	0.0	0.0	0,84	1.70	0.34	-0.14	-0.94	0.0	0.0
WELL #2 55 IE 21CBC1 1382.	65 123 120	4 94 71	71 0	71 163 256 123	66 54 243.0	134.11	0.0	0.46	23.43	0.04	0.01	0.03	0,21	0.0	0.0	0.84	1.31	0.35	-0.12	-0.92	0.00000	0.0
E. LAWRENCE WELL #2	(5) 170 100																					
55 1E 24ACD1 7646. E. LAWRENCE	65 130 127	11 103 96	96 27	96 184 279 135	71 60 130.8	158.49	0.0	0,50	28.63	0,03	0.01	0.02	0,20	0.0	0.0	0.92	1.20	0.36	-0.11	-0.92	0.00001	0.0
WELL #3 5S 1E 24AD81 4012.	66 126 123	7 98 77	77 4	66 170 264 127	67 55 212.6	145.28	0.14	0,50	0.0	0.04	0.01	0.02	0.16	0.0	0.)	0.78	1.26	0.86	0.39	-0.41	0.00248	9,3
OSCAR FIELDS WELL 55 2E 188C1 95.	50 123 120	4 94 60	60 -1	60 191 285 152	80 75 243.8	88.19	0.0	0,57	0.0	0.05	0.01	0.06	0.26	0.0	0.0	6.10	1.74	0,14	-0,38	-1.16	0.0	0.0
CLARENCE HOPKINS WELL																						
5S 2E 200A1 38. COX AND LAWRENCE	37 130 127	11 103 187	167 169	129 999 361 282	0 92 19.3	44.02	0,33	2.09	38.27	0.73	0.02	0.02	0,06	0.0	0.0	19.91	1.45	1,39	0.83	0.08	0.02590	13.5
WELL 55 2E 58CD1 284.	43 142 137	21 116 149	149 105	149 999 374 999	0 0 38.1	50.29	0.35	1,25	6.16	0.29	0.02	0.04	0.11	0.0	0.0	6,69	1.75	1,02	0.49	-0,28	80000.0	17.4
H. DRISKELL WELL #1																						
55 2E 13ADA1 19.	23 142 137	21 116 197	171 192	140 999 586 999	0 0 15.8	3 34,87	0.33	10.72	0.0	4.11	0.03	0.03	0.07	0.0	0.0	25.39	1,59	1.72	1.13	0.41	0.01853	15.6
N. MCKEETH WELL 55 3E 20ADA1 0.	60 142 137	21 116 73	73 5	73 231 321 22	80 79 206.5	5 134.71	0.15	0.42	5.87	0.03	0.01	0.06	0,29	0.0	0.0	6.35	1.42	0,32	-0.17	-0.97	0.0	10.2
BURGHARDT CO. WELL 5\$ 3E 20BBB1 19.	27 142 137	21 116 169	141 162	110 999 501 999	0 0 20.6	5 9,55	0.15	32.16	11,58	39.82	0.10	0,09	0,07	0.0	0.0	12.13	3.24	1.67	1.09	0.36	0.04545	11,1
LEROY BEAMAN WELL 55 3E 22AAD1 19.	25 156 149	34 132 170	170 148	113 999 610 999	0 0 23.6	5 22,94	0.29	29.10	58,18	12.87	0.04	0.04	0.09	0.0	0.0	25.73	2.00	1.84	1.25	0.53	0.03415	16.5

0.0	6 . 8	8.1	0.0	0*0	12.4	0*0	51.9	0*0	0.0	4.9	0*0	0-0	2.1	5.4	2*2	7.4	8*1	9.3	2,1	2.1	0*0	0*0	4.6	1
0.0	0.0	0,0000	0*0	0*0	0.00107	0.02435	0.01964	61 800 *0	0-00003	0*00002	0-0	0-00024	0-00024	0.00017	0*0	0,001B7	0,00032	0,00075	0,00248	0.00036	60000"0	0,00011	0,00016	60000 ° 0
-1.15	-0-88	-1,06	-0-95	66 0-	0.25	-0.16	0.24	-0-15	-0.62	-0-49	-0.47	-0.37	0.15	0.16	-0.45	0.21	0.13	-0-08	0.40	-0,44	60 * 0-	-0.10	0.21	0 4
-0.34	80°0-	-0.27	-0-14	-0.18	0.96	0,55	0.97	0.58	0.18	0.29	0.31	0.42	10-0	16*0	£ 5. 0	0 . 92	0.87	0.67	1.13	0.33	0.65	0.64	0,95	0.76
60*0	0,39	0.22	0.33	0.27	1.54	1.15	çç . 1	1.16	0.67	0.80	0.83	16.0	46	1.47	0.83	1,52	1.44	1.22	17.1	0.87	12.1	1.20	1.52	1,35
1.51	1.28	1.68	1.06	1.70	12,76	6.26	3.25	51.75	1.05	1.14	1.32	4.17	2, 25	3,16	2.33	7.74	5.24	1.54	2,27	2.26	1.82	1.94	3.52	13.11
0.66	0.63	3.84	4.14	0,60	0-20	0.30	5.42	1-62	1.14	1.81	0.71	1.51	12.0	06*0	0.79	0.20	1,02	1.69	1.04	12,44	1.26	0.85	6*97	0.45
0.0	0.0	0.0	0.0	0*0	0*0	0"0	0.0	0"0	0-0	0*0	0.0	0*0	0,0	0.0	0*0	0.0	0.0	0.0	0.0	0-0	0-0	0*0	0.0	0.0
0*0	0*0	0.0	0*0	0.0	0*0	0"0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0*0	0*0	0.0
0.30	0.28	0.28	0.27	0.26	0.13	0,20	0°0	0,28	0.23	0,19	0.14	0.13	0,10	0.12	0.34	0.18	0.16	0.14	0,29	0.13	0.13	0.14	0,21	0,11
ĉ.15	0.07	0.03	0.05	0,06	0.57	0.31	0.07	0.45	0,02	0-02	9,04	0,09	0.03	0,06	0,38	0.48	0.07	0.02	0.06	0,04	0.04	6,03	60°0	0.35
10*0	0,01	10*0	0,00	10"0	65-0	0,29	60 ° 0	0,96	10*0	0.01	0.01	0°04	0.02	0*04	0,03	0.25	0.06	0.01	0.02	0.02	0,02	0,02	0,05	0.40
0*01	0*05	0.03	0,02	0.07	23.70	67,95	22.91	35.08	0.03	0-03	0,06	0.20	0.19	0.24	0.10	4.98	0.27	0.04	0.14	60 ° 0	0,06	0.05	0,18	2,61
B.03	8,32	6.25	7.38	8.72	42.51	50.95	10.46	220.61	6,82	1.23	7.63	19-83	8.00	8.40	10.74	33,06	Z7.70	6.63	11,30	5.46	6,96	8,84	11,45	33.65
0.54	0.57	0,46	0,38	0.57	5.67	44.66	21.44	22.51	0.60	0.57	0.49	D.47	0,65	0.54	0.42	1.92	0.60	0,28	0.82	0.38	0,26	0.24	0.42	0,65
0*0	11.0	0.12	0.0	0*0	0.15	1.26	0.68	0.38	0.0	0.14	0.0	0*0	0-05	50 ° 0	0-03	60*0	0.04	0.19	0.04	0-04	0*0	0*0	0.07	0.14
91.32	127.85	100,87	211,38	79.24	1.70	3.45	11.42	1,04	74.34	159,81	119-86	22.36	46.97	26, 77	38,35	4.04	13.81	80.46	44.70	40.80	58,11	£1 , 64	21.36	2.48
0.011	124.7	153.1	126.9 2	154.6	11.8	41.9	12.4	23.4	72.9	46.8	29.2	2 9 •5	20.4	24.0	39.8	12.4	0*6	47.5	2.5	33.4	44.4	73.2	23.5	10.7
61 50	72 64	67 75	73 66	65 B9	0	0 69	0	92 89	76 75	ŝ3 82	0 87	75 69	0	0	0 0	0	0	68 68 3	0 0	69 66	0 0 0	56 O 6	0 0 6	0
283 150	293 157	2051 502	293 157	285 152	458 999	666 666	467 999	221 9 8	301 192	323 221	354 262	294 15B	427 999	444 999	376 999	544 999	403 999	324 222	524 999	246 105	579 999	358 278	453 999	474 999
91 189	95 197	76 152	961 501	15 190	155 999	82 75	666 651	ودا دو	128 207	145 233	166 999	661 06	176 999	162 999	143 999	154 999	666 LOZ	141 235	140 999	151 153	141 999	666 PS	161 999	666 <u>£1</u>
36	Â	51	8	61	231 1	86	223	149	60	8	128	127	163	147	102	78 223	273	89	150	116	34	59	149	13 245
16 16	11 56	76 76	105 105	21 21	71 71	62 62	261 261	21 21	128 128	146 144	166 166	06 06	176 176	162 87	143 143	12 26	207 207	141 115	169 169	151 151	141 141	94 9	161 155	7 57
ZI 116	16 110	0 88	1 601 21	16 110	13 106	61	10 102 1	8 66	1 601 91	16 110 1	21 115 1	13 106	30 127 1	26 122 162	34 132	2 91	14 107	5 95	26 122	-7 80	11 103	5 96	26, 122	16 2
	1 251 751	115	131	132	129	93 -22	126	81- 86	152	132	137	129	145	141	149	118	130	121	141	109	127	121	141	0 116
83 142 137	67 157	60 117	63 136	72 137	27 135	22 91	25 129	25 96	62 136	53 137	48 142	61 133	3 9 152	34 147	54 156	20 120	33 134	39 123	27 147	44 109	34 130	33 I24	33 147	22 120 118
D.	ы. 0.			5 5	MELL	MELL.	_	on o	•	2725	ੇ	ۍ ۲	6283.	6	5602.	341. 341.	•	00. WELL	0	19,	50N 19.	с. ЕГГ	#1 19.	ċ
CDOX'S GREENHOUSE WELL # 55 35 268081	SDOKIS GREENHOUSE WELL# 55 5E 264092	3. BYBEE WELL #1 55 3E 278001	A. WHETTED WELL 55 3E 28BCC1	D. BYB66 WELL #2 55 3E 350001	11AHO POWER CO WELL 55 4E 34CGB1 0.	CHESTER FINDALL WELL 55 55 338801 0.	CLAY ATKINS WELL 55 5E 340001	LOWER BIRCH SPRING 6S 1E 3288A1S 0	L, POST ₩ELL #1 65 3E 203831	L. POST WELL #2 65 3E 20001 2725.	H. BUNT NELL 65 3E 4BCC1	J. AGENBROAD WELL 65 35 5CAC1	NIELSON & CAROTHERS WELL 65 JE 9ACCI 6	TREAMGLE DAERY WELL #1 65 3E 110AD1	LITTLE VALLEY IRN. WELL 65 4E 14ABC1 5602.	KENT KOHRING WELL #1 65 4E 25BCC1 341.	010X WARD HELL 65 4E 3500A1	COLYER CATTLE C 65 5E 100001	J_R_SIMPLOT MELL_#1 65 5E 18CCB1	J_R_SIMPLOT WELL #2 65 5E 20AAB1	GEORGE HUTCHINSON MELL 65 56 24BCA1	BRUNEAU CITY WELL 6S 5E 2400BI	DON DAVIS WELL 65 5E 29DCC1	CARL & HARRY LOOS WELL 65 5E 35CCA1

Çatinin

-237-

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

						A	tomic R	atios					Molar	Ratios			Free Fo	Energie Armation	s of of	+	
	9e)	d Surface ture (⁹ C)	Aquifer Temperatures and Percentage of Cold Water Estimated from Geochemical Thermometers (see footnotes)	Sodium Potassium	Sodium Calcium	Magnesium Calcium	Calcium Fluoride	Chloride Boron	Chloride Fluoride	Calcium Sodium	Calclum Blcarbonate	Chloride Carbonate & Bicarbonate	Anmonia Chioride	Armonia Fluoride	Chioride Sulfafe	vCalcium Sodium	Quartz	Chal cedony	Amorphous Silica	Partial Pressure o 202 Gas (atmospheres)	R≂ Magnesium Hagnesium + Calcium + Potassium
Spring/Well Identification Number & Name	schar /min.	Measurec Femperat	T ₁ T ₂ T ₃ T ₄ T ₅ 7 ₆ T ₇ T ₈ T ₉ T ₁₀ T ₁₁ ≴9 \$111	Na K	Na Ca	Mg Ca	Ca F	<u>C1</u> B	<u>C।</u> ह	<u>Ca</u> Na	Ca HCO3	 C0 ₃ + HC0 ₃	NH4 CT	NH4 F	<u>Ci</u> S04	/Ca Na	∆ G Quartz	∆ G ChaT- cedony	<u>∆G</u> Amor- phous	PC02	<u>мд</u> ** Мд+Са+К

Owyhee County (cont'd.)

													0491		mcå (c	one a	• /											
IDAHO PARKS DEPT, WELL 65 6E 120001	J.	37 147 14	12	6 122	178	97 16	63	143 99	423	999 Q	0 20.	4 31.3	8 0,10	1.73	58.47	0.80	0.03	0.03	0.07	0,0	0.0	14.29	2.02	1.54	0.99	0.24	0.00368	5.3
MILORED BACHMAN WELL 65 6E 190001	19.	38 130 12	:6 I	0 102	133	133 8	85	133 99	353	261 0 9	1 51.	0 54.0	4 0.0	0.21	8.99	0.05	0.02	0,05	0.15	0.0	0.0	0.71	2.14	1.16	0.61	-0.14	0.00007	0.0
BRUNEAU CEMENTARY WELL 6S 6E 190801	۲ 0.	42 127 12		8 99	91	91 5	51	01.28	1.1.75	223 88 8	7 04	5 7 5 7	E 0.0	0.01	0.00			~ ~ ~										
ACE BLACK WELL	95.	35 129 12												0.21	8,99 9,60	0.04	0.01	0.04	0.15	0.0	0.0	0.97	1.85	0.95	0.41	-0.36	0.00003	0.0
WILBUR WILSON WELL #1		JJ 127 12												V=ZZ	9,00	0.09	0.02	0.04	0,13	0.0	0.0	1.06	2.15	1.07	0.51	-0.23	0.00004	3.4
WILBUR WILSON	19.	41 120 11	8	2 91	138	102 7	78	102 204	302	194 87 8	6 55.	3 64.7	5 0.14	7.55	37.78	0.75	0,02	0,02	0.17	0.0	0.0	49.38	1.17	1.18	0.64	-0.12	0.00779	8.2
		33 119 11	7	1 91	139	139 8	82	104 25	336	226 93 9	2 51.	9 53.8	1 0.24	13.23	26,77	1.20	0.02	0.02	0.23	0.0	0.0	59.43	1,31	1.30	0,74	-0.00	0.00657	13.9
CARL JOHNSON WELL 6S 7E 20001		35 121 11	9	3 93	144	101 é	89	109 24	334	226 92 9	1 47.	63.1	2 0.14	3.95	24,41	0.36	0,02	0.02	0.18	0.0	0.0	54.16	1.32	1.30	0.74	-0.01	0.00613	7.8
SAND DUNES FARMS WELL 6S 7E 8BBA1	0.	23 129 12	16 1	0 102	199	199 21	16	131 999	509	999 0	0 13.	2 16.0	9 1.08	13.02	18,56	17,61	0.06	0.07	0.05	0.0	0.0	0.18	2.44	1.59	1.00	0.28	0.05057	40.1
81LL BURGHARDT WELL #2 7S 3E 4ACD1 27	25,	34 133 12	9 1	3 106	79	75 49	92	176 999	391 :	999 0	03.	5 1.0	6 0,09	2.27	27.77	14.22	0.94	0.36	0.06	0.0	0.0	0.54	26.45	1_47	0,90	0.16	0,00996	7.3
KETTH THUMAS WELL 7S 4E TAOCT 289	96.	40 127 12	4 7	99	182	178 21	13 1	82 246	332 2	25 89 84	3 13.5	13,39	0.05	0.48	26,46	0.34	0.07	0,13	0.08	0.0	0.0	1.37	5,69	1.21	0,66	-0.10	0.00021	3.1
PETE MERRIDX WELL ∦1 75 4E 3ABD1 626	83.	42 134 130	0 14	107	194	194 24	17 1	94 273	350 2	57 90 89	9 10.6	13.8	5 0.03	0,52	22.27	0,31	0.07	0.10	0.16	0.0	0.0	1.18	6.01	1,29	0.75	-0.01	0.00042	1.7
PETE MERRICK WELL #2 75 4E 108081 183	74.	38 136 13:	2 16	5 109	198	198 26	51 1	98 999	377 9	199 0 () 9,6	11,38	3 0.02	0.49	24.04	0.36	0,09	0,10	0.14	0.0	0.0	0.97	6.56	1.35	0.80	0.05	0.00028	1.4
FRANK MILLETT WELL ∦1 75 4€ 11CBC1 740	75.	36 135 133	2 16	5 109	92	92 28	32	92 999	389 9	99 0 () 8.5	4,90	0.03	0.61	28.62	0.92	0.20	0.22	0.14	0.0	0.0	0.84	10.21	1.43	0.87	0.12	0.00064	2.3
FARIA BROTHERS WEL 75 4E 128001	ιι 0.	43 134 130	0 14	107	166	186 22	24 1	86 270	346 2	54 89 89	12.4	12.70	0.02	0.52	25.85	0,38	0.08	0.11	0.15	0.0	0.0	1.34	5,96	1.22	0.69		0.00020	1.5
CLARENCE COOK WELL 75 4E 13BCC1 560		39 134 130) 14	107	193	188 24	5 1	93 999	364 2	86 0 92	2 10.7	11.70	0.05	0.48	24,62	0.38	0.09	0,12	0.14	0.0	0.0	1.08	6.33	1,19	0.64		0.00007	2.8

-238-

DAVE LATHINEN WELL 75 4E 13DCD1 4750.	40 135 131	15 108 186	186 228	186 999 363 28	15 0 91	12.0	10,62	0,02	Ű . 44	30.81	0 . 37	0.09	0.17	0,17	0.0	0.0	1,28	6,39	1.28	0.74	→0 •02	0.00015	1.3
FRANK MILLETT WELL #2 75 4E 14ABC1 5283,	39 134 130	14 107 196	196 258	196 999 366 28	39 0 92	9.8	10.90	0.02	0,72	22.54	0.57	0.09	0.11	0.13	0.0	đ.0	1.22	6.85	1,32	0.77	0.01	0.00028	1.5
ROBERT BLACK WELL 75 4E 15ACD1 *****	33 137 132	16 110 88	88 287	172 999 412 99	99 0 0	8.2	3.64	0.06	0.38	27.67	0.78	0,27	0.28	0.14	0.0	0.0	0.50	11.47	1.50	0.94	0.20	0.00139	4.5
BLAINE RAWLINS WELL #3 75 4E 230082 *****			188 236	188 999 366 28	39 0 92	11.3	8.43	0.03	0.59	0.0	0.57	0.12	0,17	0.16	0.0	0.0	0,83	6.86	1.35	0.80	0.04	0.00049	2.0
BELL BRAND RANCHES WELL 75 4E 25ADC1 *****	37 137 132	16 110 93	93 328	93 999 385 99	9900	6.6	6,41	0.02	0.39	28,16	0,21	0,16	0.10	0.17	0.0	0.0	1.03	11,98	1.30	0.75	-0.00	0-00012	1.6
GUTHERIES RANCH WELL 75 4E 268081 4920.	31 131 128	12 104 94	94 268	94 999 407 99	99 D D	9.7	6.03	0.05	0.78	33.54	0.75	0.17	0.19	0.20	0.0	0.0	1.48	9.20	1,47	0.90	0.16	0.000	
DAVE LATHINEN WELL 7S 4E 27BOCI 5261.	27 122 120	3 94 87	87 253	166 999 401 9			5.01	0.13		39,13	1,15	0,20	0.22	0.22	0.0	0.0	1.35	9.99	1.43	0.85		0.00070	3.7
ACE BLACK WELL #2							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					0120					1425		1475		0.12	0.00114	9.7
75 5E 50BC1 95. DAVIS BROTHERS	32 121 119	3 93 175	175 180	175 999 353 20	51 0 93	17.6	24.96	0.04	0.62	17,13	0.25	0.04	0.08	0.18	0.0	0.0	0.54	3.82	1.19	0.62	-0.11	0+00007	2.1
WELL #1 75 5E 7A8B1 *****	39 131 128	12 104 187	185 232	187 999 355 26	54 0 91	11.7	10.46	0.04	0.54	33,55	6.42	0.10	0.13	0,17	0.0	0.0	1,56	6,56	1.30	0,75	-0.00	0.00034	2,6
DAV13 BROTHERS WELL #2 75 5E 8CCC1 3066.	40 131 127	11 104 184	164 212	184 271 348 2	55 91 90	13.6	16.25	0.03	0.45	25,99	0.25	0,06	0.11	0.17	0.0	0.0	1.33	5.07	1.24	0.69	-0.07	0.00016	1.7
HARRY LOOS WELL 75 5E 9DDD1 3406.	40 130 127	11 103 90	46 223	90 267 346 25	52 90 90	12.5	7.26	0,07	0.44	46.47	0,52	0.14	0.21	0,16	0.0	0.0	1.35	7.96	1.25	0.71	-0.05	0.00022	5.1
ROY DAVIS WELL #2 75 5E 13AAC1 1325.	25 133 129	13 106 92	92 265	92 999 487 9	99 0 0	9.4	4.94	0,21	0,54	25,60	0.85	0,20	0.27	0.17	0.0	0.0	0.54	9,55	1.56	0.97	0.25	0+00038	14.3
CARL STEINER WELL 75 5E 13CBB1 0.	36 127 124	7 99 188	188 229	188 999 351 2	59 0 92	12.0	13.01	0.0	0.44	21.25	0.29	0,08	0.12	0.17	0.0	0.0	۱,28	5,94	1.26	0.70	-0,05	0.00017	0.0
ROBERT TINDALL WELL 75 5E 16ACD1 D.	40 131 127	1) 104 181	181 209	181 271 348 2	55 91 90	13.9	13,79	0.02	0.33	33.55	0.20	0.07	0.10	0.16	0.0	0.0	1.33	5.61	1.24	0.69	-0.07	0.00021	1.6
BELL BRAND INC. WELL 75 5E 19CCC1 4428.	37 134 130	14 107 186	186 225	186 999 374 9	99 0 0	12,3	12.45	0.02	0.49	30.74	0.30	0.08	0.11	0.18	0.0	0.0	1.24	5.79	1.38	0.82	0.07	0,00046	1.4
GENE TINDALL WELL 75 5E 28ACD1 4239.	34 133 129	13 106 199	187 262	199 999 391 99	99 0 0	9.6	10.92	0,06	0.46	26,55	0.36	0.09	0.13	0,17	0.0	0.0	1.07	6.36	1.39	0.83	0.09	0.00024	5.7
GEORGE TURNER WELL 75 6E 7AAC1 0.	25 137 132	16 110 186	184 197	186 999 508 99	99 0 0	15.3	37.98	0,06	0.54	21,92	0.13	0,03	0.05	0,18	0.0	0.0	1.18	3,15	1.44	0.85	0.13	0.00003	2,6
COLYER CATTLE CO, WELL 3 7S 6E 9BAD1 0,	51 137 132	16 110 131	131 71	131 241 328 2	23 84 83	60.7	108,96	0.31	0.22	14,58	0.03	0.01	0.04	0,17	0.0	0.0	1.00	1.45	0,69	0,18	-0.61	0.0	14.0
R.L. OWENS WELL #2 75 66 16CDC1 0.	43 125 123	6 97 91	62 188	91 223 316 2	18 87 86	16.3	11.54	0.09	0.54	46,47	0.39	0.09	0.11	0,15	0.0	0.0	1.35	6,38	1.16	0,62	-0.14	0.00037	6.2
HOT SPRINGS RANCH WELL 75 GE 21DBC1 0.	43 126 123	7 98 94	56 166	94 226 318 2	19 87 87	20.0	15,96	0.08	0,40	39.74	0,23	0.06	0.10	0.16	0.0	0.0	1.35	5.17	1.17	0,63	-0.14	0.00034	5.7
R.L.OWENS WELL #4 75 6E 238881 0.	47 121 119	3 93 93	93 205	130 194 286 1	54 82 78	14.2	9,88	0.22	0.48	0.0	0,43	0.10	0,12	0,14	0.0	0.0	1.43	6.76	1.13	0,60	-0,17	0.01035	14.0
ROSE WILLIAMS WELL 75 6E 23CAD1 0.	44 137 132	16 110 93	93 222	93 999 352 2	59 0 89	12,5	7.70	0,15	0.57	22.27	0,69	0,13	0.14	0,12	0.0	0.0	1.39	7.51	1.31	0,77	0.00	0.00080	10.4
R.L. OWENS WELL #7 75 6E 26ADA1 3899.	38 126 123	7 98 81	81 275	164 255 339 2	27 91 89	8.9	3,92	0,29	1.49	26.46	2.45	0,25	0.18	0.11	0.0	0.0	1.55	12.76	1,30	0.75	-0.00	0.00166	19.1

-239-

Maximum and the formula of the second s

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO2 Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

	R≊ Magnesium Magnesium Caicium Potassium	<u>мд **</u> <u>Мд+Са+к</u>
	Pressure o 2602 00 (atmospheres)	2004
tes of ot	€oill2 suorphomA	Anor- y phous
ee Energies Forma†ion o	үпоbeэ∣ьйЭ	∆ 6 Chai- cedony
free For	zt reuQ	∆ G Quar†z
	muisles moisles	a/Ca
	Chloride Chloride	30 ⁴
r Ratios	elnommA ebinou13	NH4 F
Motar	001]01 46 001]01 46	GI NH4
	Chlorlde δarboorsδ etenoorssis	U P P P
	Calcium Bicarbonate	50 HCO3
	Sodium Calcium	e no
	Chioride Fiùoride	라
atios	<u>Boron</u> Chloride	a¦ت
Atomic Ratios	Calcium Flücride	3µ.
~	<u>ສບໄຂຍາກຣ</u> ∯ ຫບ!ລ∣ຂີ່ນີ	C 20
	muibos muibleD	R N
	muiboZ 7071 ₩1255107	₹⊻
	Aquifer Temporatures and Percentage of Cold Water Estimated from Geochemical Thermometers (see foothores)	¹ ¹ ² ² ¹ ² ¹
	Surlace ure (°C)	benvece∦ tereqme⊺
Ĺ	9	(⊿nim\!)
		Spring/Weil Identification Number & Name

Owyhee County (cont'd.)

10.7	5•2	15.3	6• ا	0*0	0*0	
0_0006	0,0006	0,00046	0,00068	0.00125	0,00866	
-0.38	-0-28	-0-03	-0*00	-0.53	-0.17	
65.0	0.48	0,73	0.75	0.28	0.62	
0.93	1.02	1.27	1.30	0.74	1,13	
8.29	5,20	9.63	5.52	1,88	2,97	
1,37	1.32	1.59	1.64	0*95	1.53	
0*0	0*0	0.0	0*0	0.0	0*0	
0•0	0*0	0*0	0.0	0*0	0*0	
0.11	0.14	0.12	0.13	0.15	0.06	
0.14	60*0	0.16	0.09	0.03	0.01	
0.14	0.06	0.17	0.07	0,01	0,01	
1,05	0.35	1.37	0.51	0.05	0.08	
33.16	297.88	24.60	35-09	0.0	0.0	
0.85	0.55	1.05	0.81	0.32	0.34	
0,15	0*08	0.23	0.15	0*0	0.0	
6.97	15.47	5.77	14.22	87.17	87,17	
13.2	17.0	10.9	13.5	212.6	25.5	
87 233 325 221 87 87	99 241 328 223 89 88	86 267 546 252 90 90	132 267 346 202 91 90	67 152 246 40 61-26	119 200 296 158 81 76	
216 8	184 9	24.2 8	21.5 18	4	141 11	
87	52	86	1.29	61	160	
78 66 8	66 66 L	98 ČOL II	10 102 182	3 93 úl	7 99 160	
43 127 124 8 99 87	41 127 124 7 99 99	40 130 127	39 129 126 10 102 182	61 121 119	51 127 124 7 99 163	
JAMES PRESCOTT WELL 75 66 27AUB1 2044.	JEAN PRESOUT H S 75 6E 34008151705.	PRESTIT W 5 75 66 5588815 0. 49 130 127 11 103 86	INDIAN BATHTUBH 5 45 66 3HD0151699.	INDIAN H S 125 7£ 530 155548+ 69 121 119 3 93 61 61	мИкРнҮ н S 165 9E 24/13U13 265,	

Power County

27.9 35.4 0.56 -0.01 -0.75 0.00869 -0.05 -0.80 0.00463 0.51 0*0 31-36 9.10 0.0 29.44 17.77 1.47 0.0 0*0 2.65 0.46 0.88 32 63 68 -46 31 71 71 173 116 999 999 0 0 18,7 2,52 0.41 168,45 0.0 51,47 0.40 0.85 54.52 1,17 0,59 167,49 0,0 2.5 12 504 154 999 31 999 0 0 12 38 67 72 -43 35 INDIAN SPRINGS 85 31E 180A8155829. ROCKLAND WARM SPRINGS 105 30E 13000151582.

Twin Falls County

	0.0	0.0	5.2	0.0	0*0	27.7	36.8
	0-00003	0.00037	0,00004	0.05551	0,00671	0.01544	0.00804
	-0.43	-0-29	-0-46	-0*0-	-0-55	-0-63	-0-86
	0.36	05.0	0,28	0.68	0.19	0.12	-0,11
	0.86	1.00	0,85	1,24	0.76	0,68	0.45
	1.42	1.20	5° 06	35.10	68.46	15.19	15.57
	3.27	2.91	1,60	3.39	1,04	0,79	1.20
	0,0	0*0	0*0	0*0	0.0	0.0	0*0
	0*0	0*0	0*0	0*0	0*0	0,0	0.0
	0,51	0.36	0.21	0.22	50°0	0 . 04	0,05
	0*02	0 . 02	60.0	0.35	0.35	0.23	0.19
	0,01	0.01	0.07	16*0	2,24	0.46	0.45
	0-05	0.03	1,08	42,66	29, 12	1.97	8,48
	0*0	0*0	49.24	0-0	0*0	12.62	0.0
	0,94	96-0	2.68	26,80	5,85	1.41	2.26
8	0.0	0.0	0.07	0.24	0.34	0,44	0.68
	60°56	159 77 70 113.4 158.49	14.57	1.10	Ū.45	2.17	2,20
		13.4	97 86 81 32 . 4	3.4	2.5	1.1	6.6
	87 207 150 192 80 79 136.1	7 70 1	IB 9	18 06	0	0 0	006.6
	192 BK	1.961	91 BC	151 94	0 0 666 666		666
	150	149	118	143		666 666	666 666
	81	1 202	78 124 119	189	666 2	145 999	155 999
		108		157	182		
	11 25	18 34	4 119	69 507	618	80 315	si 328
	54 133 129 13 106 87 87	901 901 901 <u>5</u> 1 1 <u>5</u> 1 66	R 44		5		
	36 8	38 10	31 102 103 -13 72 78	33 112 112 -4 83 69	5 *	5	50 R
	13 10	15 10	1	4	35	33	47
	129	131	103 -	112	08	- 08	67 -
	133 1	- 51	102	112	76	16	61
	54		51		32	37	36
	MERACLE H S 85 14E 31ACB151325.	HARRY HUTTANUS WELL #2 85 14E 3308A1 227.	EU KERPA WELL 95 14E 9ADD1 1699.	SAM HIGH AND SONS MELL 115 19E 350001 7305.	T. STURGILL WELL 115 20E 340001 0. 32 76 80 -35 45 51 51	125 17E 608B1 7570. 37 76 80 -35 45 80	NAT-SD0-PAH W S 125 17E 51BAB15 114. 36 61 67 -47 29 61 81
	1 28 85 1	HARRY HUT WELL #2 85 14E 3	EU KE 95 1	SAM HIGH WELL 115 19E	T, 51 115 2	1 52 1	NAT-5 125

-240-

0.0	1.92	0*0		5.6	12.5	0"0		4.7	0*0	0*0	0.0	0"0	4.1	0*0	0*0	0"0	0*0	0.0	0.0	0.0	0*0	0*0		1.0	
0.00306	0,01891	61260'0		0-00011	0,0006	0.00285	0.00003	0-00065	0*0	0,00163	0*0000	0-07220	0-00005	60000*0	0.0	0.00022	0,00029	0-00053	0-00014	0*00020	0.0	0-00011		0.00851	
-0-11	-0.74	06*0-		-0.87	-0.47	-0-51	-0-77	-0-59	-0.82	-0, 26	-0*02	-0.22	-0.62	-0.27	-0.46	69*0-	64.0-	-0-71	-0-55	0.53	-0-67	-0,23		-0.18	
0.64	00-00	-0.13		-0*06	0.28	0*20	00.00	0.23	-0-08	0.54	-0-13	0.55	0.18	0-50	0.31	0.12	0.32	0*11	0.24	1.03	0.12	0.52		0.63	
61*1	0.56	0.40		0.36	0,83	0,76	0.54	0.64	0.49	1.03	0.57	1,08	0,66	1.04	0.84	0,59	0,77	0.52	0,75	1.67	0.61	1.08		1.08	
30.45	15.22	46.38		2,23	3.12	1.50	2.50	1.64	2,16	2.32	3.83	£.09	2.58	2 . 60	2.42	1.58	1.39	1.48	1,88	2.43	2,76	3,16		1_60	
2+33	66*0	0.69		2,71	0,81	2.88	2.39	1.07	2.71	1.59	1.74	0.49	0.59	0.43	2.68	0,70	0.59	0.61	0.58	0.88	1.40	0.60		2.71	
0-0	0.0	0.0		0.0	0*0	0.0	0.0	0-0	0*0	0,0	0.0	0.0	0.0	0*0	0*0	0.0	0.0	0-0	0-0	0.0	0-0	0.0		0-0	
0.0	0.0	0.0		0.0	0"0	0"0		0.0	0*0	0.0	0.0	0.0	0.0	0-0	0*0	0.0	0.0	0.0	0"0	0.0	0.0	0.0		0*0	
9 0.14	1 0.04	8 0,04		t 0.19	t 0.12	1 0,86		2 0.24	2 0.44	0.22	0.19	3 0.21	0,19	3 0.19	1 0.17	0.30	0.17	2 0,16	0.15	5 0 . 16	0.11	3 0.24		3 4,91	
5 0.29	4 0.21	Z 0.28		2 0.04	2 0.04	1 0.04		1 0.02	1 0.12	2 0.06	4 0.10	3 0,08	2 0-09	2 0.08	2 0-04	1 0.04	1 0.03	1 0.02	1 0.03	2 0,03	2 0.05	3 0 . 08		74 0,2B	
22 0*65	53 0.44	11 1.32		7 0*02	3 0.02	7 0.01	0 0*02	4 0.01	4 0*01	6 0.02	6 0,04	24 Ú+03	0-02	5 0.02	9 0°03	0.01	0.01	10-0 50	06 Q.U1	2 0-02	1 0*02	22 0.03	귀	2.02 0.04	
0 14.22	89 7.33	0 47.41	ounty	0.07	0.13	0.07	0.20	0.04	0.24	0,06	91*0 0	0 0,24	0 0.01	0 0.15	11 0*03	0 0.06	0.06	\$0 * 0 0	0 0.06	0 0-12	98 0.11	0 0.22	<u>County</u>	12.11 2.	
7.15 0.0	1,34 12,89	6.79 0.0	Valley County	0.49 0.0	0.43 0.0	2.39 0.0	2,12 0,0	0.38 0.0	3.30 0.0	0*32 0*0	0.40 0.0	0.64 U.O	0.04 0.0	D.48 0.0	0.59 59.71	0-60 0-0	0.44 0.0	0.42 0.0	0.32 0.0	0.58 0.0	0.34 26.98	0.84 0.0	Washington	35.35 12.	
0.18 7.	0.48 1.	0.49 b.	Va	0 60	0.33 0.	0-0 2.	0.0 2.	°0 60°0	0.13 3.	0.0	0.12 0.	0.0	0,05 0.	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0	0.0	Wash	0-02 35	
1.55 0.	2.26 0	0,76 0		65.15 0	45,33 0.	102.55 0.	63,20 0.	91.04 0.	80.46 0.	61,02 0.	26.15 0.	28.94 0	44,75 0.	43.04 0	65.38 0	83.38 0	99,62 ()	95,89 0	77.06 0	44.61 0	47.75 0	36.61 0		27,89 (
4.5 1	6.2	4.9		71.0 65	17_3 45	89.5 102	246 . 6 63	53.3 91	170.1 80	79.4 61	18.5 26	100.8 28	81.8 44	74.6 43	102.0 65	93.5 83	55,2 99	52,0 95	142.9 77	113.8 44	89.5 47	59.5 36		24.7 2	
87 BJ	0	0 0		51 55 7	73 67 1	58 -3 8	68 53 24	57 45	85 81 17	71 64	66 35	76 68 1	65 52 (81 76	11 B9 91	L- 65	67 58	54-75	1 86 69	00	67 33	84 90		17 11	
142 148	666 666	666 666		133 127	128 104	130 65	114 87	145 155	143 153	143 153	126 109	135 131	156 129	148 160	121 921	130 57	148 160	140 -20	251 251	666 666	129 168	142 151		157 218	
176 185 1	148 999 9	124 999 1		89 168 1	1 921 971	91 161 1	46 123 1	135 194 1	62 191 1	95 192 1	62 149	54 177	511 11	80 203	171 61	95 162	136 202	£81 ()	75 166	666 69	12 15 9	79 188		129 222	
417	341	396		61	181	47	7	80	4	2	55	41	53	8	40	ć t	78	82	77	X	47	1 73		144	
65 65	84	45 45		55 55	121 971	66 66	46 46	135 135	62 62	83 83	62 62	65 63	LI LL	80 80	ET ET	GE GE	951 951	137 137	£1 ET	69 69	72 72	61 61		172 172	
-1 87	-43 35	-41 36		13 106	-11 74 1	\$ 95	-13 66	26 122 1	19 1	10 102	-5 65	-1 87	7 98	5 93	-1 87	4 74	21 116	21 116	68 U	94 01-	68 0	-6 81		50 127	
	67 72 -	68 73 -			104	3 121	96	141	C11	126	Ξ	114	ió 123	611 13	114	3 120	137	137	7 115	106	7 115	011		74 152 145	
56 115 114	35 6	46 6		85 133 129	39 104	71 123	43 96	87 147	34 110	59 129	211 49	46 115	65 126	43 121	46 115	69 123	72 142	88 142	55 117	901 0	60 117	35 110			
IDAHO STATE WELL 125 18E 18BAI 2055.	HOULISTER VILLAGE WEUL 135 17E 70ABI 946.	MAGIC H 5 165 17E 5040A151457.		BOLLING SPRINGS 12N 56 229B015 625.	STILVEN DREEK PLUNGE 12% 5E 360BA1S 0.	CABARTON H S 15N 4E SICABIS 265.	CASCADE CITY WELL 14N 3E 36ABD1 0.	VULCAN H S 14N 6E 1180A151892.	ARLING M S 15N 3E 1588C153020+	MULLY'S H S 154 6E 14ABB1S 76,	SOUTH FORK PLANGE 15N 6E 14CUB1S 0.	PISTUL ORECK H S 16N 10E 140BC25 13.	SUNFLOWER FLAT HS LON 12E 1564615 136.	RIVENSIUE H S 16N 12E 16CBI315 0.	HOLLOVER I S 174 of ZHAAIS 95.	KWISKWISH S 17N IDE 1186A1S 57.	VED EK HNDEAN CHK HS TZN ELE TEACHES D.	INDIAN CREEK H S 17N 116 218 15 151.	UV H 5 174 156 27AACIS 68.	HOSPITAL H S 174 146 508015 8.	TEAPOLHS 184 of 9AUCIS 95.	HOT UPPER W S Jan 8E 176JAIS U.		COVE JREEK H S ION 3W 9CCCIS 19.	

-241-

				A	tomic R	atios					Molar	Ratios				Energie rmation		ŕ	
ge Sur tace d Sur tace	Aquifer Temperatures and Percentage of Cold Water Estimated from Geochemical Thermometers (see footnotes)	Sodium Potassium	Sodium Calcium	Magnesium Calcium	Calcium Fluoride	Ch toride Boron	Ch for i de Fluoride	Calcium Sodium	Calcium Bicarbonate	Chloride Carbonate & Bicarbonate	Ammonia Chloride	Ammonia Fluoríde	Chloride Sulfate	≺Calcium Sodium	Quartz	Chaicedony	Amorphous Silica	Partial Pressure o CO2 Gas (atmospheres)	R≖ Magnesium Magnesium + Calcium + Potassium
Spring/Well Identification Number & Name	T ₁ T ₂ T ₃ T ₄ T ₅ T ₆ T ₇ T ₈ T ₉ T ₁₀ T ₁₁ X ₉ X ₁₁	×a K	Na Ca	Mg Ca	Ca F	<u>C1</u> 13	CI F	Ca Na	<u>Ca</u> HCO ₃	<u>Сі</u> С03 + НС03	NH4 CI	NH4 F	<u>CI</u> 504	- √Ca Na	′ <u>∆</u> G Quar†z	<u>∆ G</u> Chal- cedony		PC02	<u>Mg</u> ** Мg+Са+К

Washington County (cont'd.)

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

																/											
	CRANE OREEK H S 11N 3W 7BDB1S 1	19.	92 172 162	49 15	50 163	163 137	163 2	48 165 2	225 68 6	4 26.5	16.83	0.03	33,50	6.09	4.30	0,06	0.22	1.68	0.0	0.0	2.17	2.21	1.00	0.60	-0,22	0.00739	2.1
	CRANE OREEK H S 11N 3W 78D82S 1	19.	57 176 165	5 53 15	54 166	166 142	135 9	99 198 9	199 O ·	0 25.1	16,83	0.03	33,50	6,09	4.30	0.06	0.22	1,68	0.0	0.0	2.17	2.21	1.55	1.05	0.26	0.00297	2.5
	DOUGLAS MCGINNIS WELL 11N 5W 20BDD1	0.	21 105 105	i -10	75 61	61 383	156 2	36 161 2	222 97 9	7 5.2	1.18	0,28	7.29	414.33	29.39	0,85	0.35	0,08	0.0	0.0	0.74	30.45	1.34	0.74	0.02	0,00833	0.0
,	11N 6W 3D8B1	٥.	24 259 231	136 2	54 45	45 -14	45 9	99 472 9	999 0	0 340.1	47.55	0.0	7.90	4.27	1.10	0,02	0.10	0.71	0.0	0.0	0.42	2.01	2,60	2.01	1.29	0.00004	0.0
<u>`</u>	GLENN HILL WELL 11N 6W 3DCB1	0.	25 265 236	5 142 2	51 68	68 11	68 9	99 465 S)9 9 0	0 184.2	56.66	0.04	49.13	6.98	3.16	0,02	0.41	1.83	0.0	0.0	0.99	1.77	2,68	2.09	1.37	0.00046	0.0
	WEISER H S 11N 6W 10ACB1S	19.	22 80 84	4-31 ·	49 42	42 71	87 9	99 999 9	999 0	0 60.7	7.26	0.25	7,59	6.32	4.74	0,14	0.42	0.65	0.0	0.0	0.87	7,96	0.99	0.40	-0.32	0.00220	0.0
	GEOSOLAR GROWERS WELL #1 11N 6W 10CCA1	0.	78 156 149	9 34 1	32 141	141 85	141 2	28 159 ;	220 71 7	70 49.6	93.87	0.0	10.35	8.12	0.43	0.01	0.12	1.37	0.0	0.0	1.01	1.32	0.46	0.03	-0.79	0.0	0.0
	GEOSOLAR GROWERS WELL #2 11N 6W 10CCA2	0.	77 152 14	5 30 1	27 145	145 93	145 2	18 155 :	216 70 7	70 44.9	90,40	0.06	7.15	7,20	0.33	0.01	0.12	1,19	0.0	0.0	0.94	1.35	0.52	0.08	-0.73	0.0	3.0
	GEOSOLAR GROWERS WELL ∦3 11N 6W 10CCA3	٥.	70 156 14	9 34 1	32 142	142 68	142 2	46 164 :	225 77 1	74 47.6	84,16	0.0	9.10	7.75	0.42	0.01	0.13	1.30	0.0	0.0	1.01	1.40	0,54	0.08	-0.73	0.0	0.0
	MIDVALE CITY WELL 13N 3W 8CCC1	0.	28 127 12	48	99 242	144 373	216 9	199 193 r	999 0	0 5.4	14.63	0.15	2,37	0.0	5,89	0.07	0.06	0.02	0.0	0.0	0.60	4.64	1.46	0,88	0.15	0.00118	6.1
	FAIRCHILD LUMBER 13N 4W 13BAC1	α. 0.	28 120 11	82	91 5!	51 5	51 9	99 176	280 0 9	95 208.9	42,84	0.09	2.45	0.0	2.37	0.02	0.03	0.03	0.0	0.0	0.62	2,50	1,36	0.78	0.05	0.00061	0.0
	LAKEYHS 14N 2W 688A1S16	31.	70 119 11	71	91 78	74 47	78	43 125	150 57 9	91 89.5	20.51	0.01	39.49	0.0	4.24	0.05	1.08	5,39	0.0	0.0	1.90	2.37	0.72	0.26	-0.55	0,00062	0.9
	CAMBRIDGE CITY WE 14N 3W 3DDC1	LL 0.	26 118 11	6 0	89 180	97 175	180 9	999 179 3	291 0 9	96 18.3	48.95	0.13	2.04	0.0	1.23	0,02	0.03	0.04	0.0	0.0	0.69	2.54	1.34	0.76	0.03	0.00030	5.1
	FAIRCHILD H S 14N 3W 19CBD1S 2	220.	50 106 10	6 -10	76 63	63 61	63	122 115	93 67 !	54 71.6	17.43	0.16	10.05	0.0	4.74	0,06	0,15	0.31	0.0	0.0	0.37	4.06	0.79	0.27	-0.51	0.00033	0.0

¢.....

BASIC DATA TABLE 3

Analyses by EGGG Idaho, Inc. using Neutron Activation at Idaho National Engineering Laboratory BASIC DATA TABLE 3 TRACE NUTAL ANALTEES OF SELFTED THERWAL WATER IN IDAHO (Chemical constituents in milligrams per liter)

Spring/#elt Santification Numbor & Name	(6v) JBA(IS	(fu) (fa) (fa) (fa) (fa) (fa)	muivsh (se) 9rmont 14)	(Ca) (Ceinw (Cq) (Cq)	11 ado() (o())	ພະນາ ເຊິ່ງ (ລາວ) ພາ ແມ່ນເຊິ່ງ	(Cobber Cobber (C2)	{\u0} {\u0}	Europřum (Eu)	(fe) (fa) (fa)	muintait (1H)	(HB) Mercorty	mušbot (n1) nu[b]]1	(%)] muasctnsj (sj)	muitotul (uj)	(ฯพ) อรอบชิวิชชพู	(oM) (oM) muimyboeN	(bN) (bN) mulme0 (aD)	(զչյ արիվողչ (50)	muinedtufi teili yaomiina	(05) (02)	(95) (95)	(su S) mu i neare S	לדיטאל ועא (זר)	mutatnař (sT)	nuid⊓e∓ (d∓)	(y) (y) mshink (#)	mu103611Y (dY)	(uZ) 2u1 Z
												Ada O	County																
F. KOCH NELL 3N ZE RUBU	0°0	0,0740 0,0 0-0	0.0 0.0	0.0 0.0	0.0071 0.6	33	0.0007 0.0	0.0	0.0	0.120 0.0	0.0	0°0 0°	0,0002 0.0	0.6	0.0	0.0067 0	0"0 0"0	0.0	0,604 0	2000-0-0-0	05 0,0	0,0	0.0	0.0	0.0	0.0 0.0	0.0	0*0	0.0
BEARD WELL 3N 2E 11ABC1	0.0	0,0870 0,0 0,0	0"0 0"0	0"0 0"0	0-0016 0-0	-	0"0 2200"0	0*0	0.0	0*100 0*0	0.0022	0*0 0*0	0.0	0.0	0.0	0.0	0"0 0"0	0.0	0,007 0	0.0 0.0007	0. 0.0	0.0	0.0	0.0	0.0	0-0 0-0	0.0	0*O	0,008
ORINAS FLAKE MELL 4N (E 240001	0,0010	0-2700 0-005 0-0	0.0820 0.002	2 0-0 0-0	0*0000 0*0	8	0*0 1000*0	0.0	0.0008 0.4	0-430 0-0	0.0	0.0	0.0002 0.0	0*0003	0.0	0-0640-0	0.0 0.0	0*0	0,0	1000"0 0"0	01 0.0	0.0007	0-0002	0.0	0.0003 0	0.0004 0.6	0.002	2 0,0005	0,008
CARL RUSH MELL 4N 2E 4BDC3	0 ° 0	0.0480 0.021 0.0	0.0 0.014 0.0	4 0*0 0*0	0,0010 0,0	10	0*0001 0*0	0.0	0.0	0*210 D-0	0"0	0"0 0"0	0.0	0°D	0.0	0,0600 0.	0°0 0°0	0.0	0.001.0	£000*0 0*0	07 010	0*0	0.0001	0,0510	0.0	0*0 0*0	0.0	0.0	900
EDWARD'S GREENHOUSE 4K 2E 29ACD1	5 MELL	0*0 0*0 0062*0	0°0 0°026	0,05911,000 0,0	0-0040 0-0	0.018 0.0	1,100	0.0	2*6000 0*0	0.0	0"0	0*0 0*0	0.0	0*0002	0.0	0 00200	0.0 0.0	0*0	0.130 0	\$000"0 0"0	0*0 20	040040	0*0	0.0	0.0	0*0 0*0	0.005	5 0.0	0.710
SHADOW VALLEY WELL SN 16 258001	0,0	0-0580 0-0 0-0	0.0 0.016	\$ 0"0 0"0	0*0 9100*0	_	0.0002 0.0	0 0.0	0.0	0*150 0*D	0.000	0.0	0*0003 0*0	0.0	0.0	0_0160_0	0.0 0.0		0,004 0	000 0.001		0.0	0*0	2	0.0	0.0 0.0	0.0	0*0	0.009
BEN STAULER MELL SN 1E 260001	0.0	0-0 720-0 0410-0	0.0 0.0	0-0 0-0	0*0050 0*0	16	D*0000 D*0	0 0 0	0.0	0-210 0-0	0.0	0.0 0.0	0.0	0.0	0.0	0,018D 0.	010 010	0.0	0.004 0	0*0 0*0005	05 0.0	0.0	0*0		0.0	0"0 0"0	0*0	0.0	0.012
JULIUS JEKER WELL	1,3600	45.0000 1.400 0.1000	0.0 0.0 0	0.0 2.40	2.4000 1.6000 0.0		1.7000 0.0	1.500 1	0*0 0005*1	0.0	1,7000	1 OTD	1+9000 D+0	2, 1000	1-4000	1.6000	0-0 0-0	5,3000	2,100	0*0 1.7000	00 2,0000	5.1000	0006"	0*0	2,10001	1.8000 1.	1,7000 1,600	0002*2 00	0.0
												Adams (County																
NHITE LICKS A S 16N 2E 338001S	00010	0.0 0.660 0.0	0,0220 0.054 0.0	1 0.0 0.0	0"0 \$600"0	-	0*0000 0*0	0.0	0.0	0.170 0.0	0*0		0.0 0.0	0*9	0.0	0.0140 0	0.0 0.0	0.0	0*026 (0*0 0*0024	0*0 0\$0	0*0	0.0	0.8600	0.0	010 010	0.0	0.0	0,007
KRIGBAUM H S F9N 2E 2200A15	0.0	0*0210 0*220 0*0	0.0060 0.0	0"0 0"0	0*0024 D*0	5	0-0034 0-0	0.0	0 0 0	160 0.0	0*0	0*0002 0	0*0 0*0	0*0	0*0	0.0	0"0 0"0	0"0	0.014	0.0 0.9907	007 0*0	0* 0	0.0	0.1300	0.0	0-0 0-0	0.0	0*0	0, 007
ZIM"S RESORT 208 SE 2600A1S	0.0	0*0 0*0 0*0	0.0 0.087	7 0.0 0.0	0"0050 0"0	5	0-0 BE00-0	0.0	0.0 0.	0-0 001	0.0001	0.0	0.0 0.0	0.0	0*0320	0"0	0°0 0°0	0*0	0.012	5000-0 0-0	0"0 500	0"0	0"0	0860*0	0*0	0.0 0.0	0.0	0*0	0, DDB
STINKY N S ZIN IE Z3ABAIS	0.0	0.0 0.0 0.0	0"0 0"0	0.0 0.0	0.0 2400.0	18	0*0 5500*0	0-0-0	0.0	0-170 0-0	0.0	0.0	0.0 0.0	0*D	0*0	0,0042 (0.0 0.0	0*0	110*0	£000*0 0*0	0*0 £00	D*0	0-0	002.5.0	0.0	0°0	0.0	0.0	0.010
BOULDER CREEK RESORT ZZN TE JADNOTS	خت ٥.٥	0,0560 0,0 0,0	0"0 0"0	0.0 0.0	0,0015 0,009		0*0001 0*0	0.0	0.0	0-110 0-0	0,0002	0*0	0*0 0*0	0"D	۵°۵	0.0	0.0 0.0	0.0	0.0	0.0 0.0003	0.0 5.00	0*0	0.0	0*0	0.0	0-0 0-0	0.0	0*0	D. 008
STARKEY H S 18N TH 34DBB1S	0.0	0,1100 0,0 D.0	0.0 0.0	0.0 0.0	0.0016 0.6	22	0.0302 0.0	0*0	0°D	0-110 0-0	0,0028	0.0	0*0 0*0	0*0	0,0	0.0014 0	0.0 0.0	0.0	0*004	0.0 0.0001	001 0.0	0*0	0*0	0.0	0'0	0*0 0*0	0.0	0.0	0,009
											-41	Bannock	County																
SS 34E 2604B1	0-0	0.0 0.0 0.0	0.0380 0.0	0.0 0.0	0.0050 0.6	916	0.0060 0.0	0*0	0°D	0.0 0.0	d, 0001	0*0	0.0 0.0	0,0	0.0	0-0065 0	0"D 0"0	0"0 0	0.065	\$100*0 0*0	012 0.0	0.0	0"0	1.1400	0.0	0*0 0*0	0.0	0-0	0.017
DEAN MORKIS MELL 95 30E 210DA15	0-0	0.2100 0.0 0.0	0,1200 0.0	0.0	0*0020 0*0	0*096 0*01	0120 0*0	0*0	0.0	0.450 0.0	0.0	0*0000	0.0004 0.0	0*0	0,0001	0*0	0"0 0"0	0.0016	0.085	0"0 0"0	0.0	0.0	0*0	0.5600	0.0	0-0 0-0	0.0	0*0	0.017
DOMINTAH N S 125 37E 12001S	0.0	0,1200 0,0 0.0	0.1500 0.0	0.0 0.00	0.0003 D.0040 D.0	*	0-0040 0-0	0*0	0.0	100 0+0	0.0001	1000*0	0.0002 0.0	0-0280	0.0	0.0	0*0 0*0	0"0	0"0	0.0	0*0	0.0002	0.0	0.2200	0.0	0°0 0°	0*0 82800*0	0.0	0.017
HEAR LAKE H S											·	21	2																
21 AUDI 344 201	0.0	0"5100 1" 0 0" 0	0.0	0.0	na 9200 a	66	D. 9080 0.0	0	° 0 ° D	150 0.0	0.0	9°4	0.0	0*0	0"0	4 . 0	0.0	0	0.062	0.0 0.002	002 0-0	0.0004	0.0	4.2000	0.0	0-0	0.0	9*0	010*0
YANDELL SPRINGS 35 JYE 3108815	0*0	0*0 0°0 0*0	0,0630 0,0	0*0	0-0008 0-0030 0-0	2	0*0050 P*0	0.0	0.0	0,070 0,0	0"0	<u>Bingham</u> 00	m <u>County</u> 0.0 0.0	0.0	0*0	010	0-0 0-0	0'0	21070	100010 010	1001 0,0011	0*0	0*0	1.2000	0.0	0°0 0°0	0.0	0*0	0.011
ALKALI FLATS W S 45 38E 2800015	0.0	2.5000 0.090 0.0	0-3600 0-070 0-0		0*0008 0*0020	0,034	0.0005 0.0	0.0	0,0002 2,	2,600 0.0	£808,0	D*0	0.0 0.0	0500*0	0"D 0f	0.6400 (0"0 0"0	0,0052 0.0	0*120	0*0 0*0540	240 0-0006	0-0 90	0.0010	0*0020	0.0	G*D 1000*D	0,003	3 0.0	0.182
H VII EV H S												Stell	County																
2N 18E 1808815	0"0	0,0910 0.0 6.0	0°0 0°0	0-0	0.0010 0.0	50	0-0036 0-0	0.0	0*0	100 0.0	0,0026	0.0	0"0 0"0	0.0	0*0	0,0018 0	0.0 0.0	0*0	010*0	0-0 0-0040	0.0 0.0	0.0	0*0	0*0280	0.0	0.0 0.0	0-083	3 0.0	0*001
3N FTE 270CB15	0.0	0,0770 0,0 0,0	0"0 0"0	0"0	0, D007 0, 0013 0, 013	3 0,013 Q.	0.0046 0.0	0*0	0°0 0.	Q. 100 0.0	0.0004	D*0	0.0	0.0	0*0	0.0	0.0 0.0	0.0	210-0	D.0 0.0004	004 0.0	0*0	0*0	0.0330	0.0	0-0 0-0	0.100	0.0	0.010

kiinte kiinte

0.010 0,007 0.007

0.100 0.0 0.100 0.0 0"0 0"0

0-0 0"0 0.0

0*0 0.0 0.0

0.0330 0.0 0.1300 0.0 0.0630 0.0

0*0 0"0 0"0

0.0 0*0 0.0

0.0 0.013 040 0.0004 0.0 0*016 0*0 0*0602 0*0 0.016 9.005 0.0002 0.0

0.0 0.0 0*0 0,102 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0 0*0 0*0

0.0 0.0 0.0

0*0 0.0 0.0

0.0

0.040 0.0

0.0 0.0

0.0 0.900 0.0 0.0019 0.001 0.0074 0.0 0.0

0.0 0.0 0.0

0,0770 0,0 0,0 0.0 2.0

0.0 0-0 0.0

0"0800 0"0 0.1040 0.0

GUYER H 5 AN 17E 15AACES WARFIELD H 5 AN 17E 318BC15

070 0.0

0.0

0,080 0.0 0.0003 0.0 0.0

0.0

0,0014 0,009 0,0075 0.0

D.D 0*0 0.0

-244-

0.0 0.0 0.0 0.0570 0.0 0.0 0.0 0.155 0.0 0.00256 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0259 0.0 0.01 0.001 0.00259 0.0 0.0014 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0022 0.022 0.022 0.0 0.02 0.0 0.0	0.0 0.0 0.0 0.0010 0.049 0.0 0.0 0.018 0.0 0.0004 0.0 D.0	<u>County</u> 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0	0°0 0°0 0°0 9900°0 0°0 015°0 0°0 0°0 0°0 0°0 0°0 0°0 0°0			14 3-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-012 0-0 0-0002 0-0 0-0	14 8-20 8-0 8-0 8-0 8-0 8-0 8-0 8-014 8-0 8-6002 8-0 8-0 8-0	12 0.0 0.0 0.0 0.003% 0.0 0.0 0.0 0.0 0.0002 0.0 0.0 0.0	ka a.a a.a a.a a.a 1,011% o.o o.o o.o o.o1% o.o a.aaa2 a.a o.a	7.440.02	05 0.0 0.0 0.0 9.0350 0.0 0.0 0.0 0.60 0.00 0.0003 0.0 0.0010 0.0020	0.0 D.0 D.0 D.0040 0.0 D.0 D.0 D.005 0.0 D.0001 D.0 D.0 D.0	0.0 0.0 0.0080 0.0 0.0	0.0 0.0 0.0 0.0240 0.0 0.0 0.0 0.003 0.0 0.0001 0.0 0.0 0.0	0.0 0.0 0.0 0.0014 0.0 0.0013 0.0 0.0 0.0 0.0003 0.5190 0.0002 0.0	<u>ountry</u> 05 0.0 0.0 0.10 0.144004.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0°0 0°0 0°0 0°0 0°0 0°0 0°0 0°0 0°0 0°0	<u>uunety</u> 65 a.o. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.0 0.0	0-0 0-0 0-0 9-0 0-0 0-0 0-0110 0-480 0-0 0-0240 0-0 0-0 0-0	010 010 010 010 010 010 010 010 010 010
ସ.ଅ ସ.ଜ ପ୍ରପାର ସ୍ଥାରରେ ଅନ୍ଥ ଅ.୦ ଅ.୦ ଅ.୬୧୦ ସ.ସ ଉ.୦୦୦୪୪ ଅ.୦ ଅ.୦ ସ.୧ ବ.ଡ ଭୁରସାର ସ.ଜନ୍ୟ ସ.୧୪୫୫୦ ସ.ସ ବ.୦ ସ.୦ ସ.୮୦ ସ.୧୫୦ ସ.ସ ଅ.୧୦୭୪ ସ.୦ ସ.୦	<u>Bolos</u> Que q.6013 q.619 q.6228 g.a g.a g.a g.690 4.g g.6025 g.a g.a	0.9934 6.002 6.0 0.0016 6.0016 6.0032 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5	ସ, ୧୦୦୫ ସ,	<u>Bonneville County</u> 0.0290 0.062 0.0 0.0 0.0000 0.00 0.0 0.0 0.0 0.0 0.	0.0 0.0000 0.118 0.0050 0.0 0.0 0.0 0.0000 0.0 0.0000 0.0	ଜା୨୦୦୦ ଭାରେ ଭାରେ ଭାରେ ଅଂଶରେ ଜାନାର ସାହ୍ୟାସ ଜାନ ସାହା କ୍ଳେଇସେ ଭାର ସାହା ଭାର ବ	დამ წამ წამ წამ წამალიფების მამ შამ ბამ ბამ ბა ი ი ი იოოო⊥ი. - იოოო⊥ი	0-10 0-0016 0-008 0-0005 0-0 0-6 0-6 0-050 0-6 0-0 0-0 0-0	0°0 100°0 0°00100°0 0°0010 0°00 0°0 0°0	0.0 0.9 0.0 0.0100 0.012 0.0080 0.0 0.0 0.0 0.100 0.0 0.0 0.0001 0.0004 0.0	0.0 0.0 0.0 0.0 0.011 0.0002 0.0 0.0 0.0 0.0 0.0 0.0 0.0002 0.0	0.0 0.0 0.0007 0.0040 0.03% 0.0080 0.0 0.0 0.0 0.0 0.0 0.0 0.0006 0		9.0270 0.150 0.0 8.0010 8.0 0.018 8.0 0.0 0.0 0.0 0.1 0.0 0.0 8.0 8.0016 8.0005 0.0	0.093 0.0 0.0 0.0016 0.012 0.0001 0.0 0.0 0.0 0.0 0.0 0.0002 0.0 0.0	• 0.0 0.0 0.0030 0.019 0.0010 0.0 0.0 0.0 0.0 0.0 0.0006	0,0 0,0 0,0 0,0024 0.017 0.0001 0.0 0.0 0.0 0.0 0.100 0.0 0.0 0.	0.0330 0.061 0.0 0.0017 0.0105 0.014 0.0001 0.0 0.0 0.0 0.0 0.080 0.0 0.0002 0.0 0.0	<u>Caribour Country</u> 0.0 0.0 0.0007 0.0028 0.0128 0.0 0.0 0.0 0.0 0.160 0.0 0.0 0.0 0.0003 0.0	ଘଟ ଅନି ଅନ୍ତି ଅନ୍ତାପତ ଅଳିକୀ ଅନ୍ତସହ ଅନ୍ତି ଅନ୍ତି ଅନ୍ତି ଅନ୍ତି ସିନ୍ତି ସୃଦ୍ଧି ଅନ୍ତି ଅନ୍ତି ଅନ୍ତି	<u>কিঙহাৰ County</u> যে যায় ৫.৫৫০৫ ৫.৫৫৫৫৫ ৫.৫ ৫.৫ ৫.৫ ৫.৫ ৫.৫ ৫.৫	0.005 0.0 D.0002 D.0019 D.010 D.0008 0.0 D.0 D.0 D.100 D.0 D.0 D.0 D.0004 D.0	0-1100 0-250 0-0 0.0 0.0020 0.030 0.1250 0-0 0-0 0-0 0-0 0-0 0-0000 0.0	<u>Clark County</u> 4.0760 6.0 0.0 0.0000 0.019 0.0000 0.0 0.0 0.0 0.120 0.0 0.0 0.0000 0.0
MGRIC HI LINGING MELL 15 17E ZAMET 0,0 0.0 0.175 0.0 0.2200 0.0 ML/2020 SKATH 5 0,0 0.0470 0.090 0.0 0.0790 0.0	0, DB60 2,0 0,0	0.0 0.3500 0.010 0.0 0.0 0.4900 0.0 0.0	0*0 0*0 0*020 0*0 0*0	BOWNEYILLE H S 10N 10E 3180015 0.0060 0.5500 1.200 0.0 0.0	FALL CREEX MINERAL SFG. IN 4255 SCENES 0.0 0.0 0.0 0.0 0.0 0.0299 0.	1,3000 0.0 0.0	ALPINE N S 25 46E 19CADIS 0.0070 0.0 4.300 0.0001 0.1900 0	NARSROP H S IN JE 32ABHS A.C D. MOD G.D D.G G.O D.	0.0 0.0540 0.0 0.0 0.0	LIGHTFOOT H S 3N 13E 7202415 0.0 0.0900 0.0 0.0 0.0050 0.0	0,0002 0.4500 0.D 0.0	0.0 0.1500 0.0 0.0 0.0	BANDRAN'S H S 15 13£ 34BCB1S D.t. D.t.4600 D.O O.O D.		0.0 0.0 0.036 0.0	0*0 0*0 0*0 0*0	0*0 0*0 0*0 0*0	a.0 0.0630 0.0 0.0 0.0	CALONELL CITY MELL AN 39 ABOT 0,0 0,031 0,0 0,0330 0,	Poetheue River ¥ 5 75 yee 2003015 0.0 0.1300 0.0 0.0 0.0200 0.0	SODA SPRINGS GATER 95 41E 12/00015 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0,0002 0,3800 0,060 0,0 0,0	HARPARIAT CRAMK MELL 195 246 200001 0,0016 0,0 32,000 0,0 0,1100 0	0 0940-10 010 010 012 00 010 010 010 0 100 N 250000 010 010 010 010 0

1. S

Spring/wels loonfification Number & Namo	السانساس السانس الله الله
MEST PASS H S BN 175 22802415 G.O	uito 3.0 d.0 b.0999 b.669 b.0 4.0036 b.011 0.0310 b.0 b.0 0.115 b.0 2.0 5.0 0.0 b.0668 b.0 0.0166 b.0 0.0166 b.0 0.057 0.0 0.01
51ANLEY H 5 10k 13E 3CAB15 0.0004	0.3100 0.0 0.0 0.000 0.0 0.000 0.000 0.000 0.0
	ପ⇔ତ 0.0 0.4400 0.037 0.0 0.0 0.0030 0.014 0.0290 0.0 0.0 0.0 0.150
	0.0 0.0 0.0254 0.003 0.790 0.0 0.0040 0.014 0.0006 0.0 0.0 0.0 0.130
114 15E 19CABES 0.0002 BARNEY # 5	0,0 0,0010 0,012 0,0040 0,0 0.0 0.0 0,100
114 25E 23CM815 D.D BILL JOHNSTON WELL 14N 19E 34DAA1 D.D	0.0346 4.0 4.0001 0.01349 4.011 6.0 6.0001 9.00116 4.001 5.002 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
DAMALES BAKEN MELL	Elace Courts
	D,040 ସ.୦ ଅ.୦ ସ.୦ ସ.୦ ସ.୦ ସ.୦୦୦୨୨ ପ.୦)) 0,0006 ପ.୦ ପ.୦ 0,0 0,0 0,0 0,0002 ସ.୦ 0,0
JM 10E JJACD1S 0.0 PARAD15E RESORT MELL JM 10E JJADDB1 0.0	d.e b.0002 d.o 0.0 0.0 0.0650 0.6 8.0 0.0 0.0 0.0
NINENEYER H S 54 26 Zashors 0.0	
va.	
-	
MAGIC WEST CO. WELL 55 JOE 328081 0.0	8-1 D-2 0-0 0-0014 0-002 9-0 0-06004 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
CLEVELAND H S 125 415 31CACIS 0.0	<u>Frankijn</u> County 0.0 0.0 0.00000 0.0070 0.0 0.0 0.0000 0.0 0.
MAPLE GROVE H S 135 416 7ACA15 D.O	
ELDIN BINGHAM MELL 155 39E 70801 0.0	0.0 0.0 0.0 0.0 4.0000 0.0 0.0 0.0 0.0 0
#441LE CALER H 5 155 59E 880C1 0,0008	8.0 8.0 8.0 8.0 1.8009 5.0 0.0 0.0000 0.091 0.1800 8.0 9.0 8.0 8.765 5.3 8.0006 5.0006 5.0009 5.0 8.4 0.0 0.0 0.0 0.0 0.0 1.000 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50124 H 5 WELL 4.2500	0.2500 0.3500 0.4500 0.0420 0.4500 0.4500 0.4500 0.4500 0.000 0.0 0.2500 0.2500 0.3500 0.3500 0.3500 0.4500 0.4000 0.4000 0.4500 0.4
REMOLE CETY WELL 74 41E 340COT 0.0	<u>freemont</u> <u>County</u> 0.0530 0.0 0.0 0.0000.0.0 0.0010.0.0200.0.2000.0.0 0.0 0.0 0.0 0.0 0.0
ASHTON W S 9N 42E 230ACES 0.0	2.3000 0.3001 0.2500 0.060 0.0 0.0 0.0 0.0 0.022 0.0 0.0 0.0 0.1 0.10 0.10
144 44E 3485015 0.0009	0.,000 0.4 0.5 0.5 0.5 0.4 0.40 0.40039 0.42% 0.4 0.48% 0.4 0.48% 0.4 0.40% 0.40 0.40007 0.4 0 4.40% 0.40%
HOYSTONE N 5 7M TE BEOM	<u>Ges County</u> 0.4700 0.013 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
1- SHANNON NELL 1- SHANNON NELL	<u>Gaeding County</u> 0.4100 ha ha b.2288 ba e.a accede b.ais o.0016 b.0 0.0 0.0 0.0 0.0001 0.0005 b.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MHTE MRON H S 45 15E 3040815 0.0	0*0 0*0011 0*0 0*0
DAVE AND HEN WELL #2 55 12E 3AAA1 0.0	୧୦୦୭୭୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦୦୬.୫.୦୦୬.୫.୦୭୬.୫.୦୭.୫.୦.୬ ୫.୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦ ୫.୦

	0*008	0,011	100*0	0.008	C00,0		160,0		600°0	0.007	0.008	9701*0	0.0	610,0	6,017	600.0		0,022	0,008	0.010	0.110	0.008	0.014	0,008	0,002	0.013	0.008	0,014	0,005	0.0		0+017	0.660
	0.0	0.0	0*0	0.0	0*0		0.0			0.0	0 0 0		0.0						0.0	0,0001 0	0.0		0.0		0"0	0*0	0.0	0.0	0.0			0.0	0.0
	0"0	0"0	0"0	0.0	0*0		D,0			0"0	0°0		0.0	0.0				0*0 010	0*0	0*D	0.0	0*0	0.0	0,130 0,0	0.0	0*0	0"0	0.0	0.0	1 "0		0.0	
	0.0	0.0	0.0018	0*0	0.0022		0.0		0.0	0"0	010	3	0,00,0	0.0	0.0	0.0		0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0030	0.0	0,0015		0.0	0*0 0200*0
	d"D	0"0	0.0	0.0	0.0		0.4		0	0.0	010 0		0.0	0.0	0.0	0*0		0-0	610	0.0	0*0	1.6000	0.0	0-0	0.0	0.0	0.0	0-0	0-0	0.0		0.0	0.0
	0*0	0*0	0.0	0'0	0.0		0.0				0.00		0.0		0.0			0.0	0*0	0.0	0.0	0"0	0*0	0*0	0*0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	0.0	0015.0	D-0680	0,0640	0*0060		4,9000		0.5500		0.5000		0.2200	2.6000	1,3000	5.4000		0*0	0.0	0*0	0.0	0.0	0*0	0"0	0"0	0.0	0*0	0"0	0.0	0*0		1,4000	15, 0000
	0.0	0.0	010010	0.0	0,0001		0*0			0,0	0.0055	ŧ	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0"0	0.0	0.0	0*0	0.0	0.0	0,0004 D.0003	0.0	0.0		0.0	0-0330 0-0230 15-DAND
	0.0	0.0	0*0	0*0	0"0		0.0		0100*0	0 ° D	0.0	•	0,0006 0,0		0"0 6000"0	0.0000 0.0		0.0	0.0	0.0	0*0	0*0	0.0	0,0001	0"0	0.0	0*0	000°*0	0"0 0	0.0002 0.0		0"0002	0.0330
	0"0 000"0	0+0002 0+0	0°0	0,0902 0,0	0.0		0,0001 0,0	;	0"R 6000*0	0,0026 0,0	0.0028 0.0		0*0003 0*0	0.7700 0.0003	0-0001 0-0	0"0 5000"0		0"0 1000-0	0*0003 0*0	0*0	0-0002 0-0	0*0002 0*0	0*0	0*0 10	0*0	0*0003 G*0	0-0002 0-0	0,0004 0,0	0,0006 6,2000	0.0002 0.0		0,0050 0,0	0-0140 0-0
			0-0		0"0															0*0		00*0 80	0.0	1000*0	0*0								
	0"0 900"0	0.011 0.0	0.0 0.0	0"065 0"0	0"0 0"0		D,660 D,0		n*a /50*n	0*0 D/1*0	0.140 0.0		0*002 0*0	1.100 0.0	0.05 8.0	0.250 0.0		0*0 0*0	0.004 0.0	0,004 0,0	0.003 0.0	0.0 0.008	0.006 0.0	0.008 0.0	0.004 0.0	0*0230*0	D-006 D-0	0.0110.0	0"0 00"0	0,005 0,0		0*031 0*0	1.100 0.0
	0 010	0 0.0	0.0	0*0	0.0		0.0						0 0*0		0.0			0.0	0 0 0	0*0	0-0	0-0	0.0	0 0 0	0.0	0.0	0.0	0.0010 0.	0"0	0.0		0.0084 0.	0.0
	0.0	0.0	0 0.0	0.0	0*0		0 0.0			۰ ۲	0.0 0.00 0.0		0 0 0		0.0				0.0	0.0	9-0	0.0.0	0.0	0.0	0-0	0°0	0.0	0*0	0*0	0.0		0.0	0.0
		0.0	0*0	0.0	0.0								0.0	0.0	0.0	0.0		0,021 0,0	0.0	0.0		0.0	0 *0	0°0		0*0		0*0				0-0	0*0
	0.0010 0.0	0.0	0*0	0.0014	0-00 Z7		0*0 002*0	6		3	0.0 0.0 0.0140 0.0		0.0	0.0	0.0	0.0		0*0	0*0	0,0050	0"0020 0"0	0.0	0.0	0"0	0*0250 0*0	0*0	0.0020 0.0	0"0	0,0026 8,0	0*0020 0*0		Q*D	0.0
	0"0	0.0	0.0	0.0	0.0		0.0	6			0.0		0.0	0.0	0*0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0001	0.0	0*0		0.0	0*0
	0-0	0-0	0620*0	0.0	0 * 0		0.0	6		5	0-0		0.0	0.0	0.0	0.0		0*0	0,0	0*0	0,0	0110'0	0.0	0.0	0"0	0"0	0*0	0.0	0,0	0*0		0.0	0°0 0°D
nty	0.0	0.0	0.0	0*0	0°D 1	County	0.0	nty.			0-0		b.0	0*0	0.0	0*0	nty	3	0*0	0*0	0*0	0.0	0.0	0-0	0*0	0.0	0.0002 0.0	3 0.0	0.0	0"0	į	5 0.0	County
Idaño County	0.0	0-0	0.0	0.0	1000 *0		0"0	Lenhi County			0-0		<u>Oneida</u> County D.0003 D.0 D.4	0*0	0"0 \$000	0"0004 0"0	Owyhee County	0.0	0.0	0.0	0"0	0.0 0	0.0	0.0002 0.0	0°0	0*0	0,000	0.0003	0.0	0"0	c.	0*0 5000*0 5000*0	
Ida.	0"0	01 0.0	0,0	02 0.0	0.0	Jeff	0.0				0-0002 0-0		000rd	0-0		0,000	Омућ	0.0	0.0	0"0	0"0	00 0,0003	0.0	0.000	0*0	0*0	0.0	Q*Q	26 0°0	0.0	ŝ	00,001	Twin Falls
	0*0	100010	0*0	0.0002	0.0		0-0-00	2000 0					0.0	0-0	0,0006	0.0		0"0	010	0*0	0.0	5,5000	0*0	0.0	0.0	0.0	0.0	0*0	0,0026	0.0		1000-0	070
	0*0	0.100 0.0	0.100 0.0	0*0 060*0	0*000 0*0		0.540 65.000 a.a		3		0*0 060*0		0,140 0.0	0*0 005*0	0,140 0,0	0.130 0.0		0.0	0.110 0.0	0*0 051*0	0-100 0-0	0.190 0.0	0°0 060°0	0.0 021.0	0-030 0-0	0"0 090"0	0*220 0*0	0,0 011.0	0.120 0.0	0*180 0*0		0,120 0,0	0.0
	0.0																	0.0			0.0			0.0	0.0	°°0	0.0	0.0	0°0	0.0		0.0	0 I.2.000
	0.0	G*0 0*0	0-0 0-0	0-0 0-0	0.0 0.0		0.0 0.0				0.0 0.0		0.0 0.0	0-0 0-0	0.0 0.0	מים מים		0,0 0,0	0.0 0.0	0.0 0.0	0.0	0"0 0"0	0.0 0.0	0.0	0.0	0*0	0.0	0.0	0°0	0.0		0.0	0.0
	0.0		0-D	0-0	0*0		4.700								0.0	0.0		0*0														0.0	
	.012 0.0005	0.0 0200.0 510	011 0,0007	010 0,0028	-008 D.O		-044 0-1700 4-700	0 0 10020 0 110		.012 0.0440 0.0	0.0012 0.011 0.0670 0.0 0.0020 8.014 0.0830 0.0		C00070 6	5 D*1400 0*0	6 0.0150	0.0360		\$ 0,0004	010 0.0010 0.0	-012 0"0005 0"D	0.0 0000.0 210-	-0.22 0.0003 0.0	012 0-0020 0-0	002 0*0000 0*0	-002 0-0001 0-0	-015 0-0004 0-D	-014 0*0005 D*0	-017 0-0005 0-0	•010 0"0051 0*0	012 0*0002 0*0		0900°0 6	0.0 0650 0.6
				10"0, 9100"0	10 0,001			10 0 02.00 0			12 0.01 20 9-01		10.0 02	0.0030 0.055	910-0 0000-0	0.0010 0.026		40 0.023	0*0020 0*01	0.0020 0.01	0"0050 0"01		0"0050 0"01		0-0004 0-00	0*0020 0*01	10"0 0700"0		0*0050 0*01			610*0 020	
	0*00000	0.0024 0	0*0050 0		0.0002 0.0010 0		0*0020 D*0000 0			5	B		0"0 5000"0 810"0 0200"0 5000"0					0-0040 0				0*0010 0*0020 0		0*0008 0*0020 0				0-0004 0-0050 0		0-0004 0-0030 0		0,0004 0,0020 0	21*0 0*12
	0*0 0	0-0 0	0.0	0.0				6						0.0	0"0 0"D	0-0 0-0		0*0 O	0*0 0*0	0*0	0"0 0"0		0"0 0"0	0"0 0"0	0-0 0-0	0.0 0.0	0*0 0*0	0.0 0.0	0"0 0"0	0-0 0-0		0"0 0"0	0*0 0
	0*D 0*D	0*0 0*0	0°D 0°D	1005 Q.	0*0 D*0		0.0	4			0.0 0.0		0°043 0°	0"0 0"0	0°0 0.	0*0		0°D 200°D	0.0	0*0 0*0	0.0	0-0 0-0	0°0			0.0	0.0	0.0	0.0	0.0			1.800 G.
	0.0	0.0	0.0	0-0030 0-002 0-0	0.0		4.0	0 000 0 0		2			0"0 £40"0 0011"0	0*2200 0*0	0.0470	0.1700		0.0	0.0	0.0	0.0	0"0	0.0	0.0770 0.0	0.0160 0.0	0*0	0.0	0.0	010	0.0		0,2100 0.0	4.0000
	0.0	0*0	0.0	0.0	0.0		0.0	5			0 0		0"0	0.0	0.0	0.0			0°D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0*0		aro		0.0	1 005170 0.0 0.0004 14.0000 1.800 0.0
	0,0	0*0	0.0	0.0	0.0		0.0						<i>a</i> ,0	0.0	0.0	0.0		0.010 0	0*0	0*0	6.0	0"0	0*0	0"D	0-0	0.0	0°D	062.0	0*034 D*0	0,0		0.0	0.0
	0,0910	0.0	0.0	0501-0	0.0600		0°0	0.0			0.0		0,2700	0.0	0-0	0,0		0.2600 0.010 0.0	0.1100	0.1400	0.4800	0.0	0.1500	0,0660	0,4200	0.0870	0.0620	0.1500	0.1100	0,1480		0.1600	001 €.0
	0.0	1000*0	0.0	0-0	0.0		0.0	ŝ			0 0		0.0	0*0	0°D	0*0		D,0005	£000%	0*0		Drd		0*0	0.0			0.0002	0.0001	0.0		0.0	
	515	215	8 212	5 H S 315	2 H S	:	AIS	2 H N			5 5		215	115	u ¥≣	31\$			MEEL MEEL	o KELL	81 81	귀 말 문	NHOLISE	MELL #2 C1	-1-92 1-12	RS NELL	¥. 8. 10	ИВ Н \$ 015	5	Sta		63 815	SDAS NE
	aurgdorff h S ZZN 4E 1EDC15	RIGGINS H 5 24N 25 14D6015	MEIR OREEK H S 36N 11E 13BCC15	COLGATE LECKS H S 36N 12E 15A0815	JERRY JOHNSON H 5 36N 13E 18A0015	HEISE H S	4N 4DE 25DD.	ORDINGS CANYON H	SALMON H S	SHAPKEY H 5	20N 24E 3400015 B16 04EEK H 5 22N 18E 2204015		KENT ¥ S (25 346 3660B15	MALAD # 5 145 36E 2700A15	PLEASATVIEW ¥ 5 155 356 34ABI\$	WOORUFF H 5 165 36E 108BC1\$		EARL FOOTE WELL	GEORGE KING WELL 45 1E 34BAD1	R, KETTERLING NELL 45 28 329001	E. LANERENCE WELL #3 55 1E 24A081 0.0	050AR FIELDS WELL 55 26 18803	55 36 268081 0.0	65 3E 20001 MELL #2	10/H0 PARS DEPT. 65 65 120001	3AVIS BROTHERS NELL #1 75 5E 7ABB1 0+0	COLYER CATTLE CD. WELL # 75 6E 98401 0.0	INDIAN BATHTUB H S 85 65 36001S	125 7E 55C 15	5188845 36 591 5 N JHANN		INDIAN SPRINGS 85 JIE 180ABIS	and to some the source of the

Basic Data Table 3. Trace Metal Analyses of Selected Thermal Water in idaho (continued)

5pr Ing/keil 1dentification Numbor & Name	(64) 104115	munimulA (IA)	Arsenic (aA)	6081 6081	(66) (66) (66)	Bromino (36) Muino Brino	(60) (50) (60) (60)	(00) 11000 (03)	(00) mu imant0 (10)	(10) muiseO (66)	(Cu) Copper	{DA} {\Azbiosiam	mulqonud (u.3)	(67) (93)	(50) (50)	(1H) (H1)	u¢ ∩w (H∂)	(al) (al)	ພກນອົບຊູ່ບໍ່ອີງ (->)	(גא) מעודטלע	asouedirem (PT)	asonsonsM (nM) munobdylaM	(PN) μη (myboeN (DN)	(0)) mu ime0 (e0)	(20) muibide/A (33) muiaestu/A	(4)%) AnomitaA	(42) Scandium (56)	лы імеіе? (е2)	Samorium (m2)	strentium (Sr)	muteineT (aT)	Terblum (15)	mušbeneV (Y)	(M) Weition	nu idhettiY (dY)	(UZ) 2012
															Twin	in Falls	is County		{cont'd.)	~																Ì
125 175 60308	0*0	0.1300	0.0 0.0		0.0	0.310 0.0	0.0 0.0	0.0	ö	034 0.0050	0.0	0.0	0.0	0.360 0.	0.0 0.0	0.0001 0.0		0.0004 0.0	0.0	0*0	0*0	0.0	0*D	0.0	0,030	0.020.0	0.0	0.0	0.0	0.7400	0.0	0.0	0.0	0*0	0.0	0.015
NAT-500-PAH W 5 125 17E 3184815	0*0	0.9800	0.0 0.0		0,2400 0,025	0.0 250	0.0		9Z0*0 0E00*0	28 0.0040	0.0	0*0	0*0	0.340 0.	0*0 0*0	0*0		0.0004 0.0	0.0	0*0	0.0065	065 0.0		0.0	0.025			0-0	0-0	0.7600		- d				000
IDAHO STATE NELL 1,25 16E 168A1	0 ° 0	0.3400	0.020 0.0		220*0 0*0*0	0"0 225		a.0005 a.0020 a.	220 0-022	53 0-006	0.0	0.0	0.0	202	0.0 0.0	0.0		0.0001 0.0	0.0	0.0	0-0065	065 C.O		0.0	0.016 0.0			0.0004	0.004	0.0000						
ROGER JONES MELL 135 166 124081	0"0	0160"0	0.0 0.0	0.0001 0.	0.1800 0.0	0.0	0.0	0,0030	210*0 050	00000 51	0*0	0.0	0.0	0,140 D.	0.0 0.0		0*0005 0*0	0,0603 0,0	0.0	0.0	0.0			0.0	020-0			2	0	OOE 1 D						
MAGIC H S 165 17E SUACAIS	0,0003	d. 1000	0,023 0,0		0,2700 0,010	0.0 0.0	0.0	0100-0	010 0,044	44 0,0020	0.0	0.0	0 0 0							030					0.008			1	010	0,470D		5	0.0	0.0	0.4300	0,015
ROCKY CANTON H S 11N SE 2900615	0.0	0*0640	0.0 0.0		10 010	0"0 0"0	0.0	0*0014	010"0 #10	10 0,0005	0.0	0.0	0*0	0 060 0	0*0	19-0 2000	7en	County 0 0-0	0		0	6	4	6	100 0 100 0	1000 V Pul		6	5							
BOILING SPRINGS H I ZN SE ZZBBCIS	4 5 0*0	0,1610	0"0 0"O		0*D 0*D	0.0	0.0	\$100 F	214 G.015	5200-0 51	0-0	0*0			6							516		0.0		50002 0 0002	0.0 20	0.0	0.0	0,06.20				0 °0	0.0	900
BUILING SPRINGS H	н 5 0.0	0.0	0"0 0"0		0.0 0.0	0.0	0.0	0,0024	024 0.012	32 0.0025	0.0	0.0	0.0	0.110 0.	0.0 0.0	0.0						023 0.0		0.0	6,013			0.0		0.0						900 V
CABARTON 1: S 13N 4E 31CABIS	0.0	0,1040	0*022 0*0		0*0 0*0	0.0	0.0		0*0012 0*015	15 0.0003	0.0	0.0	0.0	0.120 0.	0"0 0"0	0*0						0.0		010	500*0			0-0		0770-0						
VULCAN H S	0.0	0.1840	0"0 0"0		0.0 0.0	0.0	0.0	0.0022	0.012	12 0.0035	0.0	0.0	0.0	0.120	0*0 0*0	0*0001 0*0	0.0	0.0		0-0	0,0			0.0				0*0		0~1200						
ARLING H S 15N JE 13BBC15	0.0	0,0670	0.0 0.0		0*0 0*0	0.0	0.0		0*0112 0*018	1900-0 81	0.0	0.0	0.0	0.150 0.	0.0 0.0	0.0024 0.0	0.0	0.0		0.0	0.00	016 0.0	0.0	0.0	0.003 0.0	in the		0,0		0,0	000					
MOLLY'S H S 15N 6E 14ABB1S	0.0001	0120-0	0.0 0.0		0.0	0.0 0.0	0.0	0.0013	110.0 510	11 0.0009	0.0	070	0 0 0	0.120 0.	0.0 0.0	0.0006 0.0	0.0	0.0	0.0	0.0	0"0260	260 0.0	0.0	0.0	0.008 0.0	0.0006		0.0		0,1200						
C HOLDOVER H S	0.0	0*1050	0.0 0.0		0.0	0-0 0-0	0.0		0-0013 0-010	10 0.0003	0.0	0.0	0.0	0.100	0.0 0.0	0,0002 0,0	0.0	0.0	0"0	0.0	0,0024	0.0		0.0	0.004 0.0		07 0.0	0-0		0.0440						
D TEAPOT H S 18N 5E 9ADC15	0*0	0.0540	0.019 0.0		0"0 0"0	0.0	0.0	0.0022	022 0.011	11 0.0003	0.0	0.0	0.0	0.110 0.	0.0 0.0	0.0	0"0 0	0.0	0.0	0"0	0.0			0.0	0.005 0.0		0°0	6,0002	0.0	0,0620	0.0		2.1			800.0
MIDVALF CLEV VEL																Was	Mashington	County	101																	
134 3Y 60001	0"0	0"1700	0.1700 0.004 0.0		0.0260 0.013 0.730 0.0	0 210	730 0.0	0.0010	010 0.006	D6 0.0004	0*0	0"0	0 0.0	0.100 0.	0"0 0"0	0.0	0-0 0	0.0	0*0	0*0	0.0050	020 0.0	0.0	0.0	0.027 0.0	0.0	0.0	0.0	0*0	0,0	0*0	0-D	0-0	0.0	0.0	0.010
FACROHELD LUNGER	00- WEL	0.2300	0"00,0"0		0.0250 0.009	0.0 200.	4000°0 0	004 0*0020	120 0 . 009	1000*0 60	0-0	0*0	0*0	0.0	0"0 0"0	0.0		0.0003 0.0	0,0002	002 0.0	0610"0	0"0 061	0.0	0.0	0.06 0.0	0 0.0007	0.0 10	0.0		0.0	0.0	6.0	4- O			
LAKEY H S 14N 2W 68BA1S	0.0	0,1400	0,230 0,0		10 010	0.0 0.0		0-0004 0-0026	028 0.012	12 0.0024	0"0	0.0	0.0	0,130 0.	0.0 0.0	0"0 (0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.012 0.0	000		ć			2					
FARCHILD HS 14N JH 19CBD1S	0.0	0.1600	0.044 0.0		10 010	0*0 0*0	0*D 0		0*0014 0*01	010 0,0DD6	0.0	0.0	0*0	0,070 0.	0"0 D"0	0.0	0.0	0.0		0*0		8		0.0	D.004 0.0	00.0	0.0	0.0002	0.0	0,070	0.0	0.0	0.0059	0.0		500.0
																											-		25		;	;		;		

-248-

BASIC DATA TABLE 4

	ID AHO
	IN
	TLLS
	AND V
	SP RI NG S
	THERMAL
	OF
4	USE
BASIC DATA TABLE	POTENTI AL
0	QNE
BASI	USE
	PRESENT
	LOCATION, GEOLOGIC ENVIRONMENT, PRESENT USE AND FOTENTIAL USE OF THERMAL SPRINGS AND WELLS IN IDAHD
	GEOLOGIC
	LOCATION,

Ŀ

1 1												
Refarence		5AV AGE, 1958	SAVABE, 1958	SAVAGE, 1958	LIG, 1968	1975	SAV AGE, 1958	SAVAGE, 1958	1972 1972	LOG, 1969	SAVAGE, 1958	
Latitude Å Longitude		43.4543 116.2782	43.4493 116.2735	43,4034 116,3036	43.3929 116.2840	43 . 3934 : 116,2791	43,3941 116,2862	43_3868	43,5835 116,3352	43,3860 116,3034	43.3861	
Chem/ Trace Anal.		YES	-	-	-	YES	-	~	_	_	4	
Potential Use Based on Bast Estimate of Subsurface Temperature***		LAUMDRY USES				MISHROOM GROWING						
i- sr* pp. Potential Use Based on) Surface Temperature**		BIODEGRADATION	HEAT PUMP HEAT PUMP AND COOLING WITH	CATFISH FARMING	HEATING AND COOLING WITH GROUNDWATER HEAT PUNP	5 CATFLSH FARMING	CATFISH FREMING	DE-ICINS ROXDWAYS	CATFISH FARMING	HEATING AND COOLING WITH HEAT PLURP	HEATING AND COOLING WITH HEAT PLMP	
Surf, fer* Temp, Temp, (°C)		5 26 43	3	5 24	2	1 25 45	3 24	3	54	8	52	
Vell Depth Jse (m)		146	66	133	21 NG 140	191	143	135	183	121	621	
Present Use	<u>Ada County</u>	HRIGATION	COMESTIC	IRRIGATION	STOCK WATERING	IRR I GAT I ON	IRRIGATION	IRRIGATION	IRRIGATION	IRR I GAT I ON	IRRIGATION	Ć
Cartion Sili- bon- Gas ceous ptes	<u>Ada</u>		Ð	-	51		_	-	_	-		
Remarks		DRILLER'S LOG AVAILABLE	LERIS LOG AVAILABLE	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	REPORTED TEMPERATURE; LOCATTON IS VERTFIED BY FIELD CHECK; CRILLER'S LOG MALLABLE	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	DRillER'S LOG AVAILABLE		
ж. Ф		DRILLER'S	DRILLER'S	DRJLLER'S	סאורובאיs	REPORTED T LOCATION I FIELD CHEC AVAILABLE	0.1125	DRILLER'S	מאורובגי\$	DRILLER'S		
Geologic Structure												
Rock Type		I STUCENE	I STOCENE	I STOCENE	I STOCENE SALTIC LAVA	I STOCENE	I STOCENE	I STOCENE	EI STOCENE	IC LAVA	EISTOCENE	
Aquiter Age and Rock Type		PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEUIMENYS	PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	PLIOCENE AND PLEISTOCENE SEDIMENTS	12070 PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIDCENE, AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	PLIOCENE BASALTIC LAVA	PLIOCENE AND PLEISTOCENE SEDIMENTS	
Dis- charge (1/min) Aq		5.2	75 PL SEP	Щ.Ж	5	2,22	12670 PL	2.2	11355 PL	11355 PL	£.12	
5pring/well Idenfification Number & Neme		IN JE JADCI MELL MELL DULLAS	E.L. HENNIS HELL II II IJADI IN IE IJADI	AGR1-CON UF IDAHO WELL 1 1N 1E 23CDA1	NICHOLSON WELL #1 IN 1E Z5CAA1	NICHOLSON WELL #2 IN 1E 2508A1	AGRI-CON OF IDARO MELL 2 IN 1E 2560C1	AGR1-CON OF IDAHO MELL 3 IN 1E Z6ADD1	BETTY DESHAZO WELL IN 1E 33AAD1	AGRI-CON OF IDA40 WELL 4 IN TE 356AA1	FLOYD EDWARDS WELL IN JE 358881	-

-250-

Ç.,	YES 43.3831 SAVAGE, 1958 116.2737	43.4586 54VAGE, 1958 116.2538	YES 43.4987 SAVAGE, 1956 115.2396	43.4919 SAVAGE, 1958 116.3347	YES 43.4921 SAVAGE, 1958 116.5183	43.5000 SAVAGE, 1958 116.3076	43.4953 SAVAGE, 1958 116.3055	43,4920 SAVAGE, 1958 116.2955	43-4941 SAVAGE, 1958 116-2887	YES 43.4934 SAVAOE, 1956 116.2740	43-4882 SAVACE, 1958 116-3008
	APPLE DEHYDRATION		GREENHOUSE					H			FI SH
	67 DE-ICING ROADWAY	CATFI SH FARMING	50 CATFISH FARMING	DE-ICING HIGHMAYS	DE-ICING SIDEWALKS	DE-ICING ROADWAYS	CATFISH FARMING	HEATING AND COOLING WITH HEAT PUMP	DE-ICING SIDEMALKS	FERMENTATION	SHRING AND TROPICAL FISH FARMING
	135 24	117 32	123 24	85 23	24	117 24	85 25	94 X	93 24	27	115 27
- - 	IRRIGATION	DOMESTIC	DOMESTIC	DOMEST IC	IRRIGATION	INRIGATION	IBRIGATION	UDMESTIC	DOMESFIC	C 35 NNN	DOMESTIC
		חאוורפאיג רמט איאוראפרב						PUMP OFF; TEMPERATURE NOT WRIFIED; GRILLEH'S COG AVAILABLE		REPORTED TEMPERATURE, NOT IN USE	CHILLER'S LOS AVAILABLE
	10220 PLIOCENE MO PLEISTOCENE SEUTHENTS	PLITOCHE AND PLETSTOCENE SEDIMENTS	PLIOCENE WU PLEISTOCENE 95UIMENTS	PLIDCENE AND PLEISTUCENE SEDINENTS	PLIDCANE AND PLEISTOCENE	PLIUCENE AND PLEISTOCENE SEDINEHITS	PLIOCENE AND PLEISTUCENE SCDIMENTS	PLIOCENE AND PLEISTOCENE	8005 PLINKENE MAN PLEISTOCENE SLINNENIS	PLINDERE AND PLEISTOCENE SEDIMENTS	2649 MLIODENE AND PLEISTOCENE SEUTRENTS
Majorana ana	MIRH-CON UF MILAHO WELL 5 IN TE 56AMD1	CLU STEMART WELL STEMART IN 21: 6AAA1	IOU LAND ANU BEEF AELL IN 25 GABAI	וסראו טעטאאבונו. שיבור טעטאאבונו. בא זיב 21וזמאז	TOM BEVANS MELL ZM 15 ZDNUST	MILES CLARK MEL: ZN TE ZSIAGT	DAVID REAL WELL ZN TE ZYCAHT	AL L'LIFFORD MELL ZN IE ZJODAT	KUNA EAST MATEN COAP. 24 IE 2409A1	-seunge weitnofe. Meill 2011 - 240AD1	CHMALES BAIR HELL ZN IE ZGAUAI ZN IE ZGAUAI

AULER TEMPERATURE REPRESENTS A BEST ESTIMATE BASED ON AN INTERPRETATION OF THE OLEMICAL GEOTHERMOMETERS FOUND IN BASIC DATA TABLE 2.
 USE TAKEN FROM FLOURE 4. POTENTIAL USE <u>BASED ONLY</u> ON BEST ESPERATURE. ALL OTHER FACTORS IBNORED.
 USE TAKEN FROM FLOURE 4. POTENTIAL USE BASED <u>ONLY</u> ON BEST ESTIMATED ADULFER. TEMPERATURE. ALL OTHER FACTORS IBNORED.

-251-

(continued)
I daho
lls in
and Wells
Springs
Thermal
Jse of
and Potential Use of
and I
t Use
. Present Use
Geologic Environment,
Location,
Table 4.
Basic Data 1

Reference		SAVAGE, 1958	SAVAGE, 1958	SAVAGE, 1958	SAV AGE, 1958	106, 1969	5AV AGE , 1958	SAVAGE, 1958	SAVAGE, 1958	SAVAGE, 1958	۲۵۵, ۱۹73	
Latitude 3 Longitude F		43.4846 SAVA 116.2960	43-4680 SAVA 116-3099	43.4998 SAVA 116.2545	43.4739 SAVA 116.2120	43,4784 L0G, 116,1990	43.4855 SAVA 116.2335	43.4853 SAVA 116.2355	43.4597 SAVM 116.2673	43.4619 SAVA 116.2594	43.4592 LOG, 116.2281	** <u>*****</u> **
Chem/ Trace Anal.		-		-	-	***	F	-	-	-	-	
Potential Use Based on Best Estimate of Subsurface Temperature***												
Potential Use Based on Surface Temperature**		HEATING AND COOLING WITH HEAT PUMP	CATFISH FARMING	FERNENTATION	BI ODEGRADAT I ON	FERMENTAT LOW	CATFISH FARMING	DE-ICING RDADWAYS	HEATING AND COOLING NITH HEAT PUNP	STOCK #ATERING	HEATING AND COOLING WITH HEAT PUMP	
Surf, fer* Temp. Temp. (OC) (OC)		24 HE HE	23	27 FE	24 BI	۳ ۲	25 CA	25 DE	92 8	30 ST	彩 포 ^편	
Well Depth (m)	¹	р. Бл	103	265 2	184	224 2	167 2	167 2	121	4C1	160 2	
Present Use	(cont'd.	Ривыс зиврих	IRRIGATION	IRRIGATION	IRRI GATI ON	IRRIGATION	IRRIGATION	DOMESTIC	RRIGATION	IRRIGATION	DOMESTIC	
Car- Gas ceous ates	<u>Ada County</u> (cont'd.)	a,	ă.	<u>ж</u>	α	<u>æ</u>	<u> </u>	8	<u>κ</u>	<u>«</u>	8	Ć
			WALLABLE	WAILABLE	WAILABLE	WALLABLE				€γA1≧ABLE	4VA1LABLE	
Renarks			DRILLER'S LOG AVALABLE	DRILLER'S LOC AVAILABLE	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE				DRILLER'S LOO AVAILABLE	DRILLER'S LOG AVAILABLE	
Geologic Structure												
Dis- charge (1/min) Aquifer Age and Rock Type		PLIOUENE AND PLEISTOCENE SEUIMENTS	PLIOCENE AND PLEISTOCENE SEUMENTS	PLIOCENE AND PLEISTOCENE SELIMENTS	PLICICENE AND PLEISTOCENE SEDIMENTS	PLIDCENE AND PLEISTOCENE SECIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	LIJOENE AND PLEISTOCENE SELIIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	7570 PLIOCENE MUD PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEUIMENTS	
Dis- cherge (1/min) A		4163 PL SE	5677 PL	7494 PL 5E	5624 PL	53	5 B	2.23	ਜ਼ ਲ	7570 PL SE	7494 PL SĘ	
Spring/Weil Identification Number & Namu	1	DESERT VIEW ESTATES ZN IE 27ADAI	ED JOHNSON MELL ZN TE 558001	RONALD YANKE WELL ZN ZE 19AAD1	STATE HAISON MELL #2 ZN ZE Z70001	STALE PRISON WELL #1 24 ZE 270801	LDS STAKE FANN NELL #1 ZN ZE 29AAD1 ZN ZE 29AAD1	LDS STAKE FAAN MELL #2 ZN ZE 29AAD2	1DU LAND AND BEEF NELL 1 ZN 2E 31CDC1	HUU LAND AND BEEF WELL 2 2N 2E 510CA1	DAVID WEISS WELL 2N 2E 330001	
					-25	2-						

-252-

orvered bradiliator

YES 41.5263 SAVAGE, 1956 116.0923	YES 43.4778 SAVAGE, 1958 116.1062	YES 43.5244 SAVAGE, 1958 116.1891	43.6107 116.1708	43.6208 SAVACE, 1950 116.2365	43.6180 LOG, 1962 116.1984	43.6176	41.6119 SAVAUE, 1958 116-2059	YES 43.6165 116.1921	45.6181 116,1033	43.6164 116, 1857	43.6156 SAVAGE, 1958 116,1890
CATFI SH FARMING	FERMENTAT I ON	SPACE HEATING						BLANCHIKS			
en ingra HS14	HEATING AND DOOLING WITH HEAT PUMP	GRAIN-HAY DRYING	DE-ICING SIDEWALKS		SPACE HEATING		HEATING AND COOLING WITH HEAT PUMP	SEEDLING CONTREMS	LAUNDRY USES	APPLE DEHYDRATION	BIODEGRADATION
143 20 21	12 22 L62	348 50 59	, 26 23	R7 28	327 40	44	PZ 261	198 56 97	19	372 74	1174 90
IRRIGATION MD DDMESTIC	DOMESTIC	DOMESTIC	GEDTHERMAL HESEARCH	A Tober S 21 MAR	DOMESTIC AUD SPRINKLING	UNUSED	COMMERCIAL LAUNDRY	GEOTHERMAL RESEARCH	GEOTHERMAL RESEARCH	GEOTHERVAL RESEARCH	LRRIGATION
	URILLER'S LOS AVALAGLE. BLACK CREEK HEST AREA	DRILLER'S LOS AVALAGLE	NOT FIELD CHECKED; NOT FLOWING; COVERED	FLOMING MELL, DRILLER'S	ORILLER'S LOS AVAILABLE	HELL CEMENTED OVER (NO TEMPERATURE CHECK)	DRILLERIS LOG AVAILABLE	COVERED	NDT FLOWING	MELL HAS BEEN COVERED	DRILLER'S LOC AVAILABLE
PLIOCENE AND PLEISTOCENE SEDIMENTS	227 PLIOGENE AND PLEISTOCENE SEDIMENTS	302 PLIOCENE AND PLEISTOCENE SEDIMENTS		1705 PLIODENE AND PLEISTOCENE SEDIMENTS	1135 PLLOCENE AND PLEISTOCENE SEDIMENTS		2839 PLIOCENE AND PLEISTOCENE SEDIMENTS	567			2271 PLIOCENE AND PLEISTOCENE SEDIMENTS
MARREN TUZER MELL ZN JE 108CB1	STATE TRANS. UEPT WELL 2N 3E 28CACI	FEAD KOCH HELL 5N 2E 23301	850 MELL #1 3N 2E 20801	GARDEN CI IY MELL SN 20 50CA1	lidaho STATE CAPITOL WELL 3N ZE 10ABA1	OLD BOISE HOTEL MELL SN ZE 10ABB1	ULARK MAGSTADT WELL 3N ZE 1080C1	BEARD WELL 3N ZE TIABCE	BSU ₩ELL #2 JN ZE IIBAB1	85U HELL #3 5N 2E 118AC1	BOISE CITY FARK WELL 3N ZE 118801

		101101		ייוברוואי האודדולה אשוויה אלי	OTTAL THE STAR				
Spring/Well Identification Rumber & Name	Dis- charge (1/min) Aquiter Age and Rock Type	Geologic Structure	Remarks Gas	Deposition Sili- bon- ceous ates Present Use	Well Surf Fert Depth Temp. Temp. (m) (°C) (°C)	Potential Use Based on Surface Temperature⁺*	Potential Use Based on Bast Estimate of Subsurface Temperature***	Chem/ Latitude Trace & A Anal. Longitude Re	Reference
				<u>Ada</u> County (cont'd.)					
AMN SPARKS MELL JN 2E 125001			NOT FIELD CHEUKED	DOMESTIC.	14,5 21	FISH FARMING AND HATCHING		43.6130 116.1647	
JSU WELL #4 SN ZE 1205831			SNIMOT FLOWING	GEOTHERMAL HESKMOH	ور ۱۵۱	FERMENTATION		43.6107 115.1708	
MANAN SPRINGS MATER DIST. 3N 2F. 120301	7267 PLIOCENE AND PLEISTOCENE SEUMENTS (?)	NORTHWEST THENDING FAULT	MELL MATER MEATS ABOUT 200 HONES, FLOWING MELL, SULFUR ODOR	Puello Superv	121 76 79	FRUIT AND VEGETABLE DEHYDRATION	PASTEURIZED MILK PROCESS	YES 43.6046 116.1526	
WARM SPRINGS WATER DIST. SN 2E 12CD02	7267 PLIOCENE AND PLEISTOCENE SELIIMENTS (?)	NORTHWESF TRENDING FAULT	WATER FROM BOTH MELLS IS MIXED AT SITE PRIOR TO BEING PRPED TO DISTRICT; FLUMING MELL; SULFUR, DOOR	Public Supply	121 77	REFRIGERATION (LONER TEMPERATURE RANGE)		43.6048	
OLD PENTENTIARY WELL #1 3N 2E 15AAC1	68 PLICERE AND PLEISTOCENE SEDIMENTS		PUMP ANS BEEN PULLED AND MELLHEAD ODVERD), DHILLEN'S MELLHEAD ODVERD), DHILLEN'S	UNUSED	148 28			43.6017 SAVAK	5AVAGE, 1958
OLD PENTENTIAHY WELL #2 3N 2E 15AGUI	2649 PLIOCENE AND PLEISTOCENE Skutments	NCRTHMEST RRENDING FAULT	AVAILABLE DRILLER'S LOG	LANUSE D	265 59 67	- РОИГТКҮ НАТСНЕКҮ	APPLE DEHYDRATION	YES 43.5987 SAVA	SAV AGE, 1958
WARM SPRINGS MESA SUBU. SN 26 24 ACAT	3028 PLICCENE AND PLEISTOLENE SEDIMENTS		DRIFLER'S LOG AVAILABLE	PUBLIC SUPPLY	150 31	SO INOROBONI CS		43,5849 SAVA	SAVAGE, 1958
BOISE WATER CORP. WELL SN 28 SANCI	17601		DRILLER'S LOG AVAILABLE; ALSD KNOWN AS TERTELING MELL	PUBLIC SUPPLY	195 22	FISH FARMING AND HATCHING		43.5580 LOC, 116.1597	100, 1972
DALLAS HARRIS WELL 3N 3E 200AB1			NOT FLEID OVEIXED	UNUSED	137 56	SPACE HEATING		43.5810 116.1272	
MURES UREEK H S 3N 4E 218AB15			NUT FIELD CHECKED, REPORTED IN THE IDANO ELCYCLOFEDIA, 1935; SUBMERGED IN LUCY PEAK RESERVOIR	UNUSED	ð			43,5884 115,9876	

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

-254-

Ç,				06.1969	ىرى ن ى 1965	£191,001		1969 f.	1967 - 1967			
	YES 43.6664 116,2821	43.6521 116.2835	YES 43.7135 116.2267	43.6920 06 116.2417	43.6833 LD 116.2502	43,6794 L0 115,2446	43.6762 116.2968	43.6752 L0 116.2775	43,6742 L0 116,2574	43,6759 116,2297	43,6768 116,2076	43.6734 116.2113
			NI FERS									
	APPLE DEHVURATION		SEEDLING ODWIFERS					_				
	68 FERMENTATION	DE-1CINS HIGHWAYS	5 SHRIMP FARMING	SEEDLING CONFERS	BI ODEGRADAT I ON		HEATING AND COOLING WITH HEAT PUMP	HEATING AND COOLING WITH HEAT PUMP	FISH FARMING	AQUACULTURE	HUDROPONICS	SHRING FARMING
	309 28 68	214 24	76 30 43	513 41	377 32	210 20	70 25	68 21	78 28	274 35	ţ	50 24
-	DOMESTIC	INDUSFRIAL	DOMESTIC	UNUSED	SWIMMING POOL	Innused	DOMES FLC	DOMESTIC	DOMESTIC	LINUSED	STOCK WATERING	DOMESTIC
				PED: TEMPERATURE NOT VERIFIED: DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	DRILLEM'S LOG MAILABLE; MELL CAPPED, TEMPERATURE DETAINED FROM LOG		DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	CAVED IN, NEVER RE-DRILLED	,	
				CAP					·			
	94	696		276 PLIOGENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	1135 PLIOGENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	56 PLIOCENE AND PLEISTOCENE SEDIMENTS		113 PLIOGENE AND PLEISTOGENE SEDIMENTS	113 PLIOCENE AND PLEISTOCENE SEDIMENTS		37 PLEISTOCENE AND PLEISTOCENE SEDIMENTS (3)	PLIOCENE AND PLEISTOCENE SEDIMENTS (7)
	DENNIS FLAKE MELL 4N IE 24DCC1	IDAHO DEPT. OF THANS. 4N IE 2501A1	CARL RUSH WELLL 4N ZE 48DC1	LILLIAN BARNES MELL #1 AN 2E BJCCI	LILLIAN BARNES MELL #2 4N ZE 1708A1	E, VAN HENDRICKS WELL 4N ZE 17CDA1	WILLIAN GALLONAY WELL 4N ZE 19AAB1	ETHEL FLCKS NELL 4N ZE 19AAC1	ED GENTHER WELL 4N ZE 19AAC2	JESS DONAHO WELL 4N 2E 210CA1	TERTELING H S 4N 2E 2288A1S	JOE TERTELING MELL #1 4N ZE ZZBCB1

-255-

Spring/Weif Ldentification Number & Name	Dis- charge ([/min] Aquifer Age and Rock Type	Geologic Structure	Ronar ks	Deposition Car- Sili- ceous ates	Present Use ((Well Surf, Aqui- Well Surf, fer* Depth/Temp. Temp. (m) (°C) (°C)	Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal. Longitude	Reference
				Ada County	<u>Ada County</u> (cont'd.)					
JDE TEMTELING WELL, #2 4N 26 229501	PLIQCENE AND PLEISTOCENE SEDIMENTS (?)		FLOWING COLD WATER NEXT TO THERMAL WATER'S WELL CASING		SPACE HEATING	167 44	AQUACUL TURE		43.6710 116.2083	
JOE TEMTELING MELL #3 4N 2E 220881	PLIOCENE AND PLEISTOCENE SEDIMENTS OVERLYING BASALTIC LAVA		ORILLER'S LOG AVAILABLE	-	IRRIGATION	182 43	FERMENTATION		43.6695 LI 116.2107	1968
GRANE DREEK GULF WURSE 4N 22 263001	2649 PLIDCENE AND PLEISTOCENE SELUIMENTS AND BASALTIC LAVA		GRILLER'S LOG AVAILABLE	<u>-</u>	IRRIGATION	225 21	FISH HATCHING		43,6584 L	LOG, 1964
CARTWRUSHT WAEER DIST #1 4N 2E 2704A1			THIS SITE WAS DRIGINALLY DRILLED FOR OLL AND GAS EXPLORATION TO A DEPTH OF 915 METERS	<u>6</u>	PUBLIC SUPPLY	213 32	AQUACULTURE		43.6546 16,1994	
UANTWRISHT WATCH OIST.#2 48 25. 2704A2	PLIDCENE AND PLEISTOCENE SUIMENTS AND BASALTIC LAVA		DR1.LER'S LOG AVAILABLE	<u>а</u> .	PUBLIC SUPPLY	228 32	51 ODEGRADAT I ON		43 . 6549 L	1976 LØ, 1976
CAREMATUHT WATER DIST.#5 4N 2E 27DA55				-	DOMESFIC	152 52	HEATING AND COOLING WITH HEAT PUMP		43.6549 16.1998	
VIU NI SKLER WELL 4N 25: 28AK61	1022			_	IRRIGATION	396 48	GRAIN-HAY DRYING		43,6616 116,2212	
-UNT			ALSU KNOWN AS MILSTEAD FLORAL, FLOWING WELL; SLIGHT SULFUR COOR	Ŭ	GREE NHOUSE	381 47	SEEDLING CONFFERS		43,6556	
RYAN WELL AN 28 29AURI	05.51				SPACE HEATING	335 46	GRAIN-HAY DRYING		43,6614 116,2454	
EDWARD ¹⁵ GREENHOUSE WELL 4N 22 29AG01	1514		FLOWING MELL, SLIGHT SULFUR		GREENHOUSE AND SPACE HEATING	364 49 78	TROPICAL FISH FARMING	PRUNE DEHYDRATION	YES 43,6577 116,2589	
·										(

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

6	45.6562 SAVAGE, 1958 116.2374	43.6962 SAVAGE, 1958 116.2376	43.6555 116.2329	43.6556 116.2528	43.6347 LOS, 1964 116-2296	43.6299	43.7453 SAVAGE, 1956 116-2628	YES 43.7434 SAVAGE, 1950 116.2917	43.7408 SAVAGE, 1958 116.2903	43.7376 LOS, 1972 116.2909	43.7369 LO3, 1970 116.3066	YES 43.7373 LOS, 1964 11.2987
								SOIL MARMING				GRAIN-HAY DRVING
	HYDROBONICS	HEATING AND COOLING WITH HEAT PURP	SOIL MARNING	MUSHROOM GROWING	AIR CONFING	HEATING AND COOLING MITH HEAT PLUAP	FISH FARMING	2 ADUACULTURE	HEATING AND COOLING WITH	HEATING AND COOLING WITH HEAT PUMP	10 (00) 300 HEATING AND COLING WITH	56 SPACE HEATING
	425 39	15 21	381 45	381 43	350 20	504 21	60 20	92 28 42	95 21	152 25	18 (20) 81	209 30 5
ć	SPACE HEATING	DOMESFIC	GREENHOUSE	SPACE HEATING	AIR CONUTIONING	UNUSED	DOMESTIC	IRREGAT ION	DOMESTIC	DOMESTIC	004ESTIC	DOMESTIC
	0008 אנרון: גוופאד אוודעפא	DRILLER'S LOG AVALLABLE	FLOWING WELL, SLIGHT SULFUR	FLOWING MELL; SLIGHT SULFUR 000R	URTILLER'S LOG ANALLABLE; URTENALLY DENLLED) TO 351 METENS, MATEN MITPORAMM TROM 12 WETEN IN SHALE OF WATEN IN SHALE	TEMPERATURE AND LOCATION NOT VEHIFIED		DRILLER'S LOG AVAILABLE	DRILLER'S LOS MAILABLE	DRICLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	URILLER'S LOG AVAILABLE
	PLI OCENE AND PLEI STOCENE SEDINENTS	PLIOCENE AND PLEISTOCENE			1022 PLIOCENE AND PLEISTOCENE SEDIMENTS		PLINZENE AND PLEISTOCENE SEDIMENTS	1705 PLIOCENE AND PLE1STUCENE SEDIMENTS	151 PLIOCENE AND PLEISTOCENE SIJIMENTS	264 PLIOCENE MO PLEISTOCENE SEUTHENTS	PLLIOCENE AND PLEISTOGENE SEDIMENTS	3406 PLIOCENE AND PLEISTOCENE SEDIMENTS
(илтас Салкон Мент #1 4N 25: 29Асо22	WAYNE CHURCH WELL #2 4N 2E 29ACD5	HLMT - #KUTHEKS FLOHAL #2 4N 2: 2912A1	HIMT SROT-ERS FLORAL #3 4N 2- 2913A2	LUARD DEPT UF TRANS MELL AN 28: 550001	HJCHARD SMITH WELL 34CAA1	JULIN BOEHM MELL 5N 12 25AÜH1	SHAUON VALLEY MELL 5N JE 25HCC1	DON SWANSON WELL IE "290361	JUHN FENGUSON WELL	D. MCARTHUR NELL IE 260001	JEN SYADLEN WELL 51 IE 260001

-257-

B.c . .

5pring/Weil 5pring/Weil Idsnrification Number & Namo	Dis- charge (I/Amin) Aquifer Age and Rock Type	Geologic Structure	Remarks	Deposition Cer- Sill- ban- Present Use	Weill Surf. Aqui- Weill Surf. fer* Depth.Temp. (m) (^O C) (^O C)	i- r* p. Potential Use Based on p. Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Tamperature**	Chem/ Latitude Trace & A Anai. Longitude Reference
				<u>Ada County</u> (cont'd.)	2			
JOHN BURGESS WELL 5N 1E 290AA1	37 PLIDCENE AND PLEISTOCENE SEDIMENTS		URILLER'S LOG AVAILABLE	DOMESTIC	154 22	CATFISH FARMING		43.7415 LOG, 1978 116.3552
JULIUS JEKEN MELL #1 5N 1E 55ACA1	85 PLIDGENE AND PLEISTOCENE SEDIMENTS		FLOWING WELL; SULFUR ODOR	IPRIGATION	16 40 87	SPACE HEATING AND RECREATION	BARLEY MALFING PRICESS	YES 43.7708 DENMAN, 1978 116.2998 (SITE INSPECTION)
JULIUS JEKEN MELL #2 5w JE 568081	75 PLIOCENE AND PLEISTOCENE SEDIMENTS			DOMESTIC	121 24	DE-101NG SIDEWALKS		43.7316 DENMAN, 1978 116.2881 (SITE INSPECTION)
JERRY DAVIS MELL #1 IN 1W 7ACCI	PLIUCENE BASALTIC LAVA		DRILLER'S EDG AVAILABLE; CAVED AT 180 METERS	IRRIGATION	196 21 59	CATFISH FARMING	POULTRY HATCHERY	YES 43.4374 SAVAGE, 1958 116.5025
CLAYTOR FORSUREN MELL- IN IN 780C1	469 PLICCENE BASALTIC LAVA		DRILLER'S LOG AVAILABLE	IRRIGATION	124 21 61	FERMENTATION	AN INAL HUSBANDRY	YES 43.4373 LOG, 1973 116.5122
JERRY DAVIS MELL #2 IN 1H 7C3A1	6359 PLIOCENE BASALTIC LAVA		DRILLER'S LOG AVALLABLE	IRRIGATION	140 21	HEATING AND COOLING WITH		YES 43.4385 LOG, 1965
TOBOR WI NI	PLIOGENE BASALTIC LAVA		DRILLEN'S LOG AVAILABLE	IRRIGATION	129 X	STOCK WATERING		43-4429 LOG, 1962 116,5729
IRVIN BOEHLKE WELL #1 IN IN BUBAI	10220 PLIOCENE BASALTIC LAVA		DRILLER'S LOG AVALLABLE	I RRIGATION	157 22	STOCK WATERING		43.4375 LOG, 1963
HERB WONTIERTH WELL IN 1980C1	4			. IRR16A7108	106 21	HEATING AND COOLING WITH		43,4251
HERE WONTLERFH WELL	-			IRR IGAT ION	106 21	CATFISH FAXMING		42.4220 16.4451
				, (С. М.

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Walls in Idaho (continued)

~ *

-258-

(internet internet in	YES 43,4229 116,4330	43.4262 LOG, 1963 116.4784	43.4220	43.4047 LOG, 1972 116.4970	45_4047 116_4472	YES 43.4019 LGS, 1964 116.4339	43.4131 LOG, 1965 116.5947	43,3998 LDS, 1976 115,4526	433976 105, 1974 116.4951	43.3759 SAVAGE, 1958 116.5059	45.3845 115.9970	43.4603 LOG, 1973 116.4473
	APLE IJEHYDRATION					grain-hay drying						
	CATFISH FAIMING APPL	CATFISH FARMING	HEATING AND COOLING MITH HEAT PLMP	HEATING AND COOLING WITH HEAT PUMP	HEATING AND COOLING WITH HEATING AND COOLING WITH	57 CATFISH FARMING GRAI	DE-ICING ROADWAYS	STDOX MATERING	CATFISH FARMING	DE-ICING ROADWAYS	FISH FRAMING	BI ODEGRADAT I ON
	164 21 66	125 22	22	IZ BII	106 21	106 27 57	111 24	52 111	109 22	118 24	216 21	106 27
(IRRIGATION	IRRJGATION	HRIGATION	DOMESTIC	IRRIGATION	IHRIGATION	IRR GAT ON	IRRIGATION	IRRIGATION	IRRIGATION	DOMESTIC	DOMESTIC
		DRILLER'S LOG AVAILAGLE				DRILLER'S LOG AVALABLE	DRILLER'S LOG AVAILABLE	סאוררפאיט רעט אאאוראפרב	DRILLER'S LOG AVALLABLE	DRILLER'S LOG AVAILABLE	TEMPERATURE NOT VARIFIED	DRILLER'S LOG AVAILABLE
	. 10598 .	PLIOCENE BASALTIC LAVA		PLIOCENE AND PLEISTOCENE SEDIMENTS		PLIOCENE BASALTIC LAVA AND SEDIMENTS	5587 PLINCENE AND PLEISTOCENE BASALTIC LAVA AND SEDIMENTS	4542 PLIOCENE AND PLEISTOCENE SEDIMENTS AND CASALTIC LAVA	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	PLIOCENE AND PLEISTOCENE SEDIMENTS		PLIOCENE AND PLEISTOCENE SEDIMENTS AND PASALTIC LAVA
	SHAVE BUES MELL IN 15JAA1	IRVIN BOEHLKE MELL. #2 1N 14 17ADA1	HRVIN BOEHLKE MELL #5 IN IW I7CAHI	ILLOYD MOE MELL IN 190061	TEHRY TLUCEN MELL #1 . IN IW ZZCACE	TEHNY TLUCEK WELL #2 IN IW ZZDDD1	HER& MONTIENTH WELL IN 1W 24AAD1	TERRY TLUCEK MELL #3 IN IN 278881	LLOYD NDE WELL #2 IN 1# SOADA1	MELL#3 MELL#3 IN 1W 31CAD1	MIKE VANDENBERG WELL 3N 4W 52AAB1	KENNETH FORREY MELL 2N 1 1 440021

-259-

Latitude Langitude Reference		43.4645 L0%, 1967 116.43.28	43-4622 (CD, 1956 116-4246	43.4660 116.4140	YES 43.5685 LKD, 197D 116.3940	43.7815 SAVAGE, 1958 116.4747	43,7968 L05, 1971 116,4726	43,7828 LCG, 1972 116,5149	43,7835 LGG, 1967 116.4620	45.7701 LCC, 1963 116.4625	YES 43,3689 LOG, 1969 116,4818	
Potential Use Based on Chem/ L Best Estimate of Trace Subsurtace Temperaturet** Anal,					BLODESRADATION YES 1	-	- 1	-	-	ONLON DEHYDRATION YES	PASTEURIZED MILK PROCESS YES	
Aquin Heart Temps Portential Use Based on Temps Surface Temperature** 5		CATFISH FARMING	HEATING AND DOOLING MITH HEAT PUMP	FERMENTATION	27 CATFISH FARMING	AQUAGULTURE	HEATING AND COOLING WITH HEAT PUMP	BLODESRADATION	HTDRPOM DS	70 GROUND-WITER HEAT PUNP FOR HEATING AND COOLING	71 CATFISH FARMING	
Well Surf. Depth Temp. (m) (°C)	_	107 20	96 25	146 22	68 21	152 28	106 21	511	137 29	191 21	112 26	
Seposition Sill- bon- s ceous ates Present Use	<u>Ada</u> <u>County</u> (cont'd.)	IRRIGATION	IRRIGATION	IRRIGATION	DOMEST (C	DOMESTIC	DOMESTIC	DOMESTIC	DOMESTIC	DOMEST IC	IRRIGATION	, the second
Gas Renarks		DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE		URILLER'S LUG AVALABLE; ABANDONED	DRILLER'S LOG AVAILANLE	DRILLER'S LOG AVAILABLE	DRILLER'S LOG WAILABLE	DRILLER'S LOG AVAILABLE	DRILLER'S LOS AVAILABLE	DRILLER'S LOG AVAILABLE	
Geologic Structure												
Dis- charge (1/min) Aquifer Age and Rock Type		PLICCENE AND PASALTIC LAVA SEDIMENTS AND BASALTIC LAVA	3996 PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA		PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOGENE AND PLEISTOCENE SECHMENTS	52 PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	13627 PLIOCENE BASALTIC LAVA	
Spring/Well Gentification Number & Name		KENNETH FORREY MELL #2 20 TH 34DAD1	SAM GABLOLA WELL #1 ZN 1W 35CAA1	SAM CABIOLA MELL #2 ZN 14 35DDA1	BISCHOF REALTY 3N IN ZSAUDI	CLIFFURD SMITH WELL IW BADCI	DEE FACHILLA WELL 1W BADD1 SN 1W BADD1	DAVID TRAYLOR WELL 5N IW 9CADI	BILL LEACH WELL LEACH 5N 1W 90301	LETHA FISHER WELL 5N IN IGCABI	HARRY CHARTERS WELL 15 1W 5ABC1	、 〈

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

-260-

÷....

A relation of the second s

10-	YES 43.2975 LOG, 1969 116.4126	43.2391 LCS, 1977 1 16.3351	43.1614 MITCHELL, 1979 116.3323 (SITE INSPECTION)	44.6691 RDSS, 1971 116.3052) YES 44.6814 MARING, 1965 116.2281	YES 44-9714 NEWCOMB, 1970 116-2034	45-0382 GAPCIA, 1978 116.2871 (SITE INSPECTION)	45-0359 R055, 1971 116-2873	45.0366 SARCIA, 1978 116.2875 (SITE INSPECTION)	45.0393 ROSS, 1971 116.2920	YES 45_0385 HAMILTON, 1969 116.2913	YES 43-1518 R055, 1971 116-2962
	GAVE BIRD HATCHERY				COIRN PRODUCTS (SYRUP, OIL)	BLANCHING					BARLEY MALTING PROCESS	
	23 68 FISH FARMING	27 FERMENTATION	24 CATFISH FAMING	68 NEFRIGERATION (LONER TEMPERATURE LIMIT)	60 145 HOT WATER HEATING	43 95 SEEDLING CONFEHS	63 ANIMAL HUSBANDRY	70 REFRICERATION (LONER TEMPERATURE LIMIT)	68 APPLE DEHYDRATION	60 GAVE BIRD HATCHERY	62 83 ANIMAL HUSANDRY	31 FERMENTATION
	DOMESTIC 167	LOMESTIC 179 .	UNUSCI) Adams <u>County</u>		YES RECREATION	YES UNUSED	(MIGED	UNUSED	UMUSED	UNUSED	YES RECREATION	RECHEATION
	DRILLER'S LOG AVAILABLE	DRILLER'S LOS AVALABLE	SEEP	NOT FIELD CHECKED; REPORTED BY ROSS, 1971	NUMEROUS SPRING VENTS, GAS YES PRESENT IN SEVERAL VENTS, SULEUR COOR; TEMPERATUME RANGE 60-68 DEGREES C; ALLUVIUM ABOUT 1,5 M THICK	THO SPRING VENTS AND SECRAL SEPS, TEMPERATURE SECRAL SEPS, TEMPERATURE ANGLE 40-43 DÉRREES C, PAST USE HECKEATION	TEMPERATURE RANGE 49-63 DEGREES C; PAST USE: BATHING	DRILLER'S LOG AVAILABLE	SEVERAL SPRING VENTS, PAST USE: BATHING	TEMPERATURE RANGE 55-66 DEGREES C	SLIGHT SULFUR COR	STROKG SULFUR ODOR
				FAULT		Northwest Trending Normal Fault					NORTHMEST TRENDING NORMAL FAULT	
	PLIOCENE BASALTIC LAVA	PLIOCENE HASALT AND SILIGIC VOLDANIC ROCKS	n	189 DRETACEOUS GRANITIC ROCKS	115 ULATERNARY ALLUVIUM NEAR MIDENE BASALT AND CRETACEOUS GRANITIC ROCK	189 CHETACEOUS GRANITIC ROCKS NEAR MIDCENE GASALT	189 JUATERNARY ALLUVIUM	162 MUCENEMARY ALLIVIUM NEAR MICCENE MASALT	454 силтерилят аллини	NUCTERANAY ALLUVIUM NEAR	757 QUATERWARY ALLUY IUM NEAR MICCENE BASALT	37 DREFACEOUS GRANITIC ROCK
	INITIAL BUTTE FARM MELL IS IN 36080C1	MEL HRUMA WELL 25 1: 20ABA1	THOMAS FLAT W S 55 16 150AA15	COUNCIE MITN. H S ISN IE 240815	WHITE LLICKS H S 16N 2E 35BCC1S	KRIGBAUM H S 194 ZE 2200A15	DIKON H S 20N LE ZSCCAIS	DEL GEUDES WELL 2011 IE 250001	GEDDES H S ZON IE 25CCC1S	EVANS H S 20N 1E 26DAD1S	ZIM'S RESORT ZON IE 2600A1S	STINKY W S 21N IE 23ABAIS

-261-

~ *

Spring/weil Identification Number & Namo	Dis- crarge crarge (1/amin) Aquifer Age and Rock Type	Geotogic Structure	Remarks	Deposition Car- Sailt- bon Present Use Gai Depus ates	Well Surf. A Depth Temp. T (m) (°C) (Aqui- ter* Temp. Porential Use Based on Temp. Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & A Anat. Longitude	Reference
				<u>Adams</u> County (cont'd.)					
BOULDER CREEK HESORT 22N JE J4UAD1S	18 CRETAGEOUS GRANITIC HOCK	X	SLIGHT SULFUR COOR, TWO SMALL POOLS	UNUSED	82	CATFISH FARMING		YES 45.2009 G	GARCIA, 1978 (SLTE INSPECTION)
LSAA AND THOMPSON WELL 16N IN IIACD1	56 QUATERNARY AND TERTIARY SEDIMENTS		DRILLER'S LOG AVAILABLE	DOMESTIC	64 22	HEAT PUMP FOR HEATING AND COOLING		44,7390 Y	YOUNG AND OTHERS, 1977
BILL KAMPETER MELL 16N 1W 15AAC1	113 QUATERNARY AND TERTIARY SEDIMENIS INTEREDUED WITH MIOCENE BASALT	RY WITH	DRILLER'S LOG AVAILABLE	IRRIGATION	35 22	FISH FRAMING AND HATCHING		44.7287 1	NOUNG AND OTHERS.
STARKEY H S 18N IN 340861S	492 MIOCENE MASALT		SEVEN SPRING VENTS; SULFUR 00097, SECONDARY CALCITE IN BASALT NEAR SPRING VENTS	YES REGREATION	5	70 LAUNDRY USE	HEFRIGENATION (LONER TEMPERATURE LIMIT)	YÉS 44,8528 1	LIVINGSTON AND LANEY, 1920
55 34E 25HDH1			DESTROYED BY CONSTRUCTION	Bannock County	152 32			6090 C M	
JERALD JOHNSON MELL 55 34E 250BB1	L PLIOGENE AND PLEISTOCENE SEDIMENTS AND SILICIC VOLCANE ROCKS	E.	UF INLERS ATE 15 ORILLER'S LOG AVAILABLE	HRIGHTION		B100E3RADATI ON		112.4298 42.9563 112.4342	TRIMBLE, 1976
ROBERT BROWN WELL #1 55 34E 260AB1	113 UPPER PLEISTOCENE SEDMENTS (1)		DRILLER'S LOS AVAILABLE	IRRIGATION	70 25	62 HEAT PURP FOR HEATING AND COOLING	APPLE DEMORATION	YES 42,9559	TRIMBLE, 1976
ROBERT BROWN WELLL #2 55 34E 260B01	662 PLIOCENE AND PLEISTOCENE VOLCANIC AND SILICIC VOLCANIC ROCKS(?)	INE	FLOWING WELL	SPACE MEATING	177 41	63 GREENHOUSE SPACE HEATING	GAME BLRD HATCHERY	YES 42,9543 112,4428	TRIMBLE, 1976
GWINN SIGMAIN WELL 55 34E 260CC1	3406			IRGIGATION	62 09	CATFISH FARMING		42,9499 112,4449	
TADPOLE W S 5S 34E 27ADD1S			DRV	UNUSED	ŝ	HEATING AND COOLING WITH		42,9573 112,4580	
**************************************				(

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

-262-

survey in the

.

(TRIMBLE, 1976		STEARAS AND OTHERS, 1938	STEARNS MUD OTHERS, 1938	NORVITCH AND LAHSON, 1970		42.4257 DION, 1969 111.5778	42.1148 DION, 1969 111.2640		R055, 1971	ROSS, 1971		UMPLEBY AND OTHERS, 1930	YES 43,5605 UMPLEBY AUD 114.4147 OTHERS, 1930
	42,9476 112,4462	YES 42.6642 112.2356	YES 42.6205 5	YES 42.6198 5	YES 42.3877 1 112,0851		êS 42-4257 111.3778	YES 42,1148 111,2640		YES 43,1145 112,1669	Y 43.0377 112.0035		YES 43.5056 114.3542	YES 43.5605 14.4147
		1 NG	GROW ING	POOL	2		grai n-hay Dry Ing	HOT BED HEATING		BLOUEGRADAT I ON	HEATING		PASTEURI ZAT ION	ĐN
		SOIL WARMING	NU SHROOM GROWING	SWIMMING POOL	HYDROPONIC		GRAI N-HJ	HOT KED		BIOUEGR	SPACE H		PASTEU	BLANCHING
	20 FISH FARMING AND HATCHING	22 40 CATFISH FARMING	45 50 BALNEOLOGICAL GROWING	45 50 SEEDLING CONFERS	43 46 GRAIN-HAY DRVING		26 49 CATFISH FARMING	48 54 GRAIN-HAY DRYING		32 35 AQUACULTURE	3 405 BIODECRADATION		55 63 SEEDLING CONIFERS	52 B7 SPACE HEATING
	5	24 2	v	7										SAL
(DOMESTIC	RECREATION	6 RECREATION	RECREATION	<u>Bear</u> <u>Lake</u> County	STOCK WATERING	S RECREATION	Bingham County	IRRIGATION	IRRIGATION	Blaine County	UNUSED	BALNEOLOGICAL BATH
			YES YES	4ES	(3)	Bear		YES	Bing		YES	Ella	YES YES	YES
	DRILLER'S LOG AVAILABLE		NUMEROUS SPRING VENTS; EXTENSIVE TRAVERTINE DEPOSITION				THREE SPRING VENTS IN QUITE EXTENSIVE TRAVERTINE DEPOSITS	NUMEROUS SPRING VENTS, SLIGHT SURFUR COOR		Temperature Range 18-32 Degrees C	BANNOCK-SHOSHONE TRIBE, OMNIER		NUMEROUS SPRENG VENTS; DNCE USED FOR HEATING HIAMRTHA HOTEL AND POOL SULFUR DOOR	SULFUR COOR; NUMEROUS SPRING VENTS (CAPPED) TENPERATURE RANGE 42-52 DEGREES C
			FAULT					NORTH TRENDING FAULT						
	75 UPPER PLIQENE SEOMENTS (?)		PALESZDIC QUARTZITE AND YOUNGER TRAVERTINE	PALEOZOIC QUARTZITE	1854 JUATENNARY ALLUVIUM NEAR TEXTIARY SEDIMENTS		37 PALEOZOIC LIMESTONE	PALEDZOIC LIMESTONE		5671 PRE-TERFLARY LINESTONE	37 TUFA IN QUATERNARY ALLIVIUM		264 PALEOZOLIC LIMESTONE	378 PALEOLOIC LIMESTONE
	FLOYD PETEHSON WELL 55 34E 358AA1	DEAN MORRIS WELL 95 36E 30381	LAVA H S 95 38E 21UDA15	LAVA H 5 95 38E 2200H15	DOWNATA H 5 125 37E 12COD1S		PESCADERO W S 115 43E 3680A15	BEAR LAKE H S 155 44£ 1300A1S		YANDELL SPRINGS N S 35 37E 310881S	ALKALLI FLATS W S 45 38E 3800015	- 11 - 12	HAILEY H S ZN 18E 180881S	CLARENDON H S 5N 17E 270CB1S

29 T

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Spring/Mell Dis- Ldentification charge Number & Name ((1/min)	- Je (∩) Aquifer Age and Rock Type	Geologíc Structure	Remarks	Deposition Car- Sill- bon- cecus ates	Hell Surf, fer* Depth Temp. Temp. (m) (°C) (°C)	Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Inde Anal. Longitude Reference	euce
				<u>Blaine County</u> (cont'd.)	Ċ.				
271	5785 PALEDZOIC LIMESTONE	NORTHWEST TRENDING FAULT (?)	MUMEROUS SPRING VENTS; SULFUR DOOR, TEMERATURE RANGE 55-70 DEGREES C	YES YES YES COMMERCIAL SPACE HEATING	70 88	REFRIGERATION (LOMER TEMPERATURE LIMIT)	BARLEY MALTING PROCESS	YES 43.6836 UMPLEBY AND 114.4101 OTHERS, 1930	AND 1930
	PR <u>S-</u> TENTIARY UNDIFFERENTIATEU NOCKS		TWO SPRING VENTS	YES UNUSED	51 85	SEEDLING ONLIFERS	SPACE HEATING	YES 43.6413 ROSS, 1 114.4865	1521
m	189 CENENTCO GUATENNARY ALLIVI'IM NEGA PRE-TERTI ARY UNDIFFENENTIATEO ROCKS		SLX SPRIMG VENTS	Nool Pool	38 43	HTDROPONI CS	SOIL WARMING	YES 43.7795 ROSS, 1971	126
	5 , ULATERNARY ALI JUVI UM		seeping more than flowing	YES UNUSED	38 52	אַטאַנטירייאר	MUSHROOM GROWING	YES 43,8052 R055, 1971 114,3850	126
	56 JUATERAARY SEULMEATS (2)		FLUWING WELL; SULFUR 0008; DALLEN'S LOG MALLABLE; ONCE USED FOR SPACE HEATING AND HOT BATHS	YES UNUSED	79 71 174	REFRIGERATION (LOWER TEMPERATURE LINIT)	DRY CLEANING	YES 43.3289 SMITH, 1999	1959
2	1514 GUATERRANY ALLIVIUM (?)		PAST USE: RESORT; ALSU KNOW AS HUTS BATINGS LANUNG: X-EAY DFFHACTUN INDICATED TROMA PLUS LESSER ANDURT UF GFPSUM	YES UNUSED	57	BALNEOLOSICAL BATHS		43.5281 SMTH, 1959 114.3987	6561
CHARLES LARKIN WELL 22 15 20E 1600A1	2271 אטרצאאאי ארויטאוש		DRI:LER'S LOG AVAILABLE	IRRIGATION	30 38	HYDROPONICS		43.3320 CASTEL 114.0836 CHAPMA	CASTELIN AND OHAPMAN, 1972
2	1309 QUATE-REARY ALLIVION REAR		X-RAY DIFFRACTION ANALYSIS	YES YES IRRIGATION	51 89	GRAIN AND HAY DRYING	SN HONETR	YES 43.3270 STEANNS AND 113.9178 OTHERS, 1938	1938
NILFOHU SWEAT H S 15 22F 113An15	75 UNTERNARY ALLUVIUM NEAR HOLOCENE INSALT AND PALEDZOIC QUARTZITE		Two SPRING VENTS	YES FES FRATION	44 64	HYDROPONICS	APPLE DEHYDRATION	YES 43,5630 ROSS, 1971 113,7794	1231
	QUATERNARY ALLUVIUM			UNUSED	22	FISH FARMING		43,5669 BODNER 113,8843 1978	BOONER AND BUSH, 1978
				Ć		X			,

-264-

	YES 43,6705 R035, 1971	43.8192 JOHNSON, 1978 115.8682 (511E INSPECTION)	45.8162 A055, 1971	YES 44.0587 ROSS, 1971 115.8180	YES 44.0540 R055, 1971	44.0532 ROSS, 1971 115.9077	44.0447 R055, 1971 115.4420	YDRATION YES 44.0439 ROSS, 1971	44-0439 NOSS, 1971 115-8423	44.0507 9055, 1971 115.8286	44.0620 HOSS, 1971 115.6845	44.0610 R055, 1971
	APPLE DEHTURATION	ADUACULTURE	HEDROPONICS	STOOK WATERING	SEEDLING OONFERS	SWI MORO WORKSTAN	LAWDRY USE	SOIL WARNING ONLON DEHYDRATION	SEEDLING CONIFERS	ANI MAL HUSBANDRY	AQUACULTURE	GREENFOUSE
	66 A ⁹	40 AQ	42 HY	41 ST	45 SE	ŝ	55	55 74 8	4 0 2	15240 60 4	35	5
Boise County	YES YES RECREATION & SPACE HEATING	UNUSED	RECREATION	YES FES IRRIGATION	(?) RECREATION	YES HEAT HOUSE AND POOL	YES SHIMAING POOL AND IRRIGATION	YES DOWERCIAL GREENHOUSE	SPACE HEATING OF UREENHOUSE	HEATING OF SWIMMING POOL	YES YËS UNUSED	RECREAT I ON
	FOLR SPRING VENTS	LOGATED IN STOPE, PAST USE: MINING	TWO SPRING VENTS; SOME SULFUR COOR	K-RAY DIFFRACTION ANALYSIS INDICATE SILLIOUS SINTER NITH SONE CALCIUM CARBONATE AND RAORPHOUS MATERIAL	TMO SPRING VENTS; SEVERAL SEEPS	FIVE SPHING VENTS, SEVERAL SEEPS	MIXED MITH SPRING MATER FROM OBNOSE IDDAA	X-RAY DIFFRACTION ANALYSIS HIDICATED SILICIOUS SINTER	WATER PIPED ACROSS RIVER COMBINING WITH SPRING OBNOSELOAUU			POUR VENTS AND NUMEROUS SEEPS
	1892 DAETACEOUS URANITIC ROCK	CRETACEOUS GRANITIO ROCK	1155 OREFACEULS IRRANITIU HOCK	CREFACEDUS USANITTO ROCK	56 CRETADEOUS (RRANITIC ROCK	1892 LIXETACEDUS CRANITIC RUCK	302 CHETALEOUS GRAMITIC HOCK	737 ONETACEDUS UNANITIC ROCK	5 CHETACEOUS BRANITIC ROCK	5 LAREFACEOUS GRANITIC HOCK	56 DAELACEDUS GRANITIC HOCK	454 DRETACEOUS GRANTIC HOCK
	Twin SPRINGS an 6E 2490915	570PE W 5 6N SE 53ABC15	MARM SPRINGS RESORT UN 56 35AUCTS	DANSKIN ONLEK H S BN 5E IBCCIS	HOF SPRTNGS CAMPGROUND BN 5E 6UCH15	GULLER H 5 BN 5E 60U015	CURDER H S BM 5E TURDUTS	DONLAY RANCH H S BN 5E 1080013	GRIMES PASS H S BN 5L IDUAAIS BN 5L IDUAAIS	lan Houges H S an Se Tiabbis	PINE FLAT W S BN GE 1ADAIS	PINE FLAT H S BN 6E IAU315

4C1 H B

-265-

6......

(continued)
ín Idaho
Wells
and
Springs
Thermal
e Of
1 US
Potentia
e and
. Use
Present
ic Environment,
Geolog
Location,
Table 4.
Basic Data

Spring/Wel} Spring/Wel} Identification Number & Namé	Dis- charge (1/m.n) Aquiter Age and Rock Type	Geologíc Structure	Remarks Gas	Deposition Car- Sili- Car- Ceous ates (m)	i Surf. Aqui- i Surf. fer" th Temp. Temp. Potential Use Based on ; f ^C C) (^D C) Surface Temperature**	Potential Use Based on Best Estimate of \$** Subsurface Temperature***	Chem/Latitude Trace & Anal. Long/tude Reference
				<u>Boise County</u> (cont'd.)			
DEER H S 9N JE 299ACIS	113 GRETACEOUS GRANITIC ROCK		STRONG SULFUR DORS, K-RAY DIFFRACTION ANALYSIS INDICATED ANCREPHOUS MATERIAL AND SILICIOUS SINTER	YES BATHING	80 139 POWER GENERATION	FREEZE DRYING	YES 44.0922 RDSS, 1971 116.0516
HAVEN LODGE H S 9N BE 31AACIS	302 GRETACEOUS GRANITIC ROCK		TEMPERATURE REPORTED TO HAVE INCREASED 5,5 DEGREES C IN THE LAST EIGHT YEARS	YES SPACE HEATING	64 APPLE DEHYDRATION		144.0773 ROSS, 1971
KIRKHAM H S 9N BE 32CABIS	151 TERTIARY GRANITIC ROCK		Tho MAIN SPRING VENTS AND NUMEROUS SEEPS, TEMPERATURE RANGE GAGE DEGREES C; SULFUR DOOR	YES YES RECREATION	YAUNABZIH IMIMU 97 65	PEACH DEHYDRAYION	YES 44.0718 R055, 1971
MARM SPRINGS CRK. H S 10N 4E 33C8D1S	5677 GRETACEOUS GRANITIC ROCK		FOUR SPRING VENTS, X-RAY DIFFACTION MALVES INDICATED AMORPHOUS MATERIAL MO SILICIOUS SINTER	YES SPACE HEATING OF GREENHOUSES	75 REFRICERATION (LOWER TEMPERATURE LINIT)		44.1539 ROSS, 1971
BONNEVILLE H S ION TOE 31BCCIS	1374 CRETACEOUS GRANITIC ROCK, SILICIFIED IN PLACES		EIGHT SPRING VENTS AND NAMEROUS SEESES SLIGHT SULFIR CORS, TEMPERATUE RANGE 68-05 DEGREES C	YES YES RECREATION	85 142	BEET SUGAR PROCESSING	YES 44.1572 MARING, 1965 115.3140
SACAJANEA H S FON TIE JIAADIS	113 TERTIARY GRANITIC ROOK		TWO MAIN SPRING VENTS AND NUMEROUS SEEPS; TEMPERATURE RANGE 72-38 DEGREES C; SULFUR ODOR	UNUSED	67 GANE BIRD HATCHERY		44.1602 R055, 1971 115.1769
GRANDJEAN H S 10N 11E 32BADIS	TERTIARY GRANITIC ROCKS (2)		TEMPERATURE NOT FIELD CHECKED	RECREATION	ç		44,1598 115,1674
				Bonneville County			
FALL CREEK MINERAL SPC. IN 43E 8DCD1S	264 QUATERNARY ALLUVION WITH PALEOZOIC LINESTONE PALEOZOIC LINESTONE	NORTHMEST TRENDING FAULT	SPRING VENTS EXTEMDING ALONG DAEKK HATD SECTION B ADD 17, SULEUR COORT, 32-25 D TEMPERATURE RANGE 22-25 D EGREES C	YES YES	25 42 CATFISH FARMING	SEEDLING CONFERS	YES 43-4220 JOBIN AND 111-4140 SHPOEER, 1964
Richard Piggot Nell Zn 39e 30ADC1				DOMESTIC	20 HEATING AND COOLING WITH HEAT PUMP	¥	43.4761 111.9069
BROCKWAN CREEK N S 25 4.25 26DCD15	64				35 DE-ICING HIGHMAY		YES 43.2095 111.4945
				" vita v			<u>(</u>

N YES 43.2265 ROSS, 1971 111.1085		OMER YES 43,5001 MITCHELL AND 113,5007 YOUNG, 1975	43,6093 11,2384	* YES 43.6087 MITCHELL AND 113.2436 YOUNG, 1973	43,6086 MITCHELL AND 113,2441 YOUNG, 1973		YES 43.3832 MALTON, 1962 114.9319	YES 43.4232 MALTON, 1962 114.6265	YES 43,6025 ROSS, 1971 115,0704	YES 43.6054 GARCIA, 1978 114.9492 (SITE INSPECTION)	436023 114.9516	43.5762 ROSS, 1971 114.8299
APPLE DEHYDRATION		REFRIGERATION (LOWER TEMPERATURE LIMIT)		MUSHROOM GROWING			PASTEURI ZATI ON	SAUNA				
37 61 BIODEGRADATION		109 43 76 GREENHOUSE AND SOIL WARMING	182 40	144 35 52 BIODEGRADIATION	152 33 FERMENATION		64 91 APPLE DEMORATION	52 94 BALNEOLOGICAL BATH	44 SEEDLING CONFFERS	56 LAUNDRY USE	67 PASTEURIZING	41 STOCK MATERING
	Butte County	STOCK WATERING	STOCK WATERING	Pubury Pubury	PUBLIC SUPPLY	<u>Camas</u> <u>County</u>	YES DOMESTIC	YES UNUSED	RECREATION & SWIMMING POOL	UNUSED	UNISED	UNUSED
SPRING IS NOW UNDER PAL ISADES RESERVOIR		DRILLER'S LOS AVAILABLE	NOT FLELD OVECKED	DRILLER'S LOS AVALAGLE; ORIGINALLY DRILLED TO 259 METERS IN RESEARCH OF COOLER WATERS IN RESEARCH OF COOLER INCREASED			NORTHMEST NUMEROUS SPRING VENTS TRENDING FAULT TEMPERATURE RANGE 60-67 DEGREES C; ALSO KNOM AS HOT SPRINGS RANCH	FIVE SPRING VENTS AND MERCOUS SEEPS, TEMPERATURE RANGE 44-55 DEGREES C	SLIGHT SULFUR COOR	SEVERAL SPRING VENTS; TEMPERATHRE RANGE 49-62 DEGREES C		
94 QUATERNARY ALLUVIUM NEAR TERTIARY SILICIC VOLCANICS		PLEISTOCENE BASALT		473 PLEFSTOCENE BASALT AND SEDIMENTS	475 PLEISTOCENE BASALT AND SEDIMENTS		719 GUATERARY ALLUVIUM NEAR NORTHME: PLEISTORENE BASALT AND CRETAGEOUS GRANITIC ROOK	75 CRETACEOUS GRANTIC ROCKS NERR CONTRCT MITH OLIDOCENE SILICIC VOLCANIC ROCKS	25 CRETACEOUS GRANITIC ROOKS	189 CRETACEOUS GRANITIC ROCKS		18 TERTIARY DIKES IN GREINGEOUS GAMITTIC ROCKS
 ALFINE W S 25 46E 19CADIS		SN 25E 320001 SN 25E 320001	HARVEY MALKER WELL 3N 27E 9AABI	BUTTE CLTY WELL 3N 27E 9ABB1	BUTTE CITY MELL 3N 27E 9ABB2		MARUROP H S IN 13E 32ABB1S	ELK CREEK H S IN 15E 14ADA1S	BAUMGARTNER H S 3N 12E 700015	LIGHTFOOT -H 5 5N 13E 70CA1S	HOUSEMAN H S 3N 15E 70CC1S	PREIS H S 3N 14E 190081S

	Reference		, 1913	LL.		14	14	1962		11	1962	L, 1976	
			6 UMPLEBY, 1913 5	0 ROSS, 1971	29	8 ROSS, 1971	6 ROSS, 1971	2 WALTON, 1962	24	9 LOG, 1977 2	6 WALTON, 1962	1 MITCHELL, 1976	
	Chem/ Latitude Trace å Anal. Longitude		YES 43-5646 114-7975	43.7010 114.7380	43.6470 114.8156	YES 43.338	YES 43.3346 115.0440	YES 43.2892 115.0850	YES 45.3142 114.9084	43,3139 114,8992	YES 43.3016 114.9092	YES 43.3011 114.9084	
			7				2	F	ŗ				
	Potential Use Based on Best Estimate of Subsurface Temperature***					APPLE DEHYDRATION		SE	ទ			PASTEURIZED MILK PROCESS	
	Potentia Best Subsurfac		SAUNA			APPLE DE		GREENHOUSE	BLANCHING		ı	PASTEUR	
	e Based on perature**				RY	ВАТН	ВАТН			iays	92	TERS	
	Potential Use Based on Surface Temperature**		PASTEURIZATION		AN IMAL HUSBANDRY	BALNEOLOGI CAL. BATH	BALNEOLOGICAL BATH	FERMENTATION	FISH FARMING	DE-ICING ROADWAYS	MUSHROOM GROWING	SEEDLING CONFFERS	
	Aqui- fer* Temp. (°C)		56			73	25	51	92			67	
	Well Surf. Depth Temp. (m) (°C)		82	Ģ	Ę	44	45	121 25	8	140 25	37 35	120 45	
	Present Use	<u>Camas County</u> (cont'd.)		SED	ŝ	UNUSED	UNUSED	UNUSED	UNUSED	IRRIGATION	UNUSED	UNUSED	
	ttion Căr⊤ bon⊧ ates	s County	YES YES	UNUSED	UNUSED	nnn	nnn	UNU	nn	IRR	nnn	ENU	
	Sill- Gas ceous	Cama		۸۲					. 1			90'I	
	ú		, VENTS, SILICIFIED BLE INTER- LTS	KED SEVER REPORTED B					15Y TEMPER- DT IN USE P	AVAILABLE	AVAILABLE	NG WELL; DRIILLER'S LOG	
	Remarks		several, spring vents; grantic rock sillicified in Places; possible inter- section of faults	MT FIELD CHECKED; SEVERAL SPRING VENTS; REPORTED BY ROSS, 1971				FLOWING WELL	UMABLE TO VERIFY TEMPER- ATURE; WELL NOT IN USE AT TIME OF INSPECTION	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	MING WELL;	
			SELA SELA SELA	TOM SPR SOS				FLC		DRI	R.	FLOWI	
•	Geologic Structure												
	ock Type		C ROCK	C ROCKS		x	Σ	Σ		Σ	Σ	z	
	Aquiter Age and Rock Type		DUS GRANIT	CRETACEOUS GRANITIC ROCKS		QUATERNARY ALLUVIUM	ARY ALLUVIL	QUATERNARY ALLUVIUM		ARY ALLUVIL	QUATERNARY ALLUVIUM	אני אננטעונ	
	e Aquifer		1763 CRETACEOUS GRANITIC ROCK	37 CRETACEC	-	QUATERNI	196 QUATERNARY ALLUVIUM	QUATERN		4542 QUATERNARY ALLUVIUM	QUATERN	189 QUATERNARY ALLUVIUM	
	l Dis- on charge me (1/min) f				L61 S			۲۲	Ĩ,		5 #5		
	Spriag/Well Identification Number & Name		WORSWICK H S 3N 14E 28CAA1S	BIG SMOKEY W S AN 14E 12BAA1S	SKILLERN H S 4N 14E 290001S	SHEEP H S 13 12E 16CAB1S	WOLF H S 15 12E 16CBA1S	KEITH STROM WELL 15 12E 31CBC1	LEE BARRON MELL #1 15 13E 220001	SUN VALLEY RANCHES MELL 15 13E 22DCC1	LEE BARRON WELL #2 15 15E 2700B1	LEE BARRON WELL #3 15 156 270084-	
			MORS 5A	BIG AN	SK IL	SHEE 1S	MOLF 1S	KG11 15	LEE 1S	SUN RANC 15	LEE	LEE 1S	

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

-268-

5-

YES 43,2939 NOSS, 1971	YES 43.2021 (055, 197) 114,9099	5962.°61 5592.°61	43.2549 114.8293	YES 43,4720 SAVAGE, 1958 116,5699 SAVAGE, 1958	43,4512 SAVASE, 1958 116.9776	YES &3.4824 SAMAGE. 1958	43.4505 SAVACE, 1958 116.6009	43,4523 SWAGE, 1998	YES 43.4414 SAME, 1958 118.6011	YES 41,4379 SAFAGE, 1958 116,6018	43,4444 Surae 1958 116,5735
SULPCIAL INC.	REFRIGEATION (LONG) TEMELATINE LINIT			Hear Payer for yearing and balandlogical baths couling	HEAT PLACE AND COOLING WITH	fish fadaring and mitching stock antering	CATFISH FRAMING	FISH FARMING MD HATCHING	HEATING AND COOLING RITH	HEATING AND (COLINE HITH SEEDLINE CONFERS HEAT PLAP	FISH FACHING AND HATCHIND
75 92 DEHYDRATION	(18,)2	65 Z1	c Si	117 20 55	77. 907	219 22 40	र्थ १२)년 1일	137 ZI	182 22 45	22 513
DOMEST 10	ale References		Ported Konow Gainion <u>Country</u>	NOF LY 51 KAI	ABLE INTERVIOU	RILLER'S	ABLE issels is the second se	1881 (541 1 ON	ire tall on	HRR16AT (CH	RIS LOS COMESTIC
	PLOKING WELL PLOKING WELL	NOT FIELD OPECKED	JAMAALE TO YERLEY REPORTED MMAN: SURMERAGED IN MCHMCM RESERVOIR	13) There found found there is not available	CRILLER'S LOG AVAILABLE	100 WALLABLE OBSERVATION MELL, DRILLER'S	DRILLER'S LOC AMILABLE				געודעא מספא; באונובאייs נוס אאוונאננ
75 QUATEDBARY ALLINTIAN NEAR TRATTARY SILLEIC VOLGNUIC	37 QUATERWARY ALLIVIUM NEAR TRATINGY SILIGIC YOLGANIC ROCKS			(E) 2002204 MD PLESTOCENE MORTH 2002204 MD PLESTOCENE SECTION	4163 PLICENE MIN PLEISYOCENE	PLIOCENE AND PLEISTOCENE SEDIMENTS	3456 PLIACENE AND PLEISTOCENE SEDINENTS	PLISSENE AND PLEISTOCENE SEDINENTS	PLIDCENE AND PLEISTUGENE	3028 PLEODENE 44D PLEISTOCENE SEDIMENTS	75 PLICCENE AND PLEISTOCENE SCOMENTS
BARRON'S H S 15 13E 3460245	LEE BARRON WELL #4	FARFIELD CITY WELL 15 146 908A1	NORMON PESCENOIR W S 25 145 1788815	R. RAITO MELL IN 24 SCHOT	2240004 71605 2240004 71605 1861. 29 40641	LECHAROF TEES HELL #1 N. 24 SADD1	LEONARD T1 ECS NELL #2 IN 24 503A1	LEDNAMED TIEGS WELL #3 14 28 64001	Dow TLESS MELL #1 IN 24 84801	DON TLESS WELL #2 10 26 8ACCI	RON CASSIDY HELL IN 24 98UN

-269-

Basic Data Table 4.	Location, Geologic Environment	, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Spring/Weil Identification Number & Name	Dis- charge (1∕πín	Aquiter Age and Rock Type	Geologic Structure	Remarks	Deposi Sill- Gas ceous	tion Car- bon- ates Present Use		qui≓ fer* mp. Potentia∣Use Based on °C) Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latit Trace & Anal, Longi	
					Canyor	<u>County</u> (cont'd.	.)				
MARK HARKER WELL IN 2W 12ADD1	8706	PLIOCENE AND PLEISTOCENE SEDIMENTS				IRRIGATION	152 22	HEATING AND COOLING WITH HEAT PUMP		43_4 116,5	86 SA¥AGE, 1958 41
STEVE TIEGS WELL IN 2W 17DCC}		PLIOCENE AND PLEISTOCENE SEDIMENTS				IRRIGATION	121 20	HEATING AND COOLING WITH HEAT PUMP		43_4 116_61	73 SAVAGE, 1958 00
J. SHERAL JOHNSTON WELL IN 2W 22DAD1	1703	PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		IRLIGATION	146 21	FISH FARMING AND HATCHING		43.40 116.5	63 SAVAGE, 1958 48
MELBA CITY WELL IN 2W 36CAA1	757	PLICCENE AND PLEISTOCENE SEDIMENTS				PUBLIC SUPPLY	162 24	FISH FARMING AND HATCHING		YES 43.37 116.52	80 SAVAGE, 1958 50
M.O. CLEMENTS WELL #1 1N 3W 13DAB1	6132	PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		IRFIGATION	185 20	HEATING AND COOLING WITH HEAT PUMP		43.44 C 116.63	24 SAVAGE, 1958 59
WES SCHOBER WELL 2N 2W 4DCA1		PLIOCENE AND PLEISTOCENE SEDIMENTS				IRRIGATION	112 22	FISH FARMING AND HATCHING		43,53 116,57	45 SAVAGE, 1958 76
JOHN TUCKER WELL 2N 2W 98CA1	2649	PLICCENE AND PLEISTOCENE SEDIMENTS		ORILLER'S LOG AVAILABLE		IRRIGATION	184 27	HEATING AND COOLING WITH HEAT PUMP		43.52 116.58	31 SAVAGE, 1958 71
DALE GETTER WELL 2N 2W 280881						DOMESTIC	99 20	FERMENTATION		43.4 8 116 . 58	09 DENMAN, 1979 D8 (SITE INSPECTION
RCIL BOMMAN R WEIL 2N 2W 34BDA1	2649	PLIOCENE AND PLEISTOCENE SEDIMENTS	NORTHWEST TRENDING FAULT	SULFUR ODOR; DRILLER'S LOG AVAILABLE	i	IRRIGATION	96 49	BALNEOLOGICAL BATHS		YES 43.46 116.56	98 SAVAGE, 1958 29
AY NÉIDER ELL #1 2N 2W 34CAD1		PLIOCENE AND PLEISTOCENE SEDIMENTS	NORTHWEST TRENDING FAULT (?)	DRILLER'S LOG AVAILABLE		IRRIGATION	97 29	DE-ICING ROADWAYS		43.46 116.56	60 SAYAGE, 1958 57

-270-

2N

11 · · · · ·

11.55

JAY NEIDER WELL #2 2N 2W 34CCB1	PLIOCENE AND PLEISTOCENE SEDIMENTS	NORTHWEST TRENDING FAULT (?)	IRRIGATION	109 20	FISH FARMING AND HATCHING	43.4623 SAVAGE, 1958 116.5717
JAY NÉIDER WELL #3 2N 2W 34CDA1	PLIOCENE AND PLEISTOCENE SEDIMENTS	NORTHWEST DRILLER'S LOG AVAILABLE TRENDING FAULT (?)	DOMESTIC	91 20	HEATING AND COOLING WITH HEAT PLMP	43.4622 SAVAGE, 1958 116.5632
DALE GROSS WELL 2N 2W 34DAA1	3406 PLIDCENE AND PLEISTOCENE SEDIMENTS	NORTHNEST DRILLER'S LOG AVAILABLE TRENDING FAULT	IRRIGATION	95 29	DE-ICING ROADWAYS	43.4661 SAVAGE, 1938 116,5536
CANNON FARMS WELL ∉1 2N 3W 22A001	7570 PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRRIGATION	136 26	CATFISH FARMING	43.4956 SAVAGE, 1958 116.6782
CANNON FARMS WELL #2 2N 3W 228CD1	6813 PLICCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRRIGATION	195 31	TROPICAL FISH FARMING	43.495 5 SAVAGE, 1958 116.6872
CANNON FARMS WELL #3 2N 3W 220001	7570 PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRR IGATION	223 28	CATFISH FARMING	43.4883 SAVAGE, 1958 116.6870
CANNON FARMS WELL #4 2N 3W 22DCC1	6815 PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRRIGATION	185 30	BIQDEGRADATION	43.4887 SAYAGE, 1958 116.6808
CANNON FARMS WELL #5 2N 3W 22DDC1	PLIOCENE AND PLEISTOCENE SEDIMENTS	OBSERVATION WELL	IRR IGATION	183 30 56	5 DE-ICING HIGHWAYS SEEDLING CONTFERS	YES 43,4884 SAVAGE, 1958 116,6769
CANNON FARMS WELL #6 2N 3W 23ACD1	PLIOCENE AND PLEISTOCENE SEDIMENTS		IRR IGATION	29	TROPICAL FISH FARMING	43.4968 SAYAGE, 1958 116.6575
CANNON FARMS NELL \$7 2N 3W 23CDC1	1816 PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMEST & C	110 20	HEATING AND COOLING WITH HEAT PUMP	43,4884 SAVAGE, 1958 116,6664
CANNON FARMS WELL \$6 2N 3W 26AAC1	PLIOCENE AND PLEISTOCENE SEDIMENTS		IRR IGAT I ON	20	HEATING AND COOLING WITH HEAT PUMP	43.4856 SAVAGE, 1958 116.6573
CANNON FARMS WELL #9 2N 3W 2788A1	2952 PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRR IGATION	194 30	FLSH FARMING AND HATCHING	43,4873 SAVAGE, 1956 116,6867

Basic Data Table 4. Locat:	on, Geologic Environment.	, Present Use and Potential	Use of Thermal	Springs and Wells in Idaho (continued)
----------------------------	---------------------------	-----------------------------	----------------	------------------------------	------------

Spring/Well Identification Number & Name	Dís- charge (1/min) Aquifer Age an	od Rock Type	Geologic Structure	Remarks	5	Deposition Car- Sili- bon- ceous ates	Present Use	Weli Depti (m)	Surf Temp (°C)	Aqui~ fer* Temp (^o C)	Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Trace Anal.	Latitude & Longitude:	Refer	enca
						<u></u>	anyon Cour	nty (cont'd	.)								
DESERT SUN FARMS WELL 2N 3W 34DBA1		PLICCENE AND PI SEDIMENTS	LE I STOCENE				I	RRIGATION	15	5 29		CATFISH FARMING			43,4663 116,6784	SAV AGE,	1958
CHARLES PENTLERS WELL 2N 3W 35CBA1		PLICCENE AND P SEDIMENTS	LEISTOCENE				I	IRRIGATION	16	57 29		DE-ICING HIGHWAY			43,4657 116,6625	SAV AGE,	1958
IDAHO STATE SCHOOL+HOSP. 3N 2V 14ADA1	4088	PLICCENE AND P SEDIMENTS	LE I STOCENE		DRILLER'S LOG AVAILABLE		I	IRRIGATION	1	70 20		HEATING AND ODOLING WITH HEAT PUMP			43.6004 116.5329	SAV AGE,	1958
NAMPA CITYWELL≱1 3N 2W 176CB1		PLICCENE AND P SEDIMENTS	PLEISTOCENE				1	PUBLIC SUPPLY	1	98 25	i	FISH FARMING AND HATCHING			43.6002 116.6115	SAYAGE,	1958
NAMPA CITY WELL #2 3N 2W 23BCA1	1892	PLICCENE AND F SEDIMENTS	PLEISTOCENE					IRRIGATION	1	21 31		AQUACULTURE			43.5853 116.5487	SAV AGE,	1958
SIMPLOT FEEDLOT WELL 4N 3W 19ADC1		PLICCENE AND F SEDIMENTS	PLEISTOCENE		DRILLED FOR OIL EXPLORATI ARTESIAN FLOW	ION		WASTE WATER	9	29 40)	SEEDLING CONIFERS			43,6706 116,7360	SAVAGE,	1958
CALDWELL MUNC. PARK 4N 3W 28AAB1	567	PLICCENE AND F SEDIMENTS	PLEISTOCENE		DRILLER'S LOG AVAILABLE; ARTESIAN FLOW; BACK FILLE TO 67 METERS	ED		PUBLIC USE	1	21 25	ə 54	FISH FARMING AND HATCHING	S SWENNENG POOL	YES	43.6624 116.6963	SAVAGE,	1958
CALOWELL CITY WELL 4N 3W 35ABD1	3028	B PLIOCENE AND P SEDIMENTS	PLEISTOCENE		DRILLERIS LOG AVAILABLE; FLOWING WELL			PUBLIC USE	1	30 2	0 36	HEATING AND COOLING WITH HEAT PUMP	DE-ICING ROADWAYS	YES	43.6453)16.6589	SAVAGE,	1958
GEORGE WRIGHT WELL 4N 4W 4DCC1	64	B PLICCENE AND I SEDIMENTS	PLEISTOCENE		DRILLER'S LOG AVAILABLE; FLOWING WELL			IRRIGATION		128 2	1	FISH FARMING AND HATCHIN	G		43.7058 116.8209	SAV AGE,	1958
RUSSELL FIVECOLT WELL 4N 4W 50801		PLIOCENE AND I SEDIMENTS	PLEISTOCENE					Domestic		153 2	5	FISH FARMING AND HATCHIN	G		43.7113 116.8376	SAVAGE,	. 1958
,																	

(f)

.....

	PARMA CITY WELL #1 5N 5W 4DCD1	2271	PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE		PUBLIC USE .	126 2	7	FISH FARMING AND HATCHING		43,7927 116,9384	SAVAGE, 1958
	PARMA CITY WELL #2 5N 5W 9AD61	4542	PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE		PUBLIC SUPPLY	96 2	0	CATFISH FARMING		43,7885 116,9342	LOG, 1957
	PARMA ICE WELL SN 5W 9CAB1		PLIOCENE AND PLEISTOCENE SEDIMENTS			COMMERCIAL	2	0	FISH FARMING AND HATCHING		.43,7843 116,9455	SAVAGE, 1958
	CLEO SWAWNE WELL 15 ZW 17ACA1		PLIOCENE AND PLEISTOCENE SEDIMENTS			DOMESTIC	ź	2	FISH FARMING AND HATCHING		43.3414 116.5990	SAVAGE, 1958
					<u>Cari</u> l	bou <u>County</u>						
	BLACKFOOT RIVER W S 55 40E 14BCD1S	3	QUATERNARY BASALT			UNUSED	:	26 52	BIODEGRADATION	GRAIN-HAY DRYING	YES 42.9863 111.7434	MITCHELL, 1976
2 L	WILSON LAKE W S 55 41E 6ABBIS			NOT FIELD CHECKED; REPORTED TO HAVE SEVERAL SPRING VENTS		UNUSED	2	30			43.0103 111.6965	
5	BLACKFOOT RESERVOIR 65 41E 1ADC1S	567	7 QUATERNARY TUFA	INDIAN LAND		STOCK WATERING		22 40) HEATING AND COOLING WITH HEAT PUMP	SOIL WARMING	YES 42.9280 111.5924	MITCHELL, 1976
	CORRAL OREEK WELL # 65 41E 19BAA)	1 598	8 PERMIAN PHOSPHATIC SHALE	TRAVERTINE DEPOSITS	YES		39	42 43	5 BALNEOLOGICAL BATH	SEEDLING CONIFERS	YES 42.8692 111.6988	MITCHELL, 1976
	CORRAL CREEK WELL # 65 41E 198AB1	2 39	7 PERMIAN PHOSPHATIC SHALE	TRAVERINE DEPOSITS	YES		36	41 41	8 SEEDLING CONIFERS	GRAIN-HAY DRYING	YES 42.8891 111.7010	MITCHELL, 1976)
	CORRAL OREEK WELL & 65 41E 19BAC4	13 7	9 PERMIAN PHOSPHATIC SMALE	TRAVERTINE DEPOSITS	YES		56	41 4	8 STOCK WATERING	MUSHROOM GROWING	YES 42.888 111.700	D MITCHELL, 1975 9
	CORRAL CREEK WELL ; 65 41E 19BAD1	F 4	PERMIAN PHOSPHATIC SHALE	TRAVERTINE DEPOSITS	YES		64	36 4	8 FERMENATATION	BALNEOLOGI CAL BATHS	YES 42.888 111.698	Z MITCHELL, 1976 8
	HENRY W S 65 42E 8DBA15		QUATERNARY TUFA			UNUSED		30			42,910 111,555	6 MITCHELL, 1976 7

-273-

16 a. v.

Basic Data Table	e 4. Location, Geologic Environment,		Present Use and Potential Us	and Potential Use of Thermal Springs and Wells in Idaho (continued)	nd Wells in I	daho (continued)		
Spring/Weit Identification Number & Name	Dis- charge (1/min) Aquifer Age and Rock Type	Geologic Structure	Remerks	Deposition Deposition Sas caous ates Present Use	Well Surf. DepthTemp. (m) (^O C)	Aqui- teri Tomp. Potential Use Based on Tomp. Surface Temperaturet*	Potential Use Based on Best Estimate of Subsurface Temperature***	Chean/ Latitude Trace d Anal: Longitude Reference
				<u>Caribou</u> <u>County</u> (cont'd.)	(•p			
PORTHEUF RIVER W S 75 38E 26CBD15	QUATERNARY BASALT (2)				*	AQUACULTURE		YES 42.7809 MITCHELL, 1976 111.9827
STEAMBOAT SPRINGS 95 41E 10DAAIS			SUBMERGED IN SODA POINT RESERVOIR		ñ			42.6554 111.6435
SODA SPRINGS GEYSER 95 41E 12ADD15	3 HOLOCENE TRAVERTINE NEAR PLEISTOCENE BASALT	NORTHMEST TRENDING THRUST FAULT		YES YES <u>Cassia County</u>	8	54 FERNENTATION	GRAIN-HAY DRYING	YES 42.6570 ARMSTRONG, 1969 111.6040
J.T. ROBINSON WELL 95 28E 530AC1	4428 PRE-TERTIARY (3) LIMESTONE		DRILLER'S LOG AVAILABLE	IRRIGATION	259 25	FISH FARMING AND HATCHING		42.5961 MALKER AND 113.1788 OTHERS, 1970
RAINBOW RANCH WELL #1 105 26E 26CB1	9841 QUATERNARY BASALT AND PLIOCENE SILLICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE	IRRIGATION	249 37	HYDROPONI CS		42,5845 MALKER AND 115,5917 OTHERS, 1970
RAINBOW RANCH WELL #2 105 26E 208A1	PLIOZENE SILICIC VOLCANIC PLIOZENE SILICIC VOLCANIC		DRILLERIS LOG AVAILABLE	IRRIGATION	190 24	CATFISH FARMING		42,5815 VON LINDERN, 1978 113,3999 (SITE INSPECTION)
SIX S RANCH WELL #1 115 25E 11CCA1	4088 PRECAMBRIAN QUARTZITE	NORTH TRENDING FAULT	DRILLER'S LOG AVAILABLE; FLOWING WELL; SULFUR DOOR	YES YES IRRIGATION	136 55	89 LAUNDRY USES	SAUNA	YES 42.4768 GROSTHMAITE, 1957 113.5068
MARSH CREEK H S 115 25E 220001S	37 PLIOGENE SILICIC VOLCANIC ROCKS	FAULT		UNUSED	64	SOIL MARMING		42,4466 R0SS,1971 113,5234
MARSH GULLY H S 115 25E 220AD15	37 PLIOGENE SILICIC VOLCANIC ROCKS	FAULT		UNUSED		SOIL, MARMING		42,4490 ROSS,1971 113,5112
SIX S RANCH HELL #2 113 26E 20DD1	4220			IRRIGATION	33	49 AQUACULTURE	SEEDLING CONFERS	YES 42,4454
								Ç.

Gam	YES 42,4398 WALKER AND 113,4322 OTHERS, 1970	42.5009 WALKER AND 113.3185 OTHER, 1970	YES 42,5017 WALKER AND 113.3258 OTHERS, 1970	YES 42.2208 WALKER AND 113.2970 OTHERS, 1970	42.4255 R055, 1971	42.4155 115.2149	42.4882 WALKER AND 113.2340 OTHERS, 1970	42.3273 ROSS, 1971 114.1960	42-4101 ROSS, 1971 114-1915	42.4150 R055, 1971 114.2082	42.4106 ROSS, 1971 114.2285	42.4123 R0SS, 1971 114,2211
	MUSHROOM GROWING		ΎES	FRUIT AND VEGETABLE DEHYDRATION								
	DE-ICING MUSHROOM	BIODESRADATION	HEAT PUMP FOR HEATING AND COOLING	75 CATFISH FRANING FRUIT A	FERMENTAT I ON	FERMENTATI ON	HEAT FUMP FOR HEATING AND COOLING	κρυλους TURE	HDR0PONI CS	HEAT PLUNG FOR HEATING AND COOLING	BLODEGRADATION	FISH FARMING AND HATCHING
	176 37 51 06	100 28	348 27 H	251 23 15 (2	182 24 F	24	н 00 00	296 35 A	₩ <i>ΓΕ</i> ΓΩ	320 27 H	214 27 B	213 Z7 F
(NO LISKI (BAT I ON	IRRIGATION	IRRIGATION	IRRIGATION		I RRI GATI ON	DOWESTIC AND STOCK WATERING	IRRIGATION	IRR IGATION	IRRIGATION	IRR IGATION	IRR (GAT I ON
	PLULER'S LOG AVAILABLE;		PARTIAL DRILLER'S LOG WAILABLE				DRILLER'S LOG AVAILABLE					
	28 QUATERWAY BASALT NO ALLUVIM	22 QUATERNARY ALLUYIUM AND TERTTARY SEDIMENTARY ROCKS	5299 QUATERNARY SEDIMENTARY	12 QUATERNARY SEDIMENTARY ROCKS			22 TERTIARY SEDIMENTARY ROCKS (7)	QUATERNARY ALLIVIUM ABOVE PLIDOENE SILICIC VOLCANIC ROCKS	PLIOREN ALLUVIUM ABOVE PLIORENE SILIGIC VOLGANIC ROCKS	QUATERARY ALLUVIUN ABOVE PLIOSENE SILIGIO VOLCANIC ROCKS	ALLUVIUM ABOVE PLIOCENE SILLICIC VOLCHNIC POCKS	QUATERAMEY ALLUVIUM ABOVE PLIDGENE SILICIC VOLCANIC ROCKS
(CR11CHF1ELD LMD & CAT. 115 26E 288C81	CAY RANCH WELL #1 22 115 27E 5ABA1	CAY RANCH WELL #2 529 115 27E 58AB1	RUBY FARANS MELL 9512 115 27E 340081	STOKER WELL 11S Z7E 364DA1	11S 28E 310001	0.M. JOHNSON WELL 2 115 28E 540001	GALEN MEYERS WELL #1 12S 19E ZANDI	GALEN MEYERS WELL #2 125 19E 20001	ROBERT PETERSON WELL #1 125 19E 23BC1	ROBERT PETERSON WELL #2 125 19E 380C1	ROBERT PETERSON MELL #3 125 19E 36061

-275-

÷...

Identitication [c	Dis- harge l/min)	Aquiter Aga and Rock Type	Geologic Structure	Remarks G.	Deposition Car- Sili- bon- ceous ates Pre	Well Dept sent Use (m)	hiTemp, T	ui- er* mp, Potential Use Based on C) Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal. Longitude	Reference
					<u>Cassia</u> County	(cont'd.)					
ROBERT PETERSON WELL #4 125 19E 300B1		QUATERNARY ALLUVIUM ABOVE PLIDCENE SILICIC VOLCANIC ROCKS			। सर । G	TION ;	266 27	DE-1CING		42,4104 114,2169	R055, 1971
CREED CONCERN INC. #1 125 19E 50801	2210	QUATERNARY ALLUVIUM ABOVE PLIOCENE SILICIC VOLCANIC ROCKS			IRRIG	NTION	304 36	FERMENTATION		42.4119 114.4443	ROSS, 1971
CREED CONCERN INC. #2 125 19E 6ADD1	2555	QUATERNARY ALLUYIUM ABOVE PLIOCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE	IRR I G.	ATION :	304 37	AQUACULTURE		42,4109 114,2674	ROSS, 1971
CREED CONCERN 1NC- #3 125 19E 6CAD1	2725	QUATERNARY ALLUVIUM ABOVE PLIOCENE SILICIC VOLCANIC ROCKS			IRRIG	ATION	162 27	FISH FARMING AND HATCHI	NG	42.4070 114.2768	ROSS, 1971
CLARENCE DAGGNER WELL 125 196 6CDC1		QUATERNARY ALLUYIUM ABOVE PLIOCENE SILICIC VOLCANIC ROCKS			IRRIG	ATION .	335 34	DE-ICING ROADWAYS		42.4050 114.2789	ROSS, 1971
OREED CONCERN INC。∦4 12S 19E 600D1	27 25	PLIOCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE	IRRIC	SAT I ON	234 38	HYDROPONICS		42,4034 114,2681	VON LINDERN, 1978 (SITE INSPECTION)
THURMAN WILLIS WELL 12S 19E 7ACA1	5621	PLIOCENE SILICIC VOLCANIC ROCKS AND SEDIMENTS (7)		DRILLER'S LOG AVAILABLE	I.R.R. I.C	SATION	243 34	BIODEGRADATION		42.3989 114.2724	LOG, 1960
K.C. BARLOW WELL 125 20E 20001	4542	QUATERNARY BASALT AND PLIOCEME STLICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE	(RR) (SAT FON	272 24	CATFISH FARMING		42,4029 114,0694	LOG, 1960
MOUNTAIN VIEW RANCH INC. 125 20E 3CAC1	4542	PLIOCENE SEDIMENTARY ROCKS AND PALEOZOIC LIMESTONE		DRILLER'S LOG AVAILABLE	(RR)	GATION	204 32	grain-hay drying		42.4068 114.1008	A. PIPER, 1923
JOE SAVAGE WELL 125 20E 500B1		PALEOZOIC LIMESTONE (7)		ORILLER'S LOG AVAILABLE	(RR)	3AT I ON	274 23	FISH FARMING AND HATCHI	ING	42.4049 114.1455	LOG, 1974
					and the second sec						

-276-

كربية طولينن وأهده شميده

m

19.65

 42.4142 LOG, 1975 114.1608	42.4103 ROSS, 1971 114,1685	42,4075 ROSS, 1971 114,1549	42,3957 ROSS, 1971	42,3685 LOG, 1976 114,0977	42,4156 LOG, 1968 113,9322	42.3478 LOG, 1975 113.9894	42,3471 LOG, 1975 114,0093	42.3336 LOG, 1962 114.0290	42,2555 R055, 1971 113,9704	42,3370 LOG, 1957 113,8705	42,4009 L05, 1962 113,7051
SEEDLING ODNIFERS	BIODEGRADATION	MUSHPOOM GROWING	HEAT PUMP FOR HEATING AND COOLING	CATFISH FARMING	FISH FARMING AND HATCHING	HTDRAPONI CS	CATFISH FARMING	HEAT PUNP FOR HEATING AND COOLING	CATFISH FARMING	CATFISH FWRMING	FISH FARMING AND HATCHING
137 41	198 37	257 32	487 28	6Z 125	306 27	585 39	348 21	76 21	499 26	34.2 24	179 22
SPACE HEATING AND IRRIGATION	IRRIGATION	IRGIGATION	IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	STOCK AND FRR IGATION	IR IGATION	IRR IGAT ION	STOCK WATERING
DRILLER'S LOG AVAILABLE				DRILLER'S LOS AVAILABLE	DRILLER'S LOG AVAILABLE	DRITTER'S LOG WAILABLE	DRILLER'S LOS AVAILABLE	DRILLER'S LOS AVAILABLE	DRILLER'S LOS AVAILABLE	DRILLER'S LOG AVAILABLE	DRILLEN'S LOG AVALLABLE
QUATERNARY ALLUYIUM ABOVE PLIOCENE SILICIC VOLCANIC ROCKS	QUATERNARY ALLUFIUM ABOVE PLIOCENE SILLEIC VOLCANIC ROCKS	2206 סטאדבאאאני אונעיושא	QUATERNARY ALLUVIUM ABOVE TERTIARY SILICIC VOLCANIC ROCK	870 PLIODENE SILICIO VOLCANIC ROCKS AND PALEOZOIC SEDIMENTARY ROCKS	PLLOCENE SILICIC VOLCANIC	3633 PLIOCENE SILICIO VOLCANIC SEDIMENTARY ROOKS	QUATERNARY ALLUYINA AND PLIOCENE SILICIC VOLCANIC ROCKS	6813 PALEOZOIC SEDIMENTARY ROCKS	1135 QUATERNARY ALLUVIUM ABOVE PLIDGENE SILICIC VOLCANIC ROCKS	5677 QUATERNARY ALLUVIUM ABOVE PLIOGENE SILICIC VOLCANIC ROCKS	QUATERNARY SEDIMENTARY ROCS MOVE PLIOCENE SILICIC VOLCANIC ROCKS
 COLINER BROTHERS MELL #1 125 20E 68AC1	COINER BROTHERS HELL #2 125 20E 6BCC1	HAROLD SAVAGE WELL 22 125 20E 60AC1	125 20E 11ADC1 HELL	CLARENCE EARKES WELL B	GERALD CONARD WELL 125 21E 1AAA1	122 21E ZICOBI	STEVEN CLARK WELL 125 21E 2800B1	SIMON BAKER NELL #1 6 125 21E 320081	SUSAN BAKER WELL 125 21E 34AAD1	ANDERSON BROTHERS NE 5 125 22E 34ACCI	NILFORD MRIGLEY WELL

-277-

Raference		L06, 1955	42.3345 L06, 1961 114.0267		Ross, 1971	1761 ,220A	ROSS, 1971	8561 (901	R055, 1971	YES 42.1648 PIPER, 1925 115.9838	R05S, 1971	6
Lafitude å Congitude		42,4087 113,5406	42 . 3245 114 . 0267	42,3269 114,0291	YES 42.3209 113.5300	YES 42.2860 113.4463	42.2867 113.4448	42.3215	42,1687	YES 42,1648 113,9838	YES 42.1737 115.8609	
on Chem/ Trace re*** Anal.												
Potential Use Based on Best Estimate of Subsurface Temperature***						AQUACUL TURE				SAUNA	BLANCHING	
		ING WITH	HATCHING				EATING AND) HATCHING			â	
Potential Use Based on Surface Temperature**		HEATING AND COOLING WITH HEAT PURP	FISH FARMING AND HATCHING	CATFLSH FARMING	AQUACUL TURE	CATFISH FARMING	HEAT PUMP FOR HEATING AND COOLING	FISH FARMING AND HATCHING	STOCK WATERING	HYDROPON I CS	GRAIN-HAY DRYING	
Surf. Aqui- Fert. fer* Temp. Temp. P		21	ŝ	22	32	8	20	ж	£	40 97	48 92 (
Well Oepth (m)	(•p)	161	213	104	20			336	662			
Present Use	<u>ity</u> (cont'	IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	IRRI GATION	IRRIGATION	IRRIGATION	UNUSED	UNUSED	RECREAT I ON	
Deposition Sili- bon- ceous ates	<u>Cassia County</u> (cont'd.)								-	YES		
0 N 0 88 02	0	,ALE	BLE					318		t CDOR	(2)	
Remarks		CRILLER'S LOG AVAILABLE	ORILLER'S LOG AVAILABLE					DRILLER'S LOG AVAILABLE		FLOWING WELL, SULFUR COOR	SLIGHT SULFUR ODOR	
ŭ		CRILLER'S	DRILLER'S					DRILLER'S		FLOWING N	SLIGHT SL	
Geologic Structure					FAULT (2)	FAULT						
		ARY IE CKS	ARY				S	RY ROCKS	ck s	ILGANIC	11 11 11	
Aquifer Age and Rock Type		UNTERNARY SEDIMENTARY ROCKS ABOVE PLICOCENE SILICIC VOLCANIC ROCKS	QUATERNARY SEOIMENTARY ROCKS		QUATERNARY ALLUVIUM	PRE-TERTIARY UNDIFFERENTIATED ROCKS	PRE-TERTIARY UNDIFFERENTIATED ROCKS	PALEOZOIC SEDIMENTARY ROCKS	PRE-TERTIARY UND I FFERENTIATÉD ROCKS	PLIDDENE SILICIC VOLCANIC	PRE-TERTIARY QUARTZITE	
e Aquifer		3482 UNTERNA ROCKS AB SILICIC	.8 QUATERNA ROCKS		681 QUATERNA	18 PRE-TERT UNDIFFER	18 PRE-TERT UNDIFFER	PALEOZOI)6 PRE-TERT UNDIFFER	169 PLIOCENE ROCKS	57 PRE-TERI	
Dis- on Charge He (1/min)			.L 13.248	٦ # 2				ł WELL	3406	ä		
Spring/Well Identification Number & Name		VARD CHATBURN WELL 125 25E 49001	K.C. BARLOW WELL 135 21£ 59001	SIMON BAKER WELL #2 135 21E 6AAD1	LYLE DURFEE WELL 135 25E 228081	WARD SPRING 135 26E 1700015	RICE SPRING 135 26E 17CDB15	LESTER THOMPSON WELL 13S 27E ZADC1	NELSON NELL 145 21E 34AAC1	14S 21E 34B0C1	ОАКLEY H S 145 22E 270C01S	

-278-

-279-

ف

Spring/Well Identification Number & Name	Dis- charge (1/min) Aquifer Age and Rock Type	Geologic Structure	Remarks	Depos SIII- Gas çeous	Car- bon-	Well Sur Depth Temp (m) (^O C)	Aqui f. fer p.Temp) (°C)	Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal. Longitude	Reference
				Cassi	a <u>County</u> (cont'd.)					
DURFEE SPRING 155 24E 22DAC15	189 QUATERNARY ALLUVIUM				UNUSED	3	9	DE-ICING		42,1015 113,6319	ROSS, 1971
HAROLD WARD WELL #2 15S 24E 2200B1	378 QUATERNARY ALLUVIUM				DOMESTIC	152 3	2 47	AQUACULTURE	SEEDLING CONIFERS	YES 42.0991 113.6311	ROSS, 1971
GRAPE OREEK W S 15S 25E 29CCA15	75		MARSH AREA		STOCK WATERING	2	2	FISH FARMING AND HATCHING		42.0854 113.5639	
BLM 155 25E 29CDC1			NOT FIELD CHECKED FOR THE REPORT	S		6	60 128	POULTRY HATCHERY	EVAPORATION AND CRYSTALLIZATION OF SALT	YES 42.0828 113.5623	
BLM 155 26E 12ACC1	PLIOCENE SEDIMENTS		NOT FIELD CHECKED FOR THI REPORT; DRILLER'S LOG AVAILABLE	S	TESTING	2	26 30	CATFISH FARMING	ALFALFA DEHYDRATION	YES 42.1335 113.3620	LOG, 1974
EGAG THERMAL #5 15S 26E 22DDA1			RAFT RIVER PROJECT; *SURFACE TEMPERATURE IS 125 DEGREES C		TESTING	1476		Canning and Preserving		42.0993 113.5793	
BLM 155 26E 220001	1892		NOT FIELD CHECKED FOR THI REFORT; DRILLER'S LOG AVAILABLE	5	TESTING	442 2	28 103	FRUIT AND VEGETABLE DEHYDRATION	WASHING AND DRYING OF WOO	DL YES 42.0971 113.3939	LOG, 1974
IVAN DARRINGTON WELL ∦1 155 26E 23AAA1			SURFACE TEMPERATURE REACH 140 DEGREES C AFTER BEING PUMPED FOR A PERIOD OF TI			e	35 149	PASTEURIZATION	BEET SUGAR PROCESSING	YES 42.1104 113.3737	
IVAN DARRINGTON WELL #2 155 26E 23ABD1	208 PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE	÷	IRRIGATION	109 2	2	FISH FARMING AND HATCHING		42.1087 113.3782	NACE AND OTHERS, 1961
FRAZIER H S WELL 155 26E 230BC1	219		FLOWING WELL; SLIGHT SULF COOR; NOT FIELD CHECKED F THIS REPORT	UR (?) OR	YES	126 9	146	BLANCHING	CORN PRODUCTS (SYRUP,OIL)	YES 42.1079 113.3910	
					2004 1						

•

-280-

T

.....

Ň

EGAG MAIN THERMAL WE 195 26E ZACAAI	RAFT RIVER PROJECT: *SURFACE TEMPERATURE IS 146 DEGREES C	EXPERIMENTAL POWER GENERATOR	15.20	CORN PRODUCTS (SYRUP,OIL)		42.1030 115.5639
EGAG THERMAL MELL #4 155 26E 230DA1	RAFY RIVER PROJECT	EXPERIMENTAL MONITORING WELL	1613 B2	PASTEURI ZATION		42.1555
IVAN DARRINGTON 3406 PLEISTOCENE SEDIMENTS WELL #3 155 26E 230DB1	DRILLER'S LOS AVAILABLE	IRRIGATION	79 \$0	SOIL WARMING		42,0984 NACE AND OTHERS, 115,3775 1961
GARY GROOK WELL ZZ71 PLEISTOGENE SEDIMENTS 155 ZGE ZJUDGI	FLOWING MELL, PAST USE: (2) YES HARRI AT GRANK'IS GREENHOUSE		164 90 139	BARLEY MALTING PROCESS	POTATOE DEHYDRATION	YES 42.0970 NACE AND OTHERS, 115.3772 1961
IV NI DARRINGTON MELL #4 155 266 230DD1	DRILLER'S LOS AVAILABLE	I RRIGATION	78 33 94	FERMENTATION	PASTEURI ZATI CM	YES 42.0969 LOS, 1967 113,3735
LANCE UDY WELL 3399 155 266 248AD1		DOMESTIC	32 94	I BIODEBRADATION	FRIUT AND VEGETABLE DEHYDRATION	YES 42.1077 115.3644
REID STUART 155 26E 24BGBI		IRRIGATION	54	FERMENTATION		42.1074 115.3725
IVAN DARRINGTON NELL 155 266 240001	NOT FIELD CHECKED FOR THIS REPORT		31 96	DE-ICING ROADAYS	BARLEY MALTING PROCESS	YES 42.0968 115,3629
Bum Mell 155 266 2540a1	NOT FIELD CHECKED FOR THIS REPORT, DALLER'S LOG MAILABLE	TESTING	241 30 102	AQUACUL TURE	WASHING AND DRYING OF NOOL	YES 42.0923 LOG, 1974 113.3588 LOG, 1974
EGAG THERMAL WELL 378 155 26E 25ADAI	RAFT RIVER PROJECT ; *SURPAGE THOMERATURE IS 121 DEGREES C	TESTING	1158	BLANCHING		42.0920 115.5556
EGGG THERMAL WELL 155 266 2540AI	RAFT RIVER PROJECT; *Surfage: Theyperature is 144 Degrees C	MON I TOR FAG		CURN PRODUCTS (SYRUP, OIL)		42.0927 115.3648
THOROUGHBRED W S 165 19E 288BA1S ROCKS	NOT FIELD OHEOKED, REPORTED BY ADSS, 1971, SEVERAL SPRING VENTS,	UNUSED	21	FISH FARMING		42.0114 ROSS, 1971 113.2392

-281-

and a second second

(F
penut
contri
aho (
n Idi
Wells i
d Wel
igs and
pring
ma 1 s
Thermal
÷ of
l Use
ential Us
d Pot
an
t Use
Present
ent,
Environment
Envi
Geologic
Geol
ion,
Location.
4
Table
ata 1
ic D
Basic

5pring/welt Identification Number J.Nama	Dis- charge (l/min) Aquiter Age and Rock Type Structure	Deposi Remarks Das ceous	car- ban- Present Use	Well Surf. Aqui- DepthTemp. Fema., Potential Use Based on Con) (9C) (9C) Surface Temperature** 9	Potential Use Based on C Best Estimate of T Subsurface Temperature*** A	Chem/ Letitude Trace å Anat. Longitude Reference
		<u>Cass</u> 1	<u>Cassia County</u> (cont'd.)			
BLM WELL 165 26E 588AA1	1514	NOT FIELD CHECKED FOR THIS REPORT DRILLER'S LOG MAILABLE	TESTING	85 40 94 SOIL WARMING	el Anchi NG	YES 42.0671 LOG, 1970 113,4469
			<u>Clark</u> <u>County</u>			
L IDY H S #1 9N 33€ 288CIS	946 PRE-TERTIARY LIMESTONE	PRACESSING FERTILIZER AND DOMESTIC USE: TRAVERTINE DEPOSITION NEAR SPRING VENTS	INDUSTRY	51 66 HAY DRYING	APPLE DEHYDRATION	YES 44.1438 ROSS, 1971 112.5527
MILSON BROS. WELL 94 33E 20001	3785 PRE-TERTLARY LIMESTONE	PROPESSING FERTILIZER AND DOMESTIC USE: PAST USE: RECREATION	INDUSTRY	213 50 SPACE HEATING		44.1316 R055, 1971 112.5475
LIDY H S WELL ION 33E 35CCC1	6913 FRE-TERTIARY LINESTONE FAULT	PROCESSING FERTILIZER AND DOMESTIC USE	INDUSTRY	125 50 60 GRENHOUSE	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 44.1459 ROSS, 1971 112-5532
LIDY H S ≇2 ION 33E 35CCDIS	189 PRE-TEHTIJARY LINESTONE FAULT	PROCESSING FERTILIZER AND DOMESTIC USE	(NDUSTRY	51 LAUNDRY USES		44.1453 ROSS, 1971 112.5537
MARM SPRINGS 1111 32E Z5AAGTS	3406 PRE-TERTIARY LINESTONE	TNO SPRING VENTS; X-RAY DIFFRACTION ANALYSIS INDICATED TRAVERFINE	YES STOCK WATERING	29 57 CATETSH FARMING	GREENHOUSE SPACE HEATING	YES 44.2565 ROSS, 1971 112.6591
BIG SPRINGS 13N 32E 15BCBIS	189 PRE-TERTIARY LIMESTONE		UNUSED	23 FISH FARMING AND HATCHING		44.4538 RDSS, 1971 112.6958
			Custer County			
BOWERY M 5 7N 17E 6ABAIS	PALEDZOIC SEDIMENTARY ROOKS	NOT FIELD OFECKED	UNUSED	43 69 SEEDLING CONFERS	BL. ANCH 1365	YES 43.9707 TSI2HAIZ ND 114.4949 OTHERS, 1974
PIERSON H S BN 14E 2708015	416 QUARTZ MONZONITE	TEMPERATURE RANGE 37-43 DEGREES C, TWO SPRING VENTS	UNUSED	43 73 BALNEDLOGICAL BATH	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 43,9903 TSCHANZ AND 114,7999 OTHERS, 1974
			(

-282-

- De la companya de l

Sulfur cook UNUSED 54 GRAIN-HAY DRYING 63.0741 TSCHANZ #0	SULFUR COOR VATERING 51 64 MUSHROOM GROWING APPLE DEHYDRATION YES 43.9018 TSCHANZ AND 114.48398 OTHERS, 1974	HEATING OF POOL 37 HYDROPONICS 44.1065 DENMAN, 1973 AND HOUSE AND HOUSE 114.8654 (SITE INSPECTION)	CAPPED UNUSED 50 OREEVHOUSE 30 OREEVHOUSE 114,8620 (SITE INDECTION)	REPORTED BY ROSS; NOT FIELD YES UNUSED 41 STOCK WATERING CECKED BY ROSS; NOT FIELD YES UNUSED 41 STOCK WATERING	NORTHEAST NUMEROUS SEPS, TEMPERATURE YES YES UNUSED 41 47 SOIL WARMING GRAIN-HAY DRYING YES 44.2242 CHOATE, 1962 TRENDING FAULT PANGE 20-41 DEGREES C; SIX SPRING VENTS; SULEUR ODOR	TEMPERATURE RANCE 32-50 YES YES UNUSED 50 91 SPACE HEATING BLANCHING YES 44.1709 R0SS, 1937 VENTS: SULEUR ODD SPING VENTS: SULEUR ODD: X-RAY DIFFEACTION ANNLYSIS INDICATED SULFATE GPPSUM)	NUMEROUS SEEPS UNUSED 58 93 CREENHOUSE BARLEY MALTING PROCESS YES 44.2453 ROSS, 1971	TWO SPRING VENTS YES YES UNUSED 35 73 AQUACULTURE ONION DEMYDRATION YES 44.2637 R055, 1971	TE YES YES FOREST 56 HOTBED HEATING 14.2643 DEWMAN, 1928 CAMPGROUND 56 HOTBED HEATING 114.60104 (SITE INSFECTION)	TE TEMPERATURE NOT VARIFIED UNUSED 33 75 HODROPONICS PASTEURIZED MILK PROCESS YES 44.2600 DEWMAN, 1978	TE TEMPERATURE RANGE 61-76 YES YES YES RECREATION 15 104 REFRIGERATION (LOWER CANNING AND PRESERVING YES 44.2679 TSCHWIZ AND DEGREES C, AUMEROUS SPRING YENTS, SLIGHT SULFUR COOR, X-RAY DIFFRACTION MALYSIS AVAILABLE
SULFUR			CAPPED	REPORTED BY ROSS; NOT FIELD		TEMPERATURE RANCE 32-50 DECRESS 0, SLIEVEN SORTING VENTS, SULEVER CODA; X-RAY DIFFEACTION ANALYSIS INDICATED SULFATE (GYPSUM)	NUMEROUS SEEPS	THO SPRING VENTS		TEMPERATURE NOT VARIFIED	TEMPERATURE RANGE 61-76 DEGREES C, RUMEROUS SPRING VENTS, 5610-161 SUE PR GORS, X-RAY DIFFRACTION MALTS15 AVALLABLE
PALE0ZDIC SEDIMENTARY ROCK	PALEOZOIC SEDIMENTARY ROCK	олатерияст аллии	иптилити такинет	CRETACEOUS GRANTIC ROCK	378 QUATERNARY ALLUVIUM NEAR DRETACEOUS GRANITIC RODK	681 PALEOZOIC ANGILLITE	757 QUARTERWARY ALLIVIUM NEAR GRETACEOUS GRANITIC ROCK	227 CRETACEOUS GRAWITIC ROOK	378 GRETACEOUS QUARTZ MONZONITE	1135 GRETACEOUS QUARTZ MONZONITE	1135 CRETACEOUS QUARTZ MONZONITE
ILOMER BOWERY H S BN 17E 310CB1S	MEST PASS H 5 BN 17E 528CA15	ROZALYS SMITH WELL #1 91 14E 18CAD1	ROZALYS SWITH WELL #2 9N 14E 19AGA1	ROZALYS H S 9N 14E 19BAA1S	STANLEY H S STANLEY H S 10N 13E 30AB1S	SLATE OREEK H S 10N 16E 308AD1S	ELKHORN H S 11N 15E 56BAA1S	BASIN GREEK H S 11N 14E 210081S	CAMPGROUND H S 11N 14E 220CA1S	MORMON BEND H S 11N 14E 29AAB1S	SUNBEAN H S 11N 15E 19CABIS

-283-

i

(continued)
Wells in Idaho
s in
gs and
Sprin
Thermal
ie of
al Us
Potential
and
: Use
Present
: Environment,
Geologic
Location,
Table 4.
Basic Data

tion

Spring/Weil dentification Number & Name	Dis- charge (i//min) Aquiter Age and Rock Type	Geologic Structure	Remarks	Sas ceous ates	Present Use	Well Surf to Depth Temp. Te (m) (°C) (°	ter* Temp. Potential Use Based on (°C) Surface Temperature**		Potential Use Based on Best Estimate of Subsurtace Temperature***	Chem/ Latitude Trace & A Anal. Longitude	Reference
				Custer Co	Custer County (cont'd.)						
EAST ROBINSON BAR H S 11N 15E 26CC1S	CRETACEOUS QUARTZ MCNZONITE		FOUR SPRING VENTS; TEMPERATURE RANGE 38-42 DEGREES C			42	SEEDLING ONLIFERS	41 FERS		44.2481 114.6730 (44.2481 TSCHMZ MD 114.6730 0THERS, 1974
ROBINSON BAR H S 11N 15E 270001S	264 CRETACEOUS QUARTZ MONZONITE		SPRING PIPED TO POOL		RECREATION	55	97 GRAIN-HAY DRYING	ZY ING	NOR AND DRYING OF KOOL	YES 44_2466 114,6764	TSCHANZ AND OTHERS, 1974
WARM SPRINGS CREEK H S 11N 15E 34ADC1S	18 CRETACEOUS QUARTZ MONZONITE		SLIGHT SULFUR COOR		UNUSED	52	BALNEOLOSICAL BATHS	AL BATHS		44.2410 114.6782	JOHNSON, 1978 (SITE INSPECTION)
SULLIVAN H S SULLIVAN H S 11N 17E 278001S	757 CONTACT BETWEEN OLIGOCENE SILLICY VOLCANIC POCKS AND PALEOZOIC DOLONITE AND AGILLITE		SULFUR COOR	YES YI	YES RECREATION	14	99 SEEDLING CONFIFERS	NI FERS	PASTEURIZATION	YES 44.2541	ROSS, 1937
BARNEY W S 11N 25E 25CAB1S	643 QUATERNARY ALLUYUN NEAR TERT ARY SILLOLO VOLGANC ROCK AND PRE-TERT ARY UNDIFFERENTIATED				STOCK MATERING	8	59 AQUACULTURE		AN MAL HUSBANDRY	YES 44.2689 113.4491	ROSS, 1971
CAFE HORN N S 12N 11E 200815	37 CRETACEOUS GRAWITIC ROCK		SNAKE RIVER BOY SCOUT COUNCIL CAMP; THREE SPRING VENTS	U	RECREATION	35	FERMENTATION	z		44.5979 115,1491	ROSS, 1971
LITTLE ANTELOPE FLAT W S 12N 20E 10CBD1S	1135 PUTTERNARY ALLIVIUM NEAR		SEVERAL SPRING VENTS		UNUSED	х. 4	HYDROPONI CS			44_3817 114_0873	R055, 1971
SULPHUR CREEK H S 14N 11E 1B 1S	15 CRETACEOUS GRANITIC ROCKS		REPORTED WARM, NOT FIELD CHECKED		UNUSED	C				44,5846 115,0719	ROSS, 1971
BEARDSLEY H S 14N 19E 230201S	5677 PLICENE SILICIC VOLCANIC ROCX AND PRE-TERTIARY UNDIFFERENTIATED ROCK		several gring vents, also noon is challs hot springs	9	RECREATION	43	BALNEOLOGICAL BATH	JAL BATH		44,5250	ROSS, 1971
BILL JOHNSTON MELL 14N 19E 34DAA1	189		FLOWING MELL; ORIGINALLY DRILLED TO APPOXIMTELY 2288 METERS, CAVED BACK TO PRESENT DEPTH	g	RRIGATION	914 40	60 SOIL WARMING	ç	SAME BIRD HATCHERY	YES 44,4994 114,1944	
(Ċ						<u>í</u> Najaví

-284-

:

......

-285-

5pring/Weil 1dentification	015- charge	Geologic		Deposition Siti- Car-	We It Depth	Aqui- t Surt fer* th Tenp	Potential Use Based on	Potentia/ Use Based on Beet Ectimate of	Chem/ Latitude	
		0 TUCTUC	Nendr KS Gå		Present Use (m)	ê	Surface Temperature**		Anal. Longitude	Reference
				Elmore Coun	Elmore County (cont'd.)					
BASSET H S 4N 7E IAABIS	CRETACEDUS GRANITIC ROCKS		REPORTED BY ROSS, 1971; UNABLE TO LOCATE	-	UNUSED	o			43.7175 115.5629	, ROSS, 1971
REED H S 4 N 7E 7ADC1S	18 OFFIACEDUS SAMITIC ROCKS			2	NULSED	4	STOCK WATERING		43.6966 115.6607	ROSS, 1971
SHEEP CREEK BRUDGE H S 4N 7E BCBBIS	283 CRETAGEOUS GRANITIC ROCKS		TWO SPRING VENTS; MINHMAL DEPOSITION OF SILICIOUS SINTER	s: YES	STOCK HATERING	<u>.</u>	GANE BIRD HATCHERY		43.6962 115.6576	ROSS, 1971
WILLOW CREEK H S 4N 11E 340881S	ULATERNARY ALLUVIUM NEAR DERTACEOUS GRANTIC NOCK NITH TENTIARY JIKES		THREE SPRING VENTS AND NUMEROUS SEEPS	YES	RECREATION	ъ Т	GRENHOUSE		43.6372 (ROSS, 1971
PUOL CREEK H S 5N 7E 24AAD1S	7 ORETACEDUS GRANITIC ROCKS		SOME SEEPAGE	2	G≥SUNU	42	Soll warming		43,7595 I	ROSS, 1971
NINEMEYER H S 5N 7E 248301S	1321 CREFACEOUS GRANTTIC ADOXS		TEMPEARTURE RANGE 65-75 DEGREES C, THIRTEEN SPRING VENTS	YES YES U	UNISED	76 126	PASTEURIZED MILK PROCESS	SUGARBEET PULP DEHYDRATION YES	43,7553	HARFING, 1965
VAUGHN SPRING 5N 7E 260ABIS	378 CRETACEOUS CRANTTIC ROCKS		TEMPERATURE RANGE 58-68 DEGREES C, THREE SPRING VENTS	2	UNUSED	68	REFRIGERATION (LOWER TEMPERATURE LIMIT)		43.7243 F	R055, 1971
SMITH CABIN H 5 5N 7E 34COBIS	2649 CRETACEOUS CRANITIC RODKS		FOUR SPRING VENTS	Ċ	UNAUSED	53	ANINAL NUSBANDRY		43.7242 6 115.6040	ROSS, 1971
LOFTUS H S 5N 7E 34DBAIS	151 ORETACEOUS GRAWITIC ROCKS		TEMPERATURE RANGE 47-94 DEGREES C, TWO SPRING VENTS	YES YES BA	BATHING	54	GRAIN-HAY DRYING		43.7243 F	ROSS, 1971
BROWN CREEK H 5 5N BE TODCOTS	757 GRETAGEOUS GRANITIC HOCK		KROWN AS POOL CREEK H 5 IN ROSS REPORT, TWO SPRING VENTS AND SEVENAL SEEPS	÷	UNUSED	20	SNIMOR9 MOCHISTRY		43.7785 8 115.4860 (BEARD, 1978 (STE INSPECTION)
(Ć	7					(

(;	43.7882 115.4444	43.6033 BEARD, 1978 115.4006 (SITE INSPECTION)	YES 43.7894 WARING, 1965 115.4344	43.6170 ROSS, 1971 115.3945	43.8255 ROSS, 1971 153.3271	43.8314 115.1915	43.6116 RUSS, 1971 115.1093	45.4130 ROSS, 1971 115.1157	43-6168	43.2225 YOUNG, 1977 115.9866	45.2663 YOUNG, 1977 115.8188	43.2406 LOG, 1977 115.8376
			REFRIGERATION (LOWER YI TEMPERATURE LIMIT)									
	APPLE DEHYDRATION	CREENHOUSES	72 APPLE DEHYDRATION	FERMENTATION	GRAIN-HAY DRYING		76 REFRIGERATION (LOWER TEMPERATURE LIMIT)	LAUNDRY USES		DE (CING	FISH FARMING	HEATING AND COOLING WITH HEAT PUMP
	62	5	65	533 30	4 7	o	ç	20	Ö	365 27	182 22	132 21
(¹	res unused	YES LINUSED	YES YES UNUSED	RECREATION	LINUSED	,	YES UNUSED	UNUSED	UNUSED	I RRIGATION	IRRIGATION	DOMESTIC
	SEVERAL SPRING VENTS AND SEEPS, ACTIVE DEPOSITION FOMMING SILLOTOUS SINTER; NOT FIELD OFEXED	FOUR SPRING VENTS AND SEVERAL SEEPS	NAMERQUS SPRING VENTS; TENPERATURE SAMEE 50-65 DEGRES C, ACTIVE DEGRES C, ACTIVE SINTER	FLOWING WELL; DEPTH REPORTED BY ROSS, 1971	SEEPAGE TYPE SPRING	NOT FIELD CHECKED; REPORTED	TEMPERATURE RANGE 43-60 DEGREES C, NINE SPRING VENTS AND SEVERAL SEEPS	SEVERAL SPRING VENTS AND NUMEROUS SEEPS	THIS IS AN APPOXIMATE LOGATION: REPORTED IN THE LOGATO ENCYCLODEDIA, 1958	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	WATER TEMPERATURE MATER TEMPERATURE FLUCTUATES BETMEEN 15-21 DEGREES C, DRILLER'S LOS
		75 CRETAGEOUS GRANTTIC ROCK	1135 CRETACEOUS GRAWITIC ROCK	CRETACEOUS GRANITIC ROCK	189 CRETACEOUS GRANITIC ROCK		378 CRETACEDUS GRANIFIC ACCK	37 CRETACEOUS GRANITIC ROOK	DREFACEDUS GRANITIC ROCK	9463 PLEISTOCENE EASALTIC LAVA AND SEDIMENTS	7210 PLEISTOCENE EMSALTIC LAVA AND SEDIMENTS	567 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS
, 	STRAIGHT CREEK H S 5N 8E 12A8D1S	GRANITE CREEK H S 5N 9E 5ADAIS	DUTCH FRAWK 'S H S SN 9E 788A1S	WEATHERBY MILL WELL 6N 9E 35ACA1	MEATHERBY H S 6N 10E 30CCB1S	QUEENS RIVER H S 64 11E 3040B15	ATLANTA H S 6N 11E 350AD15	CHATTANCOGA H S 6N 11E 35DBB1S	LEGGIT CREEK H S 6N 12E 33BCB1S	BIG D RANCH WELL 25 4E 289001	Fred Hickey Well 28 Se Hickey Well	CHARLES COE WELL 25 5E 22AAD1

-287-

.

Ŀ

Spring/Wetl Identification Number & Namo	Dis- charge (1/min) Aquifer Age and Rock Type	Geologíc Structure	Remarks	Deposition Sill- Car- Sill- bon- Present Use	Well Surf. Fer* Depth Temp. Temp. (m) (°C) (°C)	Potential Use Based on Surface Temperatura**	Potential Use Based on C Bost Estimate of 1 Subsurface Temperature*** A	Chem/ Latitude Trace & Anal. Longitude	Reference
				Elmore County (cont'd.)					
JOHR MALOTA WELL 25 5E 238BC1	757 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		DRILLEN'S LOS AVAILABLE	DOMESTIC	128 21 77	FISH FARMING	CHION AND CARROT DEHYDRATION	YES 43.2403 115.8368	L06, 1977
MICHAEL JACKSON WELL 35 GE 240CB1	90 PLEISTUCENE MASALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE	DOMESTIC	48 21	HEATING AND COOLING WITH HEAT PUMP		43. 1442 115.6853	6961 '307
MOUNTAIN HOME CITY MELL 35 6E 26ADC1	6056 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS			FUBLIC SUPPLY	52 B52	BIODEGRADATION		43.1341 115.6989	YOUNG, 1977
RICHARD CHANDLER WELL 35 6E 359CC1	PLEISTOCERE BASALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	134 20	HEATING AND COOLING WITH		43.1198 115.7142	L06, 1972
ROBERT FORD WELLE #1 35 7E 2ACA1	PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		NOT PUMPING AT TIME OF CHECK, TENMERATURE REPORTED BY ROSS, 1971; DRILLER'S LOG AVAILABLE	Liftlant on	156 31	CATFISH FARMING		43.1959 115.5835	1977 YOUNG, 1977
LONG TOM RANCH WELL #1 35 7E IACAI	PLEISTOGENE BASALTIC ROCK AND SEDIMENTS			DOMESTIC	53 20 58	FISH FARMING	GREENHOUSE SPACE HEATING	YES 43-1945 115-5652	YOUNG, 1977
ROBERT FURD MELL #2 35 7E 2ACC1	37 PLEISTODENE BASALTIC LAVA AND SEDIMENTS			DOMESTIC	152 21	HEATING AND COOLING WITH HEAT PUWP		43,1926 115,5856	YOUNG, 1977
DEL FOSTER WELL 35 7E 5ADD1	158 PLEISTOCENE BASALTIC ROCK AND SEDIMENTS		TEMPERATURE RANGE 29-35 DEGREES C; FLOMING MELL: DRILLER'S LOG AVAILABLE	STOCK MATERING	176 31	DE-ICING		43.1908 115.5982	161, 1977
LONG TOM RANCH MELL #2 55 BE 6CBC1	7570 PLEISTOCENE BASALTIC ROCK AND SEDIMENTS			IRRIGATION	137 21	FISH FRAMING AND HATCHING		43, 1886 1 15, 5572	YOUNG, 1977
HOT SPRINGS 55 BE TECCCIS		FAULT	DRIELD UP WHEN WELL WAS DRIELED IN 05508E06CED	DRY	70			43.1554 115.5177	

-288-

 1967 MAD GRIFFIN,	1967 MD GRIFFIN,	JOHNSON, 1978 (SITE INSPECTION)	JOHNSON, 1978 (SITE INSPECTION)	LOG, 1976	YOUNG, 1977	LDG, 1967	YOUNG, 1977	YOUNG, 1977		L06, 19 <i>77</i>	1967
YES 43.1155 C	43,1146 E	43.1292	YES 43.1155 . 115.3054 (43,0350 1 116,0061	43,0668	YES 43,0531 1 115,8150	43.0518 1 115.8160	43,0471 115,8293	43,0305 115,8065	43,0902 115,7864	43.0500 L0G, 1967 115.6921
REFRIGERATION (LOWER TEMPERATURE LIMIT)			FREEZE DRY ING			SEEDLING CONFERS					
1 APPLE DEHYDRATION	FERMENTATION	POULTRY HATCHERY	7 AN IMAL HUSBANDRY	HEAT FURP COOLING WITH	FI SH FARMING	47 HEAT PUNP 200LING WITH HEAT PUNP	DE-ICING	HEAT PLUPP COOLING WITH	FERMENTATION	HEATING AND COOLING MITH HEAT PUMP	FISH FARMING
182 67 71	178 36	51	62 137	94 21	147 20	161 23 4	115 24	122 21	24	163 22	219 24
IRRIGATION	STOCK WATERING	UNUSED	IRRIGATION	IRRIGATION	IRRIGATION	I RRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	DOMESTIC	IRRIGATION
SLIGHT SULFUR 0008; FLOWING MELL; DRILLER'S LOG MAILABLE	SLIGHT SULFUR ODOR; FLOWING		COVERED AND FIPED TO NEARBY HOMESTERD LOCATED IN 04510E05BAC	DRILLER'S LOG WAILABLE	DRILLER'S LOG WAILABLE	OBSERVATION MELL FOR GROUND MATER LEVELS; DRILLER'S LOS MAILABLE		DRILLER'S LOG AVAILABLE		DRIILER'S LOS AVAILABLE	DRILLER'S LOG AVAILABLE
2744 PLIOCENE MD PLEISTOCENE SEDIMENTS	115 PLIOCENE AND PLEISTOCENE SEDIMENTS	ZB3 PLLIODENE SILICIC VOLCANIC	PLIDGENE SILICIC VOLONIC	7570 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS	8916 PLEISTOCENE HASALTIC LAVA AND SEDIMENTS	PLEISTOCENE BASALTIC LAVA AND SEDIMENTS	6013 PLETSTOCENE BASALTIC LAVA AND SEDIMENTS	45 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS	7570	121 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS	10182 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS
 LESLIE BEAM WELL #1 35 BE 36CAD1	LEGLIE BEAM MELL #2 35 BE 36C0A1	covote H S 55 9E ZSUDBIS	LATTY H S 35 10E 510DB15	JOHN DOBARON VELL 45 4E 32ACCI	PETE NIELSON WELL 45 5E 19ABC1	ROBERT BRUCE MELL #1 45 5E 25BBC1	ROBERT BRUCE MELL #2 45 5E 26AAD1	TERRY PETENNAN WELL 45 5E 26CAB1	TERRY PETERMAN WELL 45 55 36CAD1	HUCH HANDEN WELL 45 6E 7CAA1	DAVE SPENCER MELL 45 6E 258CA1

Basic Data Table	Basic Data Table 4. Location, Geologic Environment, Present Use	onment, Preser		and Potential Use of Thermal Springs and Wells in Idaho (continued)	d Wells in I	daho (contínued)			
Spring/Well Spring/Well Identification Number & Namo	Dis- charge (1/min) Aquiter Age and Rock Type	Geologic Structure	Remarks	Deposition Car- Car- Sill- box- Gas cecus ortes	Well Surf. Oepth Temp. (m) (^O C)	Aqui- tert Temp. Potential üse Based on Temperaturet*	Potential Use Based on Ct Bast Estimate of Tr Subsurface Tamperature*** Ar	Chem/ Latitudo Trace å Anal. Longitude	Ratαrance
				<u>Elmore</u> County (cont'd.)	á.)				
FRAMK LUTZ MELL #1 45 6£ 310001	9084 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	149 21	HEATING AND COOKING WITH HEAT PUMP		43,0268 115,7759	L0G, 1967
FRAWK LUTZ MELL #2 45 6E 320001	1022 PLEISTOCENE EMSALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE	1 RR 164T 1 ON	126 21	FISH FARMING		43 . 0268 115 . 7745	43.0268 LCG, 1969 115.7745
RALPH MOORE WELL 45 6E 358001	11280 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	198 24	CATFISH FARMING		43,0333 115,7119	L06, 1972
RALPH YRAZABAL WELL 10220 4.5 7.E 988A1	19220			IRRIGATION	173 24	CATFISH FARMING		43,0967	
BEVERLY OLSON WELL				IRRIGATION	184 23	63 HEATING AND COOLING WITH HEAT PUNP	APPLE DEHYDRATION	YES 43.0647 115.6698	

BILL DAVIS WELL 4S 9E BACAI

18926 PLICOCENE AND PLEISTOCENE SEDIMENTS

WASHING AND DRYING OF WOOL YES 43.0377 RALSTON AND 115.4576 CHAPMAN, 1968

580 43 101 SWIMMING POOLS

INDUSTRY

USED AS COOLANT FOR TURBINE DRIELER'S LOG AVAILABLE

18 PLFOCENE AND PLETSTOCENE SEDTIMENTS

PACIFIC NW PIPELINE WELL 4S 8E 3688A1

43.1029 LOG, 1961 115.4465

GAME BIRD HATCHERY

438 58

IRRIGATION

DRILLER'S LOG AVAILABLE; FLOWING WELL

189 26 PLIOCENE AND PLEISTOCENE SEDIMENTS

TOM GILL WELL 45 BE 1DBA1 YES 43.0923 RALSTON AND 115.4073 CHAPMAN, 1968

PASTEURIZATION

B2 GREENHOUSE

60

358

IRRIGATION

PRILLER'S LOG AVAILABLE; FLOWING WELL YES 42,9894 YOUNG, 1972 116,0762

BLANCHING

97 LAUNDRY USES

701 59

IRRIGATION

SULFUR COOR; FLOWING WELL

378 PLIOCENE SILICIC VOLCANIC ROCKS

> GARY LAWSON WELL 55 3E 14CBB1

MIKE WISSEL WELL #1 55 6E 24AAD1

-290-

42.9786 115.6778

HEATING AND COOLING WITH HEAT PUMP

124 20

DOMESTIC

Mike WISSEL WELL #2	PLLOGENE AND PLEISTOGENE		DOMESTIC	137 20 60	FI SH FARMING		
	FLICTORE WAT FLEISICCENE		DOMESTIC.	3	TARWING	РОИLТКҮ НАТОНЕКҮ	YES 42.9947 YOUNG, 1977
	PLIOCRE AND PLEISTUCENE SCDIMENTS	DRY; REPORTED TEMPERATURE YES		ξ.	AQUAQUL TURE		42.9465 YOUNG, 1973 115.4954
	49 PLIOCENE AND PLEISTUCENE SEDIMENTS	DR1LLER'S LOG AVAILABLE	DOMESTIC	21	HEAT PURP WOLLING WITH		42.9625 L03, 1975 115.2098
	378 PLEISTOCENE SEDIMENTS	SLIGHT SULFUR COOR, FLOWING	DOMESTIC	304 32	HYDROPONLCS		42-9617 RALSTON AND 115-2770 CHAPMM, 1968
	75 PLEISTOCENE SEDIMENTS	TEMPERATURE RANGES FROM 28-33 DECREES C, FLOMING MELLS, DRILLER'S LOG AVALABLE	DOMESTIC	05 655	CATFISH FARMING		42.9594 L05, 1969 115.2763
55 10E 528081 55 10E 528081	PLIOCENE AND PLEISTOCENE SEDIMENTS		RECREATION	284 38 68	HYDROPONICS	APPLE DEHYDRATION	YES 42.9479 RALSTON AND 115.2959 CHAPMM, 1968
			DOMESTIC	396 30 64	CATFISH FARMING	ANI MAL HUSBANDRY	YES 43.0034 115.1926
	189 PLIOCENE MD PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMESTIC	53 K2	FISH FARMING		43.0027 ROSS, 1971
55 11E 188AD1	45	FLOWING WELL	DOMESTIC	132 23	HEATING AND COLING WITH HEAT PURP		42.9954 115.1959
	18 PLEISTOCENE SEDIMENTS	DRILLER'S LOG MAILABLE	DOMESTIC	13 27	CATFISH FAMING		42,9908 L05,1969 115,2010
	71 PLE15TOCENE SEDIMENTS	GRILLER'S LOG AVAILABLE	DOMESTIC	130 24	FISH FARMING		42,8695 L06, 1974 115,2001
BLACK MESA FARM WELL 65 10E 12CAA1	75 PLIOCENE MU PLEISTOCENE SEDIMENTS	DRILLER'S LOS AVAILABLE	DOMESTIC	301 30	CATFI SH FARMING		42-9147 LOS, 1965 115-2147

-291-

Basic Data Table 4.	: 4. Location, Geologic Environment, Present Use	vironment, Presen	t Use and Potential Use of Thermal	of Thermal Springs and Wells	d Wells in Idaho (continued)			
Spring/Well Identification Number & Name	Dis- Dis- charge (1/min) Aquifer Age and Rock Type	Geologic Structure	Remarks	Daposition Sili- Car- bon- Present Use coous ates	Meli Surt from Meli Surt from DepthTomp.Tomp. Potential Use Based on DepthTomp.Tomp. Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anai. Longitude	Raference
				Franklin County				
MOUND VALLEY W S 125 40E 13DCD15	UNATERNARY ALLUVIUM WITH TRAVERTINE DEPUSITS		NOT FIELD CHECKED		÷		42,3755 111.7263	MITCHELL, 1978
TREASURETON # S 125 40E 36AC015	II QUATENARY ALLUVIUM	KORTHMEST TRENDING FAULT	NUMEROUS SPRING YENTS	MULSED	35 AQUAGUITURE	RLFRIGERATION (LOMER TEMPERATURE LIMIT)	YES 42,373	MITCHELL, 1976
CLEVELAND H S 125 41E 31CAC1S	IS QUATERNARY ALLUVIUM WITH TRAVERTINE DEPOSITS	NORTHWEST TRENDING FAULT	NUMEROUS SPRING VENTS AND SEEPS	YES UNUSED	66 BI FRUIT AND VEGETABLE DEHYDRATION	PASTEURI ZATI ON	YES 42.5329 111.7147	MitcHeLL, 1976
MEST BANKS W S 125 41E 3108015	QUARTERSARY ALLUVIUM WITH TRAVERTINE DEPOSITS	H NORTHWEST TRENDING FAULT	NUMEROUS SPRING VENTS		35 AQUACULTURE		42.3338 111.7160	MITCHELL, 1976
MPPLE GROVE H S 135 41E 7AGAIS	1324 PALEOZOIC VUARTZITE (?) MITH TRAVERTINE DEPOSITS	KORTH TRENDING	NIMEROUS VENTS AND SEEPS, TEMPERATURE RANGE 60-78 DEREESS , PATT USE PONET BENEART DA MO RECREATION, SULFUR DOOR	YES YES PELTON MAGEL	78 104 PASTEURIZED MILK PROCESS	S WASHING AND DRYING OF WOOL	0L YES 42,3085	DION, 1969
BEN MEEK WELL 145 39E 36ADA1	QUATERNARY ALLUYIUM		SLIGHT SULFUR COOR		12 44 103 SEEDLING CONFIERS	CANNING AND PRESERVING	YES 42.1646 111.8381	DION, 1969
RAY BARRINGTON WELL 145 40E 31BCB1	. 246 טַטאַדפאַיאאַר אַררטאַזטא		DRILLER'S LOG AVAILABLE	STOCK WATERING	ING 22 40 SOIL MARMING		42,1651	102, 1977
ELD IN BINGHAM MELL	37 QUATERNARY ALLUYIUM				53 88 ANIMAL HUSBANDRY	BLANCHING	YES 42_1296 111_9426	010N, 1969
BATTLE OREK H S 155 39E BEDCIS	3406 QUATERNARY ALLUVIUM WITH	H NORTHWEST TRENDING FAULT	TEMPERATURE RANGE 43-04 DECREES C, MURERUS SPRING VENTS; ALEO KNOWN AS WAYLAND H S	YES YES	84 142 BLANCHING	POTATOE DENYDRATION	YES 42,1331 111,9276	DION, 1969
SQUAM H S NELL 155 59E 17BCD1	113 QUATERNARY ALLUVIUM MITH TRAVERTINE DEPOSITS	H KORTHWEST TRENDING FAULT		YES YES	6 84 149 PASTEURIZING	CORN PRODUCTS (STARCH, 01L)	YES 42.1191 111.9299	DION, 1969
• may () •								

SQUAN H S 155 396 178001S	140 QUATERNARY ALLUVIUM	NORTHWEST TRENDING FAULT	SEVERAL SPRING VENTS; TEMPERATURE RANGE 69-73 DEGREES C; ALSO KNOWN AS VINCENT H S		73 150 APPLE DEHYDRATION		BEET SUGAR PROCESSING	YES 42.1187 YOUNG AND 111.9285 MITCHELL, 1975
MYRON FONNESBECK MELL 165 586 24.4901	4163 QUATERNARY ALLUVIUM		DRILLER'S LOG MAILABLE	IRRIGATION	156 22 84 HEATING A HEAT PUMP	HEATING AND COOLING WITH HEAT PUMP	PASTEURI ZATION	YES 42.0257 LOG, 1969 111.9621
P.L. KOLLER WELL	9465 QUATERWARY ALLUVIUM		DRILLER'S LOG AVAILABLE	IRLIGATION	172 21 BIODEGRADATION	ATION		42.0225 LOS, 1969 111.9635
KEITH JERGENSON MELL #1 7N 41E IJCAB1	PLEISTOCENE SEDIMENTS AND BASALTIC LAVA		NOT FJELD DHECKED	Fremont County	215 23 HEATING A	HEATING AND COOLING MITH		43,9326 LOG, 1970 111,5714
KEITH JERGENSON WELL #2 7N 41E 13CAD1	4239 PLE ISTOCENE SEDIMENTS AND BASALTIC LAVA		DRILLER'S LOG MAILABLE	IRRIGATION	213 23 HEATING / HEAT PUME	HEATING AND COOLING WITH HEAT PUMP		43,9326 L05, 1970 111,5715
DONALD TRUPP WELL 7N 41E 25CBD1	9706 TERTIARY SILICIC VOLCANIC 6005 (7)			IRRIGATION	91 36 94 AQUACULTURE	uRE	BARLEY MALTING PROCESS	YES 43.9013 CROSTHMAITE AND 111.5735 OTHERS, 1970
WAYNE LARSON WELL 7N 41E 26ACCI			NOT FIELD CHECKED; REPORTED TEMPERATURE		22 106 HEATING HEAT PUM	HEATING AND COOLING WITH HEAT PUMP	CANNING AND PRESERVING	YES 43.90 56 111,3866
GORDEN CLARK WELL 74 41E 330001	PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	-	DRILLER'S LOG AVAILABLE	DOMESTIC	73 ZZ FISHFAR	FISH FARMING AND HATCHING		43.8847 STEARNS, 1939 111.6180
HENRY HARRIS WELL 7N 41E 34ADD1	TERTIARY SILICIC VOLCANIC ROCK (?)	0	DRILLER'S LOG AVAILABLE	I RRI GATION	83 34 78 TROPICAL	TROPICAL FISH FARMING	APPLE DEHYDRATION	YES 43.4906 COOSTHMATE AND 11.5980 OTHERS, 1970
NEMDALE CITY WELL 7N 41E 340001	2271 TERTIARY SILICIC VOLCANIC ROCK (7)	o		IRRIGATION	91 32 81 alcoed	61 ODEGRADATI ON	REFRIGERATION (LOMER TEMPERATURE LIMIT)	YES 43,8839 CSOSTHMATE AND 111,6052 074EPS, 1970
7N 41E 350201	TERTIARY SILICIC VOLCANIC ROCKS (1)	U	REPORTED TENPERATURE; NOT FIELD CHECKED	YES	106 36 84 BLODESNUATION	ADATI ON	PASTEURIZING	YES 43.8842 YOUNG AND 111.5899 MITCHELL, 1973
STETER MD SMINDELMAN 7N 41E 55DCD1	TERTIARY SILICIC VOLCANIC ROCK (?)	υ	DRILLER'S LOG AVALLABLE		100 37 AQUACUL	ADUACULTURE OR HYDROPONICS		43.8850 COOSTHMAITE AND 111.2836 OTHERS, 1970

(united

Spring/Well identification Number & Name)]is- charge (L/min) Aquiter Age and Rock Type	Geologic Structure Remarks	Daposition Car- Gas Geous ates	n 1- Present Use	Weil Surf, Aqui Oppth,Temp, Temp, (m) (°C) (°C)	Potential Use Based cn Surface Temperature**	Potential Use Based on Bast Estimate of Subsurface Temperature***	Chem/Latitude Trace å Anal. Longitude Re	Reference
			<u>Fremont</u> <u>C</u>	Fremont County (cont'd.)	Ĵ				
CLAUDE HAWS WELL 7N 41E 360DA1	TERFIARY SILICIC VOLCANIC RODK (?)			IRRIGATION	193 34 6	63 AQUACULTURE	ANIMAL HUSBANDRY	YES 43,8852 0R0ST 111,5589 0THER	CROSTHWAITE AND OTHERS, 1970
DEAN SMINDELMAN WELL 7N 42E BCAA1	LL TERTIARY SILICIC VOLCANIC ROCK (?)			IRRIGATION	4 1	46 AQUACULTURE	GRAIN-HAY DRYING	YES 43,9481 CR051 111,5291 OTHER	CROSTHWALTE AND OTHERS, 1970
KETTH JERGENSON NELL #3 7N 42E 178AC1				IREIGATION	22	HEATING AND COOLING WITH HEAT PUMP		43.9383	
KEITH JERGENSON WELL #4 7N 42E 17BBC1				IRR1GAT10N	39	AQUAQUL TURE		43,9384	
KEITH JERGENSON MELL #5 7N 42E IBBAA1	B327 TERTIARY SILICIC VOLCANIC	DRILLER'S LOG AVALLARLE, NOT FIELD CHECKED	, I LABLE ;	IRRIGATION	246 51	GRAIN-HAY DRYING		43-9399 LOG, 1974 111.5492 LOG, 1974	1974
NAOMI JERGENSEN WELL 7N 42E 18CAA1	TERTIARY SILLICIC VOLGANIC	DRILLER'S LOG AVAILABLE; DRILLER'S LOG AVAILABLE;	, 11.ABLE ;	IRRIGATION	201 35	BIDDEGRADATION		43,9325 LOG, 1973 111,5492	1975
REWINGTON PRODUCE WELL 7K 42E 1900A1	1892 TEATLARY SILICIC VOLCANIC ROCK (3)	DRILLEP'S LOG AVAILABLE	N LABLE	IRRIGATION	193 28	CATF15H FARMING		YES 43.9144 LOG, 111.5540	LDG, 1969
ASHTON M 5 9N 4.2E Z3DAG1S	PLEISTOCENE BASALT	TWO SPRING VENTS		IRRIGATION	56 91	1 SOIL WARNING	SL ANCH I NG	YES 44.0913 STEAR 111.4579 OTHER	STEARNS A&D OTHERS, 1939
BIG SPRINGS 14N 44E 34BBCIS	348247 QUATENARRY 0551D1 AN	TEMPERATURE RANGE 10-12 DEGREES AC 10 DEGREES ABOVE MEAN ANNUAL TEMPERATURE ; POSSIBLE THERMAL ANOMALY; SEVERAL SPRING VENTS	10-12 RREES ABOVE RARTURE; ANOMALT'; ANOMALT';	DISUNU	12 66	HEAT PLONE AND COOLINS WITH HEAT PLONE	APPLE DEHTDRATION	YES 44.4995 HAMIL	HAMILTON, 1965
			5	Gem County					
SWEET W S 7N IE SCAAIS	<u>8</u>	FLOWING INTO WATER TROUGH	HEOUGH	STOCK WATERING	50	CATFISH FARMING		43.9719 116.3245	
								(, <mark></mark>

-294-

	ESSING YES 43-9539 NEMCOMB, 1970	YES 43.9229 16.1468	43.6313 R055, 1971	43.8325 SAVACE, 1973	43.8304 SAVAGE, 1973	43,8547 LOS, 1977 116,5406	43.8572 SM AGE, 1973 116.5970	43.8788 SAVAGE, 1975 116.6359	47TVMA POSS 1971	114,9879 A3 A900 CTCLEMA MM	114.9960 014ENS, 1938 114.9960 014ENS, 1938 7ES 45.0534 STEARNS AND 114.9160 014ENS, 1938	
	CAL BATH SUGAR BEET PROCESSING	NI FERS PASTEURI 2AT JON	SNIM	HEATING AND COOLING WITH HEAT PUMP	97	HEATING AND COOLING WITH HEAT PUMP	HEATING AND COOLING WITH HEAT PUMP	HEATING AND COOLING WITH HEAT PUMP			24 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -	SH
	66 150 BALNEOLOGICAL BATH	45 84 SEEDLING CONIFERS	23 CATELSH FARMING	20 HEATING AN	20 FISH FARMING	24 HEATING AN	24 HEATING AN	21	ę	5 4	42 31.000 MALERINA 53 LAUNDRY USE	27 EISH FARMING
	UNUSED	STOCK MATERING	STOCK WATERING	DOMESTIC 21	IRRIGATION 27	DOMESTIC 9	DOMESTIC 54	DOMESTIC 71	<u>Gooding</u> <u>County</u>		DOMESTIC TOS DOMESTIC NO TES DOMESTIC NO SPACE HEATTHO	vre nøreen
	SULFUR ODOR; FIVE SPRING VENTS	NOT FIELD CHECKED, REPORTED TEMPERATURE	seepage, temperature, way be less than neasured	DRILLER'S LOG AVAILABLE	MATER HAD MILKY APPEARANDE; DRILLER'S LOG AVALLABLE	VERY SHALLOW WELL; ORILLER'S LOG WAILABLE	DRITLER'S LOG AVAILABLE	SLIGHT SULFUR COOR			DRILLEN'S LOG AVAILABLE; FLOWING; AREA COVERED WITH SPRINGS	
	FAULTED BASALT											
	189 QUATERNARY ALLUVIUM NEAR MIOCENE BASALT	UNATERNAY ALLUYIUN NEAR PLIOCERE BASALT (?)	3 QUATERNARY AND TERTIARY SEDIMENTS	75 PLIODENE AND PLEISTOCENE SEDIMENTS	75 PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	757 PLEISTUCENE SEDIMENTS	189 PLEISTOCENE SEDIMENTS			140 PLIOCENE BASALT AND SEDIMENTS PLEISTOCENE BASALT	
Ţ	ROYSTONE H S 7M 1E BODA1S	EAST ROYSTOME H S 7N IE 9000C1S	HIGHLAND LAND DD. W S GN IW 25ADBIS	DONALD JENSEN WELL #1 6N 1W 26ADAI	DONALD JENSEN WELL∦2 6N 1W Z6ADC1	PAUL GRANK WELL 6N 2M 140BC1	FRED SCOTT WELL 6N 2W 170BA1	RAWLA IZATT WELL 6N 3W 12AAB1		150126 35AAA15	DAVE ARCHER WELL #1 45 12E 35CAD1 45 12E 35CAD1 45 12E 35CAD1 45 12E 25AR	

÷

Spring/weil Dis- Idantification chorge	aniitar Ance	che Geologic Structure	ु ७ २ २ २ २ २ २ २ २	Deposition Seposition Sill- Don- Presentise	Weil Surt. Aqui- Dopphing Tener Potential Use Based on Loghth Pot. Surt. Surteaction	Potential Use Based on C Bases Estimate of 1	Chem/ Latitude Trace at the provision
2 1			1	Gooding County (cont'd		-	alta a se la fano l'Étre entre
	4542 QUATERNARY ALLUVIUM		FOUR SPRING VENTS	YES YES GREENHOUSE AND FISH FARMING	63 108 APPLE DEHYDRATION	CANNING ALD PRESERVING	YES 43.0486 MALDE AND OTHERS, 114.9511 1963
	2725 PLIOCENE SEDIMENTS AND BASALT		FLOWING WELL; DRILLER'S LOG NVAILABLE	YES IRRIGATION	326 57 70 GREENHOUSE	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 43.0247 MALDE AND OTHERS, 113.0092 1965
	83 PLEI STOCENE BASALT		DRILLER'S LOG AVAILABLE	STOCK MATERING	162 28 CATFISH FARMING		42,930? STEANS MD 115,0566 OTHERS, 1938
	613 QUATERNARY ALLUVIIM KEAR CRETACEOUS SAMITTIC ROCK		TWO SPRING VENTS, SLIGHT SULEUR ODDR: X-RAY DIFFRACTION MALYSIS RVALLABLE	<u>Idatho</u> <u>County</u> YES RECHEATION	45 57 BALNEOLOGICAL BATH	LAUNDAY USES	YES 45,2768 MARING, 1965
	15 QUATERNARY ALLUVIUM OVERZYING PALEDZOIC AND MESOZOIC GNEISS	NORTH TREND ING NORMAL FAULT	FOUR SPRING VENTS AND NUMEROUS SEEPS	YES YES DOMESTIC	41 95 SEEDLING CONFERS	SN 14CMY TB	YES 45.4162 HAMILTON, 1969 116.1722
	37 CRETACEOUS GRANITIC ROCK SLIGHTLY METANORPHOSED		PAST USE : MINERS BATHING FACILITIES	LINUSED	59 GREINHOUSE		45-4316 ANDERSON, 1978 116-0148 (SITE INSPECTION)
1	757 OREFACEOUS GRANITIC ROCK		NOT FIELD OVECKED		60 B9 AQUACULTURE	BARLEY MALTINS PROCESS	YES 45.5126 ROSS, 1971
	132 DREFACEOUS GRANITIC ROCK		NINE SPRING VENTS; TEMPERATURE NANGE 37-55 DEGREES C	YES RECREATION	55 BO GRAIN-HAY DRY INC	PASTEURIZED MILK PROCESS	YES 45.7877 WARING, 1965 115.1977
*	264 QUATERNARY ALLUYIJM NEAR DREFACEOUS GRANITTIC ROCK		FIVE SPRING VENTS	UNUSED	41 BALNEDLOGICAL BATH		45.6916 ROSS, 1971
	Cretaceous Granttic Rock		NOT FLELD CHECKED	UNUSED	o		46.0055 ROSS, 1971
				(

<u>.</u>

<u>C</u>	46.1382 R055, 1971 115.0896	46.2250 ROSS, 1971 114.7075	46,2164 ROSS, 1971 115.2575	YES 46.4636 WARING, 1965 115.0350	46.4656 ROSS, 1971 114.9388	46.4656 114.8745	YES 46.46.29 WRING, 1965 114.0716	YES 43.6440 ROSS, 1971 11.6867	YES 42.6133 LOG, 1970 114.4078	44.6610 114.6521	44.6279 ROSS, 1971 114.6012
				REFRIGERATION (LOWER TEMPERATURE LINIT)			APPLE DEMYDRATION	PASTEURIZED MILK PROCESS			
	o	Ð	49 SPACE HEATING	47 70 LAUNDRY USE	41 MJSHROOM GROWING	41 BALNEOLOGICAL BATH	48 70 SEEDLING CONIFERS	49 79 GRAIN-HAV DRVING	222 45 AQUACULTURE	57 GREENHOUSE	50 AQUACULTURE
(UNUSED		NUSED	YES UMUSED			YES J <u>efferson County</u>	YES RECREATION Jerome County	UNUSED Lemhi County	INUSED	
	NOT FIELD CHECKED	NOT FIELD CHECKED	TWO SPRING VENTS	six Spring Vents; Temerature Range 44-47 Degrees C	SEVERAL SPRING VENTS	THO SPRING VENTS; TEMPERATURE RANGE 38-41 DEGREES C	TEMERATURE ANGE 41-48 DIGREES C, EIGHT SPRING VENTS	TWO SPRING VENTS, EXTENSIVE TRAVERTINE DEPOSITION	DRILLER'S LOG AVAILABLE, FLOHING MELL, PAST USE CATFISH FARMING	sulfur door, minerous Sprink vents, terefanure Range 42-57 degrees c	NUMEROUS SPRING VENTS; NOT FIELD CHECKED; TEMPERATURE NOT VARIFIED
	CRETACEOUS GRANITIC ROCK	CRETACEOUS GRANITIC ROCK	113 ORETACEOUS GRANITIC ROCK	227 CRETACEOUS GRANITIC ROOK	189 CRETACEOUS GRAVITIC RODK	CREFACEOUS GANNIFIC ROCK	11.55 CRETACEOUS GRANITIC ROCK	227 TENTIAN' SILICIC YOLCANIC	10523 PLIOCENE BASALTIC LAVA	10	757 TERTIARY SILICIC VOLONIC FAULT
	STUART H S 32N 11E 4CAA1S	PROSPECTOR H S 33N 14E 4A 15	STANLEY H S 34N 10E 6GAATS	WEIR CREEK H S 36N 11E 1380C1S	DOLGATE LICKS H S Jon 12E 15ADB15	LITTLE JERRY JOHNSON 36N 13E 18A0B1S	JERRY JOHNSON H S JEW 1JE 18ADD1S	HEISE H S 4N 40E 25UDAIS	ROYAL CATFISH INUUSTRY 95 17E 200401	FOSTER RANCH H S 15N 15E 180C1S	SHOWER BATH SPRINGS 15N 16E 15DAD1S

-297-

	1			1				
Spring/Well Identification Number & Name	Dis- charge (L/arin) Aquiter Age and Rock Type	Geologic Structure	Gas Romarks	Deposition Sili- bon- Present Use	Weil Surf. Depth Temp. (m) (90)	Aqui- fer* Temp. Potential Use Based on (°C) Surface Temperature**	Potential Use Based on Chem/ La Best Estimate of Trace Subsurface Temperature*** Anal. Lor	Lafitude 3 iongitude Reference
				Lemhi County (cont'd.)				
BIG EIGHTMILE CRK W S 15N 25E 80081S	QUATERNARY ALLUY IUM			IRRIGATION	33	Soll warming	4 1	44.6399 BUSH MC BODNER, 113.5037 1978
WHITTAKER W.S. 15N 26E 2109C15	3406 QUATERNARY ALLUVIUM NEAR PRE-TERTIARY UNDIFFERENTIATED NOCK			STOCK MATERING	24	HEATING AND COOLING MITH	4 L	44.6121 ROSS, 1971 113.3652
CRONKS CANYON H S 16M 21E 18ADC1S	TERFLARY SILICIC VOLCANIC ROCK		NOT FIELD CHECKED	YES	46	57 SPACE HEATING	GREENHOUSE HOT BED HEATING YES 44.7196	4,7196 ROSS, 1971 4.0159
FORCE OREEK H S 18N 16E 148BB1S			NOT FIELD CHECKED		Ċ		4 4 1	44-8954 114-5530
COLDBUG H S COLDBUG H S I BH ZIE 28CD1S	662 PRECAMBRIAN QUARTZITE			HECREATION	45	GRAIN-HAY DRYING	46 111	44-9055 MITCHELL, 1978 113-9287 (SITE INSPECTION)
MORWON RANCH H S 19N 14E 26030315			NOT FLELS CHECKED	UNUSED	0	GREENHOUSE	46 1] <u>1</u>	6199,9513 114,7040
SNOWSHOE JOHNSDAYS H S 20N 16E 2000C1S	56 PRECOMBRIAN ARGILLACEOUS QUARTZITE		SLIGHT SULFUR DOOR, TWO SPRING VENTS	YES UMUSED	42	HYDROPON I CS	4 1	45-0422 JOHNSON, 1978 114,6160 (SITE INSPECTION)
SALMON H S 20N 22E BACAIS	548 CONTACT BETWEEN OLIGOCENE BASALT AND OLDER TUFFACEOUS ROCK	NORTHWEST TREND ING FAULT	THREE SPRING VENTS	YES	45	52 BALNEOLOGICAL BATH	GRAIN-HAY DRYING YES 4	45.0949 FORRESTER, 1956 113.8363
SHARKEY H S 20N 24E 340001S	757 OLIGODENE SILICIC VOLGANIC	NORTHMEST TRENDING FAULT		YES UNUSED	52	104 ELECTRICAL POWER GENERATION	CANNING AND PRESERVING YES 45	45.0130 ANDERSON, 1957 113.6051
DWL OREK H S 23N 17E 1088A1S	189 PRECOMBRIAN SCHIST		SEVERAL SPRING VENTS; NMMEROUS SEEPS; SLIGHT SULFUR DODG; TEMPERATURE RANGE 45-50 DEGREES C	YES YES BATHING	50	GRAIN-HAY DRYING	5 114	45-3444 JOHNSON, 1978 114-4627 (SITE INSPECTION)
				Ć				(

-298-

2011 - 25492	0 MARING, 1965	4 ROSS, 1971		~4	5 L06, 1973	0 LOG, 1962	9 L36, 1967	22 OROSTHWAITE AND 31 OTHERS, 1970	39 MARING, 1965	36 CROSTHWALTE AND 30 OTHERS, 1970	53	82 7.2	59 20
	YES 45.3070 114,3379	45,5034 114,4627		43.6597 111.7154	YES 45,7921 111,7805	YES 43.7800 111.7835	YES 45,7719 111,7634	43.7222	YES 45,7909 111,4348	43.8786 111.5580	YES 43,8621 111.6069	YES 43-8682 111-6172	YES 43,8612 111,6069
	HEATING AND DRYING OF DIATOMACEOUS EARTH				ADUACULTURE	SEEDLING CONFERS	FERMENTATION		ONION DEHYDRAFION		PASTEURIZATION	FRUIT AND VEGETABLE DEHYDRATION	PASTEURIZED MILK PROCESS
	173 ELECTRICAL POWER GENERATION	AGRICULTURE		ON INCOMING AND INTOMING	36 HEATING NO COOLING WITH HEAT PURP	44 DE-ICING ROADWAYS	30 STOOK MATERING	CAFFISH FAMING	4 72 SEEDLING CONIFERS	BLODESRADHTION	6 81 FEMENTATION	4 78 DE-ICING SIDEWALKS	7 BU BIODEGRADATION
	16	4 2		52	108 21	56 26	135 21	405 22	4 4	201 Z9	×3	80 24	21
	YES YES YES UNUSED	RECREATION	<u>Madison</u> County	UNUSED	IRRIGATION	I PR I GAT I ON	IRRIGATION	IRRIGATION	YES RECREATION	IRRIGATION	IRRIGATION	IRRIGATION	IRR I SATION
	FIFTER SPRING VENTS, TEMPERATING MAKE 32-93 DEGRESS 5, 51,10HT SLIEN DEGRESS 5, 51,10HT SLIEN DEGRESS 1, 54,10HT SLIEN DECLOM PRESENT SPRING VENTS	NOT FIELD OHEOKED; SEVERAL SPRING VENTS			TEMPERATURE NOT COMFIRMED; DRILLER'S LOG AVAILABLE	TEMPERATURE NOT CONFIRMED, DRILLER'S LOG AVAILABLE	TEMPERATURE NOT CONFIRMED: DRILLER'S LOS AVAILABLE	DRILLER'S LOG AVAILABLE	SEVERAL SPAING VENTS; ALSO KNOM AS PINCOCK H 5; TRAVERTINE DEPOSITS	DRITLER'S LOG AVAILABLE	TEMPERATURE NOT CONFIRMED	TEM-ERATURE NOT CANFIRMED	TEMPERATURE NOT CONFIRMED
	283 CHETACEOUS BRANTTIC RODX, ALTERED, STRONG LINEATIONS (?) SOME RYPSUM	37 CHETAGEJUS BRANTIC ROCK			TERFIARY SILICIC VOLCANIC	TENTIANY SILICIC VOLCANIC ROCKS	12491 TEKTIARY SILICIC VOLCANIC ROCKS	10977 TENTIARY SILICIC VOLGANIC ROCKS	REATIARY SILICIC VOLCANIC ROCKS	TERTIARY SILICIC VOLCANIC ROCKS			
	BIG CREEK H S 23N 18E 22CAD1S	HORSE CREEK H S 25N 17E 15BBA1S		ELKHORN W 5 4N 4DE 23CADIS	LAVENE RIJXS WELL 5N 40E YCBAT	MARK RICKS WELL SN 40E 880CT	PAULINE SAITH WELL 5N 40E 90001	BILL WEUSTER WELL 5N 40E 3680B1	CREEN CANYON H 5 5N 43E GECAIS	YAL SCHWENDIMAN WELL 6N 41E 1ADOT	MALZ ENT. INC. WELL	MANDA MOOD NELL #1 64 41E 1088131	WANDA WOOD MELL # 2 6N 41E 100881

-299-

Spring/Well Dis- Identification charge Number & Name (1/min)	Aquifer Age and Rock Type	Geologic Structure	Remarks	Deposition Sill-bon- ceous ates Presentiuse	Well Surf. Depth Temp. (m) (°C)	Aqui- fer Temp. Potential Use Based on (°C) Surface Temperature** 5	Potential Use Based on Bast Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal. Longitude	Reference
			W	<u>Madison County</u> (cont'd.)					
TERTIA ROCKS	TERTIARY SILICIC VOLCANIC ROCKS		DRILLER'S LOC AVAILABLE; TETON DAM SITE	TEST WELL	200 34	HYDROPONICS		43-9027 LO	LOG, 1972
				<u>Minidoka</u> County					
7570 PLIO BASA	PLIOCENE AND PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE	PUBLIC SUPPLY	157 22	FISH FARMING		42.6078 BR	BROTT, 1976
				NezPerce County					
42 MIO	4542 MIOGENE BASALT		DRILLER'S LOS AVAILABLE; TEMPERATURE REPORTED BUT NOT FIELD CHECKED	PUBLIC SUPPLY PUBLIC SUPPLY	182 20	HEAT PUMP 200LING WITH		46.4040 117,0217	
				<u>Oneida</u> <u>County</u>					
15 PA	715 PALEOZOIC LIMESTONE		NUMEROUS SPRING VENTS	UNUSED	54	52 FISH FARMING	FERMENTATION	YES 42.3393 PIPER, 1924 112.4361	EK, 1924
QU TRU	QUATERWARY ALLUVIUM WITH TRAVERTINE DEPOSITS		ONE SPRING VENT	YES	22	29 HEATING AND COOLENG WITH HEAT PUMP	FISH FARMING	YES 42,1734 BL	BURNHAM AND OTHERS, 1969
21 01	14421 טראדפאאאני אנגעווא		NUMEROUS SPRING VENTS	YES	55	35 HYDROPONICS	Koundur Ture	YES 42,1557 9. 112,3486 0	DURNHAM AND OTHERS, 1969
PA	PALEOZOIC LINESTONE NORTH	NORTHWEST TRENDING FAULT	NINE SPRING YENTS; TEMPERATURE RANGE 27-32 DEGREES C	YES	23	45 CATFISH FARMING	SEEDLING ONLIFERS	YES 42.0562 B	BURNHAM AND OTHERS, 1969
'nò	риятелияту алглитим		IN MALAD RIVER, UNABLE TO LOCATE		R			42.0253 Rt 112.2268	R055, 1971
				Owyhee County					
OUA BAS	QUATERNARY SEDIMENTS'AND BASALT		FLOWING WELL; GAS COLLECTOR AT TOP OF WELL; GAS WAS USED FOR COOKING	HEATING AND RECREATION	41	FISH HATCHING AND GREENHOUSE		43.4427 NI 116.7340 00	NEWTON AND CORCORAN, 1963
				Č					

-300-

(anna	43.4338 66AMD, 1978 116.7238 (SITE INSPECTION)	43.4335 L06, 1970 116.720	43, 4195 ROSS, 1971 116, 7067	43.4245 ROSS, 1971	43,4053 L00, 1962 116,7157	43.4143 R055, 1971 116.7066	L YES 43.4137 ROSS, 1971	42. 3955 116. 6976	43-4410 NEWTON AND 116-7603 CRUCHAN, 1963	43-4403 NEMTON AD 116-7526 CORCORAN, 1963	YES 43-4360 NEWTON AND 116.7596 CORCORAN, 1963	43.4272 NEWTON AND 116.7632 CONCORAN, 1963
				£			MASHING AND DRYING OF MOOL					
	SPACE HEATING	GREENHOUSE	CATFISH FARMING AND AQUACULTURE	SPACE HEATING AND CATFISH FARMING	GREENHOUSE	SPACE HEATING	100 BALNEDLOGICAL BATH	SPACE HEATING	HEROROPONICS	CATFISH FARMING	6 AQUACULTURE	SOIL WARMING
	156 36	213 36	8	¥.	399 37	4	41	4	457 40	12 65	36	871 39
	DOMESTIC	IRRIGATION	UNUSED	DOMESTIC	IRRIGATION AND DOMESTIC	แหม้ระอ	RECREATION	IRRIGATION	DOMESTIC AND STOCK WATERING	DOMESTIC AND STOOK WATERLING	IRRIGATION	UNUSED
	ырания желе	FLOWING WELL; DRILLER'S LOC AVAILABLE	FLOWING WELL	FLOWING WELL	PARTIAL DRILLER'S LOG YES AVAILABLE	FLOWING WELL, CAPPED	SLIGHT SULFUR COOR		FLOWING WELL; SLIGHT SULFUR	MELL LOCATED IN SWILL GREEN HOUSE	MELL NOT PUMPING, PAST USE HEATING GREENHOUSS; DRILLER'S LOG MAILABLE	WELL PLUGGED AT 25 WETERS DWARR CLAINS THE PREPARTURE EXCEEDS 38 DEGREES G. DRILLER'S LOG MAILABLE
	1892 QUATERNARY BASALT	1135 QUATERNARY SEDIMENTS	QUATERNARY BASALT	QUATERNARY AND TERFIARY SEDIMENTS, QUATERNARY BASALT	302 PLIODENE AND PLEISTOCENE SEDIMENIS (2) AND SILLCIC VOLGANIC ROCK	QUATERNARY BASAL I	מתאדבתאמצע אורעט ועש		PLIQCENE SEDIMENTS AND BASALT	PLIOCENE SEDIMENTS AND BASALT	946 PLIOCENE SEDIMENTS AND BASALT	PLIOCENE BASALT AND SILICIC VOLCANIC ROCKS
Lenningé	M. GOFF WELL IN 3W 80DAI	NDRRIS WHITE WELL IN 3M 802081	IN 3W I6CB01	JIM AVAHAUSER MELL JN SW 17ADDI	CHARLES ELUMBAUGH MELL IN 3M 200AC1	ELDON NARSH WELL IN 5W 2198A1	GIVENS H S IN 218AB1S	11 - 3M 288CD1	MARIE BRUNELL WELL 14 12ABCI	ROBERT OFFELT WELL IN 44 12BOA1	WESLEY HIGOINS NELL IN 4N 120601	GUY FREEMAN WELL #1 IN 44 15BACI

-301-

Marcel Statist Bolt, Balter	Aquiter Age and Rock Type	Geulogic Structure Resarks G	Daposition Car- Car- Car- Gas Gill- Gas Cours Stess Present Use Ownhow Present Use	We 11 Surt. Aquir- fert. Temp. Temp. (a) (⁹ C) (⁰ C)	ur er Potential Use Based on Potential Use Based on Bast Estimate of Surface Temperature** Subsurface Temperature***	ssed on Chen/ Latitude s of Trace Last ature*** Amal. Longitude Reterence
PHALIC WITCH ZB ZB FISH FRANKE MO MICHING LICENTIAL PHALIC WITCH 15 ZB REFERENCE BIORERADIATION LICENTIAL PHALIC WITCH 15 ZB BIORERADIATION BIORERADIATION LICENTIAL PHALIC WITCH 15 ZB BIORERADIATION LICENTIAL LICENTIAL SUCCH MODERIA 13 ZB TISH FRANKE MOLINE WITH REAT LICENTIAL LICENTIAL SUCCH MODERIA 13 ZB TISH FRANKE MOLINE WITH REAT LICENTIAL LICENTIAL SUCCH MODE 20 ZB MALINE WITH REAT LICENTIAL LICENTIAL SUCCH MODE 28 ZB ZB MALINE WITH REAT LICENTIAL SUCCH MODE 28 ZB ZB MALINE WITH REAT LICENTIAL SUCCH MODE 28 ZB ZB MALINE WITH REAT LICENTIAL SUCCH MODE 28 ZB ZB MALINE WITH REAT LICENTIAL SUCCH MODE 28 ZB ZB ZB LI	PLIOGENE BASALT AND SILICIC VOLCANIC ROCKS		COMESTIC AND STOCK WATERING	335	FERMENTATION	
PHALIC US DE DECREMANTICA US US US DE DECREMANTICA US US <thus< th=""> <thus< th=""> <thus< thu=""></thus<></thus<></thus<>		SLIGHT SULFUR ODOR	FUBLIC WTER SUPPLY		FISH FARMING AND HATCHING	
Strock nowerstick Zio 2 Heat work concluse with Heat 100-300 Strock work 137 20 F13H FAMINIS MB HATCHING 10-300 Strock work 137 20 F13H FAMINIS MB HATCHING 10-300 Strock work 137 20 F13H FAMINIS MB HATCHING 10-300 Strock work 137 20 F13H FAMINIS MB HATCHING 10-300 Strock work 126 21 Heat work concluse with HEAT 10-300 Strock work 280 20 EAMH-HAT BRTING 10 10-300 MateAntion 280 20 EAMH-HAT BRTING 10 10-300 BateAntion 280 20 EAMH-HAT BRTING 10-300 10-300 <		DRILLER'S LOG AVAILABLE; SLIGHT SULFUR COOR	PUBLIC WITER SUPPLY		Broderadat I on	43.6165 NEWTON AND 116.9341 CONCIRAN, 1963
STOCK MO 131 20 FISH FRANING MD HATCHING 101,3370 DORESTIC 132 21 FERT MD COLUND WITH FEAT 101,3700 STOCK AND 136 13 20 FERT MD COLUND WITH FEAT 101,3700 STOCK AND 136 13 21 24 MD COOLUND WITH FEAT 101,3700 STOCK AND 136 13 21 21 40 101,400 SPACE FEATING 289 30 26 GRAIN-HAMY DRYING 156 161,5300 SPACE FEATING 289 30 51 68 101,400 151,5300 DORESTIC 91 29 30 FERMENTATION 161,5300 161,5300 EN DORESTIC 91 21 20 FERMENTATION 161,5300 EN DORESTIC 91 21 21 43,5300 161,5300 EN DORESTIC 91 21 21 43,5300 161,5300 EN DORESTIC 91 21			STOCK, DOMESTIC AND IRRIGATION		HEAT NUD COOLING WITH HEAT PUMP	
STOCK MD I26 21 HEAT MD DOULING WITH HEAT 43:5700 DORESTIC I2 I HEAT MD DOULING WITH HEAT 16:6700 PACE HEATING III III HEAT MD DOULING WITH HEAT 16:6700 PACE HEATING IIII IIII IIIII IIIII IIIIII PACE HEATING IIIII IIIII IIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			STOCK AND DOMESTIC		FISH FREWING MUD HATCHING	
EN SPACE HEATING 518 45 GRAIN-HAY DRYING YE3 ADD IPRIGATION 283 30 FERMENTATION DOMESTIC 21 21 21 21 DOMESTIC 91 21 21 PLAN IPRIGATION AND 280 30 FERMENTATION		DRILLER'S LOG AVAILABLE	STDCK AND DOMESTIC		HEAT WE COULING NITH HEAT	
IRRUGATION AND 289 30 FEMENTATION INC. 10.6194 DOMESTIC 21 HEAT AND COOLING MITH HEAT 10.000 DOMESTIC 91 21 HEAT AND COOLING MITH HEAT 10.0500 RELEATION AND 121 28 CATFISH FROMING 12.128 CATFISH FROMING 11.128 CATFISH FROMING 11.			SPACE HEATING AND IRRIGATION		GRAIN-HAY DRYING	YES 43.3466 ROSS, 1971 116.6279
EM DOMESTIC 91 21 HEAT AND GOOLING WITH HEAT 41.2009 PUNP 000LING WITH HEAT 116.5699 INSTRATION AND 121 28 CATFISH FARMING 12.283 CATFISH FARMING 13.283 CATFISH FARMING 12.283 CATFISH FARMING 13.283 CATFISH			IRRIGATION AND DOMESTIC		FERMENTATION	
IFRIGATION AND 121 28 CATFISH FARMING SWINNING		OWNER STATED WELL FLOWED PRIOR TO DEVELOPMENT OF NEN WELL 1 MILE S.E.			HEAT AND ODOLING WITH HEAT	
		THO MELLS AT THIS SITE, WATER MIXED AT DEPTH AND REDGES INTO SWIMMING REEA, SULFUR DOOR	IRRIGATION AND SWINKING		CATFISH FARMING	43,2871 ROSS, 1971 116,5724

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

(43.2926 R055, 1971 116.5545	43,3607 R0SS, 1971	45,3585 RDSS, 1971	43.5523 LOG, 1968 116,6975	43, 2533 LOG, 1966 116, 7005	43-23-29 LOG, 1968 116-43-23	43,2732 L06, 1953 116,5463	43-2814 ROSS, 1971 116,5624	43.2801 Rass, 1971 116.3626	43,2779 ROSS, 1971 116,5696	43.2113 EEARD, 1978 116.5384 (SITE INSPECTION)	43,2058 LOS, 1976 116,5575
	HEAT AND COOLING WITH HEAT PURP	GAEEG4OUSE	FERMENTATION	BI ODE GRADATION	SPACE HEATING	DE-ICING HIGHMAY	SPACE HEATING	SD NDCOPON LCS	SEEDLING CONFIEKS	AQUAGULTURE		SOIL WARMING AND GREENHOUSE SPACE HEATING
	396 20	365 40	274 36	182 <i>ZT</i>	167 37	221 30	260 38	274 58	274 43	274 36	335 25	361 41
(DOMESTIC	STOCK AND DOMESTIC	IRRIGATION	STOCK MATERING	STOCK	DOMESTIC		STOCK WATERING	STOCK WATERING	JRR (GAT I ON	IRRIGATION	IRRIGATION
	some surfur coord	FLUWING MELL	FLOWING WELL	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVALABLE	DRILLER'S LOG AVALABLE	DHILLER'S LOS WAILABLE; FLOWING WELL	SULFUR 0008, FLUMING WELL	SULFUR COOR; FLOWING WELL	SULFIR ODOR; FLOWING WELL	BEING DRILLED AT TIME OF INSPECTION	DRILLER'S LOG AVAILABLE
	378 OUATEBAARY BASALT AND QuarteBakary-Tektiary Sediments	19 JUATERNARY ENSAUT AUD JUATERNARY-TENTLARY SEDIMENTS SEDIMENTS	94 QUATERALARY BASALT ALD QUATERALARY-TERTIARY SENTIMENTS	2725 QUATERHARY-TERTI ARY SEDI-MENTS AND QUATERNARY BASALT	170.5 QUATERNARY - TENTIARY SEDIMENTS	113 QUATERWARY-TEATLARY SEDINEATS AND QUATERWARY BASALT	1135 PLIOGENE AND PLEISTOCENE SEDINEATT AND QUATERNARE BASALT	378 QUATERNARY-TERTLARY GUATERNARY-TERTLARY SEDIMENTS	757 QUATERWARY BASALT AND QUATERWARY-TERTIARY SECIMENTS	757 QUATERNARY BASALT AND QUATERNARY-TERTIARY SEDIMENTS	QUATERWARY-TERTIAN SEDIMENTS AND QUATERWARY BASALT	11555 QUATERNARY BASALT
(ROGER QUINNEY WELL. 15 ZW 34CAB1	CENEDA RANCHES MELL #1 15 3W 1DCB1	CEREDA RANCHES MELL #2 15 3W 1DCC1	JACOBSON'S FEED LOT \$1 15 5W 9ACC1	JACOBSON'S FEED LOT #2 15 34 980A1	PAUL WARRICK WELL. 28 IN 234BCI	LANNIS GIVENS WELL 25 ZW 20801	GUY GIVENS WELL #1 25 2W 3BDA1	GUY GIVENS WELL #2 25 2M 38001	M. OHM MELL 25 ZW 30881	SKYLES AND MEELEY MELL 1 25 2M 35ABA1	SKYLES AND NEELEY HELL 2 28 35ACD1 28 24 35ACD1

-303-

Dis- charge (1/ain) Aquifer Age and Rock Type	Gæologic Structure Remarks Sas	Deposition Car- 511- bor- ceous atas, Present Use (Cauthee Countury (contid.)	Weil Surf Aqui- Depth Temp. (m) (°C) (°C)	i- Potential Use Based on P. Potential Use Based on Best Estimate of J. Suriace Temperature** Subsurface Temperature***	Chem/Latitude Trace å tude Anal. Longitude Reference
7192 QUATERNARY BASALT	DRILLER'S LOG AVALAGLE	IRRIGATION	637 32	FERNENT AT I ON	43.2131 LCG, 1970 116.5223
QUATERNARY BASALT AND QUATERNARY-TERTLARY SEDIMENTS	TO EE DRILLED DEEPER; MATER TEMPERTURE HIGHER MHEN FLOWING	I RRIGATION	360 23	FISH FARRING AND HATCHING	43.1997 ROSS, 1971 116.5237
QUATERNARY BASALT AND QUATERNARY -TERTIARY SEDIMENTS		IRRIGATION	121 24	CATFISH FREMING	43,1945 ROSS, 1971
PLIOCENE AND PLEISTOGENE SEDIMENTS	NOT FIELD OFEXED		02 16	HEATING AND COOLING MITH HEAT PUNP	YES 43-1176 YOUNG AND 116.2970 MHITEHEAD, 1975
PLIOGENE AND PLEISTOGENE SEDIMENTS	SULFUR COOR; WELL FLOWS MEEN VOLACENT COLD WELL IS SHUT OFF	I RELIGATION	215 22	HEAT PURP COOLING MITH	43.1120 ROSS, 1971 118.3899
PLIODENE AND PLEISTOGENE SEDIMENTS	FLOWING WELL	STOCK WATERING	32	FERMENTATION	YES 43-0412 YOUNG AND 116.2890 MHITEHEAD, 1975
PLIOCENE AND PLEISTOCENE SEDIMENTS	FLOWING WELL	LINUSED	518 27	CATFISH FARMING	YES 43.0521 YOUNS AND 116.3016 MHITEHEAD, 1975
TERTIARY SILICIC VOLCANIC ROCKS AND PLICOENE SEDIMENTS	FLOWING MELL; ORILLER'S LOG AVALEMBLE; PÁST USÉ: HOG SCALDING	IRRIGATION	926 68	APPLE DEHYDRATION	YES 43.0400 LOG, 1959
TERTIARY SILICIC VOLCANIC ROOKS MID PLIOCENE BASALT	FLOWING WELL; ONILLER'S LOG AVAILABLE; SULFUR OOOR	YES IRRIGATION	908 76	PASTEURIZED MILK PROCESS	YES 43.0574 RALSON AND 16.3235 CANPNAN, 1969
PLIOGENE AND PLEISTOCENE SEDIMENTS AND PLEISTOCENE SILLICIC VOLCANIC ROCKS	AVAILARLE DRITLER'S LOG	RAKELY USED	938 42	SEEDLING CONFIERS	43.0636 LOG, 1958 116.2622
		Ć			(inter

-304-

finnin	YES 43.0450 YUNN AND 116.24.27 WHITEHEAD, 1975	YES 43.0332 RALSON MD 16.2528 CHAPMAN, 1969	YES 43.0247 YOUNS AND 116.3172 WHITEHEAD, 1975	YES 43.0052 YOUNG AND 116.3242 MHITEHEAD, 1975	42,9775 YOUNG AND 116,3484 MHITEHEAD, 1975	YES 42.9728 LOG, 1954 116.3507	YES 42.9753 YOHNG AND 116.2799 MHITEHERD, 1975	i YES 42.9787 RALSTON AND 116.2773 CHAPMAN, 1969	YES 43.0244 RALSTON AND 116.1745 CHAPAKK, 1969	YES 43.0150 YOUNG, 1973 116,1867	YES 43.0194 116.2500	YES 42.928 YOUNG AD 116.1583 MHITEHEAD, 1975
				BL ANCHING			BLANCHING	PASTEURIZED MILK PRUCESS				
	CATFISH FARMING	HEREPONICS	RONACULTURE	99 ANIMAL HUSBANDRY	STOCK WATERING	REFRIGERATION (LOWER TEMPERATURE LINIT)	96 ANIMAL HISBAD	77 SPACE HEATING	MUSHROOM GROWING	HYDROPONI CS	SWIMMING POOL	FISH FARMING AND HATCHING
	822 28	8.24 39	579 32	902 64 9	274 48	201 64	75 67 9	950 66	548 49	749 37	612 43	532 20
Ć	DOMESTIC	DOMESTIC		IHRIGATION	DOMESTIC	IFRIGATION	YES IRRIGATION	IRRIGATION	YES SPACE HEATING	IRRIGATION	LER I GAT LON	DOMESTIC
	FLOWING WELL; SLIGHT SULFUR	FLOWING WELL; SULFUR COOR YES	FLOWING WELL, REPORTED INFORMATION, NOT FIELD CHECKED	FLOWING WELL; DRILLER'S LOG	INTERMITTENT FLOW	FLOWING WELL; DRILLER'S LOG AVAILABLE	FLOWING MELL; SLIGHT SULFUR COOR; DRILLER'S LOG MAILABLE	FLOWING WELL; SLIGHT SULFUR COOR; DRILLER'S LCC AVAILABLE	FLOWING WELL; SULFUR ODOR YES	SLIGHT SULFUR 000R; NOT FIELD OFFORD FOR THIS REPORTED CAVED IN; REPORTED CAVED IN; DRFLLER'S LOG AVAILABLE	NOT FIELD ONEDRED	AVAILABLE DRILLER'S LOG
	94 PLIOGENE AND PLEISTOCENE SEDIMENTS	PLIOGENE SEDIMENTS AND BUSALT, AND TERTIARY SILICIC VOLCANIC ROCKS (2)	PLIOGENE AND PLEISTOCENE SEDIMENTS	E. LAMERENCE MELL #1 5518 TERTIARY SILICIC VOLCANIC 55 TÉ 108001	PLIOCENE BASALTS	3614 PLIOCENE BASALTS	340 TENTIARY SILICIC VOLCANIC ROCKS	4701 TEHTIARY SILICIC VOLCANIC ROLXS	PLIOCENE BASALT (?) AND SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOGENE AND PLEISTOGENE SEDIMENTS	PLIOCENE AND BASALT SEDIMENTS AND BASALT
	G, CHRISTENSEN WELL 45 ZE 29DBC1	R, KETTERLING WELL 45 ZE 32BCCI	CHARLES STEINER WELL 55 TE 3AABT	€. LAWERENCE WELL #1 55 1E 10BUD1	ELMER JOHNSTON MELL #1 55 1E 2180A1	ELMER JOHNSTON MELLL #2 55 1E 210BC1	E. LANEHENCE HELL #2 55 1E 24A001	E. LAWERENCE MELL #3 55 1E 24/051	OSCAR FIELDS MELL 55 ZE 18801	CLARENCE HOPKINS MELL 55 ZE ZODAI	COX AND LANNENCE NEEL 55 2E 58001	HENRY DRISKELL Melle #1 55 22 13ADA1

-305-

i torran

u ce		۰۵.	σι	D, 1975			0, 1975	972	579	0, 1973	U, 1975	
Reference		LOG, 1965	1959	YOUNG AND WHITEHEAD, 1975			YOUNG AND WHITEHEAD, 1975	YOUNG, 1972	YOUNG, 1973	YOUNG AND WHITEHEAD, 1973	YOUNG AND WHITEHEAD, 1975	Érini tani taji
Lafitude & Longitude		42,9646 116,1563	YES 42.9973 116.1167	42,9620 116,1358	42.9796 116.1153	42.9782 116.1144	42,9811 116,0765	42,9639 116,0756	42,9639 116,0750	42 . 9619 116.0861	YES 42.9612 116.1141	
Chem/ Trace Anal.			YES	YES			λĘS	YES	KES K	ΥËS	YES	
Potential Use Based on Bast Estimate of Subsurtace Temperature***								HIGH ENERGY PROCESSING OF KILN LUMGER			CANNING AND PRESERVING	
Potential Use Based on Surface Temperature⁴*		ANIMAL HUSBANDRY	GAME BIRD HATCHING	catfash familias	HEAT AND COOLING MITH HEAT PUNP	CATFISH FARMING	DE-1CING ROADWAYS	BAPLEY MALTING PROCESS	REFRIGERATION (LOWER TEMPERATURE LIMIT)	GREENHOUSE	HOTBED HEATING	
Surf, fer* Temp.Tamp. (°C) (°C)		21	29	22	52	51	r	85 116	67	éÖ	64 109	
Welt Depth (m)	-	45	737		609	609	396	506	905 6	ĉB3	774	
Present Use	<u>County</u> (cant'd.)	DOMESTIC	HEATING HOME & OUTBUILDENGE	STOCK WATERING	DOMESTIC	DOMESTIC		GREENHOUSE	IRRIGATION	ALR CONDITIONING	I RELIGATION	<i>(</i>
Sas ceous ates	Owyhee Cou							YES (?) YES GREENHOUSE	YES			
Remarks		WELL CVYED, ORIBINAL DEPTH MAS 922 WETERS WITH A RECORDID TEMPERATURE OF 60 DEGREES C; DRILLER'S LOB AN'ILABLE	FLOWING WELL; ORILLER'S	FLOWING MELL	FLOWING MELL	FLOWINS WELL	FLOWING HELL	FLOWING WELL	FLOWING WELL	FLOWING WELL	FLOWING WELL; DRILLER'S LOG AVAILABLE	
Geologic Structore												
Dis- Dis- charya (L/min) Aqui+er Åge and Rock Type		PLLOCENE AND PLEISTOCENE SEUTHENTS AND BANALT (7)	1957 PLIOCENE AND PLEISTOCENE SEDINEN'S AND BASALT (?)	7 PLIDCENÉ AND PLEISTOCENE SEDIMENTS	37 TERTIARY SILICIC VOLCANIC ROCKS (?)	TERTLARY SILICIC VOLCANIC ROCS (3)	PLIOCENE AND PLEISTOCENE SEDIMENTS	1059 PLIOCENE SILICIC VOLCANIC	1741 PLIODENE SILICIC VOLCANIC ROCS AND PLIODENE WSALTS (?)	PLIDERIE SILICIC VOLCANIC ROCKS AND PLIDERE BASALT	TERTLARY SILLCIC VOLCANIC ROCKS AND PLIOCENE BASALT	
Spring/Well 5 identification cr Number & Namo (1		HENRY DRI SKELL WELL #2 \$\$ ZE Z5ADAI	NUPRIS MOKETH MELL 55 3E 20AUAI	BURGHARDT CO. WELL 55 3£ 2088B1	HARALU SIMPER MELL #1 55 SE 2188C1	HARALD SIMPER WELL #2 55 3E 218081	LEROY BEAMAN WELL 55 3E 22AMD1	COOKE'S GREENHOUSE #1 55 3E 26BCB1	COME'S GREENHOUSE #2 55 3E 263CB2	D. BYBEE MELL #1 55 5E 275001	A, WHITTED WELL 55 3£ 28bCC1	

(interest	42.9468 E06, 1968 116.0774	YES 42.9400 YOUNG, 1975 116.0742	YES 42.9425 115.9752	YES 42.9507 YOUNG MD 115.6706 MHITEHEAD, 1975	YES 42.9598 CQUNG AND 115.8371 WHITEREAD, 1975	42-9399 LOG, 1967 115,7820	YES 42.0648 YOUNG AND 116.3679 MAITEHEAD, 1975	YES 42-9313 YOUNG AND 116.0747 MHITEHEAD, 1975	YES 42.929 RALSTON AND 116.0754 CHAPANN, 1969	YES 42.9311 YOUNG AND 116.1153 MAITEHEAD, 1975	YES 42.9297 YOUNS AND 116.1301 MHITEHEAD, 1975	YES 42-9168 YOUNG AD 116-1042 MHITEHEAD, 1975
	AQUACUL TURE	FRUIT AND VEGETABLE DEHYDRATION		HEAT PURP COOLINS WITH	CATFISH FARMING	HEATING AND COOLING WITH HEAT PUMP	HEAT PUMP DOOLING WITH	GAME BIRD MATCHERY	SNI DEV ING	GREENFDUSE	HOT WATER HEATING	SOIL WARMING
	454 32	783 72	108 27	25 25	52 692	149 21	\$2	9.35 59	591 54	512 48	1097 60	434 41
	DOMESTIC	IRRIGATION	DOMESTIC	IRRIGATION	IRRIGATION	IRRIGATION	UNUSED	IRRIGATION	YES YES IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION
	FLOWING WELL, DRILLERIS LOG AVAILABLE	FLOWING WELL	NOY FIELD CHECKED	MATER GDES THROUGH A HOLDING TANK FIRST SO TEMPERATURE MAY NOT BE ACOURATE	DRILLER'S LOG AVAILABLE	NO ACCESS TO MELLS REPORTED TEMPERATURE, DRILLER'S LOG AVAILABLE	NOT FIELD CHECKED	FLOWING WELL; DRILLER'S LOG MAILABLE	FLOWING WELL; SULFUR COOR; DRILLER'S LOG WAILABLE	FLOWING WELL	FLOWING WELLE DRILLER'S	DRILLER'S LOG AVAILABLE
	1703 PLIOGENE AND PLE1STOCENE SEDIMENTS	ZZ71 SILICIC VOLGNIJC ROOKS AND PLIOCENE BASALT	PLLIOCENE AND PLETSTOCENE SED INERVIS	PLIJOGNE BASALT AND SEDIMENTS	PLIOGENE AND PLEISTOCENE SEDIMENTS AND BASALT	9084 PLIOCENE BASALT AD SEDINERITS	PLIOCENE SEDIMENTS	1022 PLIOCENE BASALT AND SEDIMENTS	27.25 PLIOCENE BASALT AND SEDIMENTS	PLIOCENE BASALT (?) AND SEDIMENTS	7570 PLIOCENE SILICIC VOLCANIC ROCKS	86576 PLIOCERE BASALT AND SEDIMENTS
	D. LAYTDN WELL 55 3E 34DAAI	D. BYREE WELL #2 55 35 35CCC1	ILDAHD POWER DD. WELL 55 4E 34COBI	CHESTER TINDALL WELL 55 5E 358B01	CLAY ATKINS WELL 55 5E 34ADD1	STRETER-BRADBERRY Well 55 Ge 310001	LOWER BIRCH SPRING 65 IE 3288A1S	LESLIE POST WELL #1 65 3E 20981	LESLIE POST WELL #2 65 JE 20001	W. BUNT WELL 65 3E 4BCC1	J, AGENBRDAD WELL 65 3E 5CACI	MIELSON AND CAROTHERS 65 3E 9ACCI

-307-

DASIC DELA LANIA "				1				
Suring/Well Dis- ldenrification Charge Number & Nome (1//min)	Aquiter Age and Rock Type	Geologic Structure	Remarks Cas Case and	Well Depth Present Use (m)	Aqui- l Surt. fer* oth Temp. Temp.	Potential Use Based on Best Surface Temperature** Subsurfa	Portantial Use Based on Chem/ Latitude Best Estimate of Trace Lagitude Subsurface Temperature*** Anal. Longitude	Reference
			<u>Owyhee</u> <u>coun</u>	<u>Owyhee Courty</u> (cont'd.)				
HOB DIRKS NELL 7570 65 3E IOCAAI	D PLIOCENE AND PLEISTOCENE SEDIMENTS		PARTY CAVED IN; DRILLER'S	IRRIGATION	350 30	BLODEGRADATION	42,9156 116,0881	1969, 1969
TKINNGLE DAIRY WELL #1 65 3E 110AD1	<pre>PLIOCENE AND PLIESTOCENE SELINENTS AND PLIOCENE BASALT (?)</pre>		DRILLER'S LOS AVALABLE; NO ACCESS TO WELL BEFORE HOLDING TAW	STOCK WATERING	435 34	AQUACULTURE	YES 42.9136 116.0561	YOUNG AND MHITEHEAD, 1975
TKI ANGLE DAIRY MELL #2 65 36 1400B1	I PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG WAILABLE	DOMESTIC	408 29	FEMENTATION	42,0063 116,0758	1923
ROBERT DAVIS WELL #1 757 65 5E 2500AL	ROBERT JAVIS WELL #1 7510 PLIOCENE AND PLEISTOCENE 65 JE 2502A1 (?)		DRILLER'S LOG WAILABLE	IRR16AT ION	378 30	DE-ICING HIGHWAY	42,8821	1968
ROBERT DAVIS WELL #2 5961 65 3F 260801	I PLIOGENE AND PLEISTOGENE SEDIMENTS		ORILLER'S LOG AVAILABLE	IRRIGATION	957 957	FISH FARMING AND HATCHING	42,8705 116,0754	LOG, 1974
B. BURGHAPDT MELL #1 2649 65 JE 34DCC1	9 PLIOCENE AND PLEISTOCENE SEDIMENTS (?)			IRRIGATION	240 23	HYDROPONI CS	42.8513	
JIM MORRISON NELL #1 5299	PLIOCENE SILICIC VOLCANIC ROOKS AND BASALT		DRILLER'S LOG AVAILABLE	ERRIGATION	580 55	LAWORY USES	YES 42,9075 115,9450	YOUNG AND MHITEHEAD, 1975
JIN NORAISON WELL #2 3	30 PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE	DOMESTIC	42 27	CATFISH FAWING	42,9682	LOG, 1970
KENT KOHRING WELL #1 7570 65 4E 296001	10 PLIOCENE AND PLEISTOCENE SEDIMENTS			IRRIGATION	533 27	DE-IC/NG	YES 42,8340	YOUNG AND MHITEHEAD, 1975
ANTONIO DELEOM 102 MELL #1 65 4E 520AB1	1022 PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG WAILABLE	IRRIGATION	362 33	FERMENTATION	42.6571	LOG, 1971

42.8579 LOG, 1976 115,9863	YES 42.6547 YOUNG ND 115.9465 WHITEHEAD, 1975	42.8576 L06, 1972 115.9366	42.8581 LOG, 1972 115.9455	42.8525 LOS, 1967 115, 9354	42.6522	YES 42.9117 YOUNG, 1972 115.8389	YES 42.8989 LOC, 1973 115.9156	YES 42.8950 YOUNG, 1975	YES 42,8897 YOUNG, 1973	YES 42.0042 YOUNG, 1973 115.0006	YES 42,8667 LOS, 1924 115,8847
		ž								BURLEY MALTING PROCESS	
BI ODEGRADAT I ON	AQUACULTURE	HEAT PUMP COLUNG WITH HEAT PUMP	DE- ICING	HTDROP DN I CS	CATFISH FARMING	AQUACULTURE	CROCODILE FARMING	SEEDLING CONIFERS	CATFISH FARMING	96 FERMENTATION	BIODEGRADATION
358 31	291 33	100 22	272 30	609 40	152 20	508 39	902 21	۲ <u>۹</u>	333 34	590 32	475 33
IRR I GAT LON	IRR IGATION	IHRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	STOCK MATERING	DOMESTIC	STOCK MATERING	DOMEST I C	PUBLIC SUPPLY	STOCK WATERING
DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVALABLE	DRILLER'S LOG AVALABLE	DRILLER'S LOG WAILABLE	DRILLER'S LOS AVALABLE		DRILLER'S LOG WAILABLE; FLOWING WELL	DRILLER'S LOG WAILABLE	FLOWING HELL	SLIGHT SULFIR COOR- FLOWING MELL, DRILLER'S LOG AVALLABLE	SLIGHT SULFUR COOR	FLOWING WELLE, DRILLER'S LOS MAILABLE
PLIOCENE AND PLEI STOCENE SEDIMENTS	11923 PLIOGENE AND PLEISTOGENE SEDIMENTS	4920 PLIOCENE AND PLEISTOCENE SEDIMENTS	9614 PLIOCENE MD PLEISTOCENE SEDIMENTS	9465 PLIOCENE BASALT AND SILICIC VOLGNIC ROOKS	3785 PLIDCENE BASALT (1)	15 PLIOCENE MO PLEISTOCENE SEDIRENTS MD PLIOCENE BASALT	PLIOCENE BASAIT AND SILICIC VOLCIMIC ROOKS	PLIOCENE BASALT	75 PLIOCENE BASALT	PLICENE BASAT AND SILICIC	11 PLIOGNE AND PLIESTOGNE SEDIMENTS
ANTONIO DELEON WELL #2 65 4E 330BA1	DICK MARD WELL 11 65 4E 35CDA1	MERRIL TALLMAN MELL #! 65 4E 35DAAI	MERRILL TALLMAN VELL #2 65 4E 350681	KENT KOHRING MÉLL #2 9463 65 4E 36CCC1	KENT KOHRING WELL #3 3785 65 4E 360002	COLYER CATTLE CO. WELL 65 5E 100001	J.R. SIMPLOT MELL #1 65 5E 180081	J.R. SIMPLOT WELL #2 65 SE 20AAB!	GEORGE HUTCHINSON WELLL SE 248CA1 65 SE 248CA1	BRUNEAU CITY WELL 65 5E 240001	DON DAVIS MELL #1

-309-

ł

Spring/Woll Identification Numbor & Namu	Dia- charge (l/min) Aquifer Age and Rock Type	Type Gealogic Structure	Remarks	Jeposition Jeposition Jerosition Carvel Siti- bon- Gass coust Present Jse	Weil Surf Aqui- Weil Surf Ferr Oepth Temp Temp ((m) (°C) (°C)	Potential Use Based on Best Estimate of Surface Temperature**	Chem/ Trace Anal.	Latitude 1 Longitude Reference	1 1
				<u>Owyhee</u> <u>County</u> (cont'd.)					
CARL AND HARRY LOUS 65 5E 35CCA1	JS PLIJOCENE AND PLEISTOCENE SEDIMENTS	345		I RRIGATION	140 22	HEAT AND COOLING WITH HEAT PLUAP	YES	42,8547 YOUNG, 1975 115,8314	
IDAHO PARKS DEPT. 65 6E 120001	499 PLIOCENE AND PLEISTOCENE SEDIMENTS	NE C	DRILLER'S LOG AVAILABLE	IRRIGATION	25 105	AUADULTURE	YES	YES 42.9108 LOG, 1968	
MILDRED BACKMAN WELL	ELL 151 PLIOCENE AND PLEISTOCENE		FLOWING WELL, DRILLER'S LOG AVAILABLE	DOMESCIC	278 38	HYDREPOKI CS	YES	42,8820 LCG, 1926 115.7925	
BRUNEAU CEMETARY MELL 65 6E 19DBD1	PLIOCENE FRACTURED BASALT	ALT	DRILLER'S LOG AVAILABLE; SULFUR COOR	IRRIGATION	410 42	STOD DO NING INS	YES	42,8856 YOUNG, 1973 115,7819	
ACE BLACK WELL 65 6E 32B0B1	151 PLIOCENE PRACTURED BASALT	SALT	FLOWING WELL; SLIGHT SULFUR	EUR STOCK MATERING	427 35	FERENTALION	YES	42.8600 YOUNG AND 115.7683 WHITEHEAD, 1975	526
MILBUR WILSON WELL #1 65 7E 1ACB1	11 PL FOCENE AND PLEISTOCENE SEDIMENTS	ENE	FLOWING WELL	DOMESTIC	50¢ 42	AVUACUL TURE	YES	42-9342 YOUNG AND 115.5678 WHITEHEAD, 1974	974
NOSTIN JE 10001	34 PLIOCENE AND PLEISTOCENE SEDIMENTS	ENE	FLOWING WELL	STOCK WATERING	520 53	SD 100-004 CM	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42.9283 YOUNG AND 115.5539 MHITENEAD, 1	1974
CARL JOHNSON WELL 65 7E 20001	11 PLIOCENE AND PLEISTOCENE SEDIMENTS	ENE		DOMESTIC	411 35	BI ODEGRODAT I ON	YES	42.9249 YOUNG, 1973 115.7072	
SAND DUNES FARMS WELL 65 72 BBBA1	52 PLIQCENE AND PLEISTOCENE SEDIMENTS	E No	CRILLER'S LOC AVAILABLE	DOMESTIC	11 8	CATFISH FRAMING	Υ ΕΩ Π	42.9217 YOUNG AND 115.6528 MHITEFEAD,1974	74
BILL BURGHARDT MELL #2 75 3E 4ACC1	5299 PLIOCENE BASALT		DRILLER'S LOG AVAILABLE. MEN PLAPED FROM 240 METENS DEPTH, WATER 15 REPORTED TO BE 60 DEDREES C	AS TD	245 29	DE-ICING HIGHWAY	YES	42.8445 YOUNG AND 116.0955 MHITEHEAD, 1974	974

-310-

jannista.

1.5 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
c Luava NL. B1 (ACT) Se a Cos WITHING Cos WITHING Cos MULTION Cos MULTION <td></td> <td></td> <td>15R416AT1 LON</td> <td>249 39</td> <td>HYDROPENNICS</td> <td></td>			15R416AT1 LON	249 39	HYDROPENNICS	
Interior of a mutual definition No definition No definition No definition Inturers tab mutual definition Interior de mutual definition Interior de mutual definition Interior definition Interior definition Inturers tab mutual de mutu	C ADLCANIC	FLOWING MELL	IRRIGATION	548 40	STOCK WATERING	
DILLETS LG MALURLE IRTGATIOL 24 35 De-Line ADMANS DILLETS LG MALURLE IRTGATIO 26 35 3 4 DILLETS LG MALURLE IRTGATIO 26 27 3 4 UNDUTTRE IRTGATIO 27 29 2 24 2 24 2 IRTGATION 27 29 2 24 2 2 24 2	D BASALT		IRRIGATION	348 42	S TOOD SNINNINS	YES 42.8486 115.9586
DRULER'S LOG MALLAGE 43 44 440-01-00E 10 10 10 20 20 40-000-00E 10 10 10 20 20 0 10-1-00E 11 11 10 20 20 0 0 10-1-00E 11 11 11 10 20 20 0 0 10-1-00E 11 11 11 20 20 20 20 0 0 10-1-00E 11 11 11 20 20 20 20 20 20 20 11 11 20 20 20 20 20 20 20 20 11 11 20 20 20 20 20 20 20 20 11 11 20 20 20 20 20 20 20 11 11 20 20 20 20 20 20 20 12 20 20 20 20 20 20 20 20 13 20 20 20 20 20 20 20	ENTS	DRILLER'S LOG WAILABLE	IFRIGATION		DE-ICING RDADHAYS	42,8486 L05, 1966 115-9729
INTERPRISE INTERPRISE INTERPRISE INTERPRISE INTERPRISE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE INTERVIDE	L.	DRILLER'S LOG AVAILABLE			QUACULTURE	42.8462 LOS, 1974 115.9761
Image: Solution of the soluti	TED BASALT		IPRIGATION	316 30	AQUACULTURE	42.8400 YOUNG, 1973
DRILLER'S LOG MAILABLE IRIGATION 34 34 3100E66ADATION IRILER'S LOG MAILABLE IRIGATION 276 35 FEMEBATATION IRILLER'S LOG MAILABLE IRIGATION 276 35 35 SEDLING CONFERS DRILLER'S LOG MAILABLE IRIGATION 37 35 43 SEDLING CONFERS DRILLER'S LOG MAILABLE IRIGATION 35 43 SEDLING CONFERS GOMMILABLE IRIGATION 35 43 STOCK MATERING	TEU BASALT (?)		LR215ATION		DE-ICING	42.8375 115.9975
DRILLER'S LOG AVALUAGLE IRRIGATION 276 35 FENNENTATION DRILLER'S LOG AVALUAGLE IRRIGATION 349 43 SEEDLING CONFERS DRILLER'S LOG AVALUAGLE IRRIGATION 537 35 AQUACUTURE	FED BASALT	DRILLER'S LOG ANILABLE	HRIGATION		BLODEGRADATION	YES 42.6322 YOUNG, 1973 115.9681
IPRIGATION 349 43 SEEDLING CONFERS DRILLER'S LOS MAILABLE IPRIGATION 457 35 AQUACUTURE EGONING MELLE, BRILLER'S IPRIGATION 537 35 AQUACUTURE	PLE I STOCENE PL I OCENE	DRILLER'S LOG WAILABLE	IRRIGATION		FEI-MENT AT I UN	42.8271 L09, 1965 115.9617
DRILLER'S LOG MAILABLE IRRIGATION 457 36 AQUACUTURE FLOMING MELLE BRILLER'S IRRIGATION 336 43 STOCK MATERING			I RR1GAT 1 ON	349 43	SEEDLING CONFFERS	20292 82,0235
FLOWING WELL, DRILLER'S IRRIGATION 336 43 STOCK WATERING LOS AVAILABLE	CIC VOLCANIC	DRILLER'S LOG WAILABLE	IRRIGATION	457 36	AQUAQULTURE	YES 42.8261 YOUNG, 1973
	ICIC VOLCANIC	LOG MAILABLE DRILLER'S	IRRIGATION	336 43	STOOK MATERING	YES 42.8306 YOUNG, 1973

-311-

_
continued
Idaho (
ų,
Wells
and W
Springs
Thermal
of
. Use
Potential Use
and
Present Use
Environment,
ric E
, Geologic
Location.
Data Table 4.
ata
Basic D

Dis- charge (l/min) Aquiter Age and Rock Type (l/min)	Geologic Structure	Romarks	Deposition 28005 Cat- 511- bon- 585 ceous ofes Prosent Use	Well Surt Depth Temp. (m) (°C)	Aqui- ter" Tamp. Potential Use Based on Tamp. Surface Temperaturet"	Potential Use Based on Chen/ Latitude Best Estimate of the Trace & Austrace Anal. Longitude	Raference
PLIOGENE SILICIC VOLCANIC ROCKS AND BASALT		DRILLER'S LOG AVALLABLE; FLOWING WELL	<u>Owyhee</u> <u>County</u> (cont'd.) IRRIGATION	(d.) 274 43	SEEDLING OWIFERS	82,828 95,952	1968 r.
PLIDGENE SILICIC VOLCANIC ROCKS		TOTAL DEPTH IS UNKNOWN, WELL WAS DEEPENED	IRRIGATION	325 39	SOIL WARMING	YES 42,8153 115,9336	YOUNG, 1973
PLIOCENE SILICIC VOLCANIC		DRILLER'S LOG AVAILABLE; FLOWING WELL	IRRIGAT ION	304 40	STOCK WATERING	YES 42,8081	YOUNG, 1973
PLIOCENE SILICIC VOLGANIC POCKS	·	DRILLER'S LOG AVAILABLE	IRRIGATION	349 39	אטראכארדעאב	YES 42.8169 115.9433	YOUNG, 1973
PLIDGENE SILICIC VOLCANIC		DRILLER'S LOG AVAILABLE	IRRIGATION	289 29	BLODEGRADATION	42,8060	LOG, 1963
PLIOGENE JOINTED BASALT AND SILICIC VOLCANIC ROCKS		DRILLER'S EDG AVAILABLE	HRRIGATION	324 33	FERMENTATION	YES 42.8153 113.9606	YOUNG, 1973
PLIDDENE SILICIC VOLCANIC		DRILLER'S LOG WAILABLE	IRRIGATION	304 38	SHRING FARMING	42.8028	1966 1966
PLIOCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG WAILABLE	1881.6A71.0N	243 41	GREENHOUSE	42.8042	L06, 1972
PLIOCENE SILICIC VOLCANIC ROCKS MUD BASALT		DRITLER'S LOG AVAILABLE	DOMESTIC	106 35	AQUACILTURE	0156*511	YOUNG AND WHITEHEAD, 1975
PLIODENE SILICIC VOLCANIC ROCKS AND JOINTED BASALT		DRILLER'S LOG AVAILABLE	IRRIGATION	246 39	FERMENTAT LON	YES 42.7994	YOUNG AND WHITEHEAD, 1975

-312-

AL AND A

42,8021 115,9286	YES 42,7872 YOUNG, 1973 115,9166	YES 42,7881 YOUNG, 1973 115,9528	YES 42,7860 YOUNG, 1973 115,9725	42.9504 115.8669	4.2. 8464 1.15. 8694	YES 42,8417 YOUNG NO 115,8828 MHITENENO, 1975	YES 42,8367 YOUNG, 1972 115,9044	42, 83,06 115, 89,28	42.8305 115.8934	YES 42.8239 YOUNG, 1973 115.8936	YES 42.8228 YOUNG, 1973 115.6564
DE-ICING ROWAYS	BLODEGRADATION	DE-ICIND HIGHWAYS	HEATING AND COOLING WITH HEAT PUMP	CATFISH FARMING	HEATING AND COOLING NITH	AQUADUL URE	HYDROPONI CS	AQUAQUETURE	FERMENTATION	SOIL MARMING	AQUACULTURE
219 32	224 36	264 31	423 27	ຸ	8	733 32	495 39	396 40	213 26	457 40	629 40
IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	UNUSED	I RRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION
NO LONGER A FLOWING WELL		DRILLER'S LOS AVAILABLE	ORILLER'S LOS AVAILABLE			DRILLER'S LOG AVAILABLE; FLOWING WELL	DRILLER'S LOS AVAILABLE; FLOWING MELL	FLOWING MELL	FLOWING MELL	DRILLER'S LOG AVALABLE; FLOWING WELL	FLOWING WELL, DRILLER'S LOG AVAILABLE
3785	10220 PLIOCENE SILICIC VOLCANIC POCKS AND JOINTED BASALT	OUTHERIES RANCH WELL 5677 PLIOCENE SILICIC VOLCANIC 75 4E 256091	775 ALIOCENE SILICIC VOLCANIC ROCKS	n		757 PLIOCHE JOINTED BASALT	20440 PLIOCENE SILICIC VOLCANIC ROCKS	1892	5	PLIDGENE SILICIC VOLCANIC ROCKS	13248 PLIOCENE JOINTED RHYOLITE
 JOHN MOGUIRE WELL 75 4E 248001	BELL BRAND RANCHES 75 4E 25ADC1	GUTHERLES RANCH WELL 75 4E 26BCB1	DAVE LAHTINEN WELL 75 4E 279CC1	00N DAVIS WELL,#2 75 SE SBAA1	DON DAVIS WELL #3 75 SEACT	AGE BLACK WELL #2 75 56 508c1	DAVIS BROTHERS MELL #1 75 5E 7ABB1	MERLE BACHWAN MELL #1 75 5E 8BCC1	MERLE BACHMAN MELL #2 75 5E 68002	DAVIS BROTHERS HELL #2 75 5E BCCC1	HARRY LOOS WELL 075 5E 900D1

-313-

1 12

Potential Use Based on Best Estimate of Trace & Anal. Longitude Reference		42,8207 HEAT PUMP 115,7979	YES 42.8194 YOUNG, 1975 115.8011	CS 42,8147 M411EHEAD, 1973 115,8138	FRING 115-8606 YOUNG, 1973	ATION 42.0186 BEARD, 1978 115.9041 (SITE INSPECTION)	FISH 42,8197 LOG, 1967	42,8150 LOG, 1951	42.8145 L06, 1976 115.9016	ATION 115-0133 115-0133	KT41, 2005, 155, 257 113-8614	
Well Surf. Aqui- Weil Surf. fer* DepthTemp.Temp. (m) (9C) (9C)	ů. J	106 23 HEATING M HEAT PUMP	121 Z5 DE-ICING HIGHMAYS	595 36 HYDROPONLCS	461 39 STOCK MATERING	30 BLODESRADATION	173 34 TROPICAL FISH	157 37 HYDROPONLCS	285 41 SOIL MARMING	231 36 BIODEGRADATION	305 34 FERMENTATION	
005 UL LIELEAL SPILINGS AN Deposition Deposition Sas Scous ates Present Use	<u>Owyhee</u> <u>County</u> (cont'd.)	I RRIGATION	IRELOATION	ARIGATION	IRRIGATION	IRRIGATION	IRRIGATION	DOMESTIC	IRRIGATION	IRELEAFION	IRRIGATION	and the second se
resert use and recentral of		THIS MELL WAS ORIGINALLY 427 METERS DEEP, BUT MAS CAVED TO 115 PRESENT DEPTH	PARTIAL DRILLER'S LOS AVAILABLE	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	FLOWING MELL	FLOWING MELL; DRILLER'S LOG AVAILABLE	LOS NAVILABLE, DRILLER'S	PRILIER'S LOG AVAILABLE; FLOWING WELL	DRILLER'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE	
ecologic cutitonment, Geolog Structu		PLIOCENE AND PLEISTOCENE SEDIMENTS (?)	PLIOCENE AND PLEISTOCENE SEDIMENTS	RACTURED BASALT	PLIOGENE SILICIC VOLCANIC ROCKS AND SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS (7)	PLIOCENE AND PLEISTOCENE SEDIMENTS AND PLIOCENE BASALT	PLIOCENE AND PLEISTOCENE SEDIMENTS AND PLIOCENE BASALT	PLIOCENE AND PLEISTOCENE SEDIMENTS AND PLIOCENE BASALT	PLIOGENE SILIGIC VOLGANIC ROXS	PLIOCENE ENSALT AND SILICIC VOLCANIC ROCKS	
Spring/Well Dis- Spring/Well Dis- Identification Cl/min) Aquiter Aç		ROY DAVIS MELL#1 4542 PLIOCEME / 75 5E 13.40.41 SEDIMENTS	ROY DAVIS WELL #2 PLIOCENE /	CARL STEINER WELL 11355 PLIOCENE FRACTURED BASALT 75 SE 130981	ROBERT TINDALL WELL 15141 PLIOCENE : 75 5E 16ACD1 WELL 15141 PLIOCENE :	CHESTER SELLMAN 378 PLIOCENE / MELL #1 BABCI SEDIMENTS	CHESTER SELLMAN 3596 PLIOCENE / VELL #Z BLARCZ BASALT 75 SE IBABCZ BASALT	CLARENCE MILLER 2838 PLIOCENE / WELL #1 BRDC1 BASALT 75 5E 188DC1	CLARENCE MILLER 5299 PLIOCENE / WELL #2 75 5E 18DBA1 BASALT	BELL BRAND INC. WELL 44.28 PLIODENE : 75 5E 1900C1 MELL 44.28 ROCKS	GENE TINDALL WELL PLIOCENE 8 75 5£ 28ACD1	í

(42,9404 RDSS, 1971 115,7489	42.8365 R055, 1971 115.7450	42.8511 LOG, 1959 115,7874	YES 42.8334 MHITEHEAD, 1973 115-7815	42.9255 115.7866	YES 42.8342 YOUNG, 1972 115,7474	42.8135 L06, 1969 115.7207	YES 42,8061 YOUNG, 1973 115,7514	42.62.15 115.7954	YES 42.7978 YOUNG, 1971 115.7464 YOUNG, 1971	42,7949 115,7330	42,7961 10055, 1971 115,7199
	B130EG&ADAT I JAN	SEEDLING ONLIFERS	DE-LCING ROXOWAYS	CATFISH FARALING	HEATING AND COOLING WITH HEAT PUMP	GRAIN-HAY DRYING	HEATING AND COOLING WITH HEAT PUMP	SOIL WARMING	FI SH FARMING	SEEDLING CONFRESS	GRAIN-HAY DRYING	HYDROPONLCS
	32	4 4	123 22	331 2 5	ୟ ଝ	277 50	685 Z7	156 42	121 23	231 43	155 47	4
() ()	IRRIGATION	HRR ISAT FON	DOMESTIC	DOMESTIC	DOMESTIC	IRRIGATION	STOCK MATERING	HRIGATION	IRRIGATION	LIRR IGAT FON		UNU SED
			FLOWING MELL, MELL PRIES UP IN SUMMER TIME, DRILLER'S LOS AVAILABLE	FLOWING WELL			FLOWING WELL DRUILLEN'S LOG AVAILABLE;	FLOWING WELL; DRILLER'S LOG AVAILABLE		DRILLER'S LOG AVALLARLE, FLOWING WELL, TWO WELLS AT THIS SITE	WELL WAS BEING ORILLED AT TIME OF INSPECTION AND WAS REPORTED TO BE COOLING WITH DEPTH	MARSH AREA
	378 PLIOCENE BASALT	757 PLIOGENE BASALT	49.20 PLIOCENE 44D PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE		579 PLIOCENE BASALT	18 PLIDENE SILICIC VALGANIC ROCKS	9463 PLIOCENE JOINTED BASALT	6056	PLIOCENG JOINTED BASALT	7570	SIIO QUATERWARY ALLUVUM
	COLYER CATTLE CO., WELL 1 75 6E 4CAD1	001YER CATTLE 00, MELL 2 75 6E 400CT	75 66 69AA1 75 75 75	GEORGE TURNEN MELL 75 6E 7AKC1	ROY DAVIS WELL #3 73 6£ 70001	COLYER CATTLE CO. WELL 5 75 6E 98ADI	R⊾L. ØNEN ₩ELL #1 75 66. ISDAAI	R.LL ONEN MELL # Z 75 66 160001	ROY DAVIS WELL #4 75 GE 188381	HOT SPRINGS RANCH WELL 75 6E 2198C1	HILL ONEN WELL #5 75 GE 220AA1	PENCE H S 75 6E 220AD1S

-315-

Spring/Well Dis- ldentification charge Number & Name (1/min) Aquifer Age and Rock Type	BAT HOT SPRINGS 378 PLIOCENE SILICIC VOLCANIC 75 GE 2208615 900KS (1)	R.L. OWEN WELL #4 7570 PLIODENE SILICIC VOLCANIC 75 6E 238881	R. L. OMEN MELL #5 13248 PLIOCENE SILICIC VLOCANIC 75 6E 236882	WILLIAM ROSE WELL 3406 PLIOCENE SILICIC VOLCANIC	R.L. OMEN MELL #6 2271 75 66 230CA1	ANGEL BILBOA 5677 PLOCENE SILICIC VOLCANIC WELL 30 75 6E 230081	73 GE ZGADAI 75 GE ZGADAI	R11, ONEN HELL #8 3406 PLIOCENE SILICIC VOLCANIC 75 6E 266AA1	R.L. ONEN NELL #9 PLIOCENE SILICIC VOLCANIC 75 GE 26BAA2	RLL OWEN WELL #10 340 TERTIARY SILICIC VOLCANIC 75 GE 268DA1 BACAN (7) AND FLICCENE BACANT (7)	
ock Type Structure	OLGANIC	VOLCAN I C	VLOCANIC	VOLCANIC		VOLCANIC (1)	VOLCANIC	S VOLCANIC	C VOLCANIC	C VOLCANIC	
00 Remarks Gas ce	<u> (wy</u>)	DRILLER'S LOG AVAILABLE; FLOWING WELL		FLOHING MELL	FLOWING WELL	FLOWING WELL, DRILLER'S LOG AVAILABLE	FLOWING WELL			FLOWING WELL	
Jeposition Sili- Car- Sili- bon- Present Use	<u>Owyhee County</u> (cont'd.) IRRIGATION	IRRIGATION	1 RR 16AT I ON	IRR IGATION	IRRIGATION	IRRIGATION	IRRIGATION	IRRIGATION	IR81GATION	IRRIGATION	
Well Surf. Fer* Depth Temp. Temp. (n) (OC) (OC)	14	4.29 4.5	243 41	396 44	54 2	313 40	304 38	58 85	92	35	
Potential Use Based on Surface Temperature**	BALNEOLOGI CAL BATH	SEEDLING ODWIFENS	Apu AcultTure	SHIWHING POOLS	GRAIN-HAY DRY ING	SOIL WARRINS	HYDROPONI CS	AUALITURE AUALITURE	FERMENTATION	BLODESHADATION	
Potential Use Based on Chemy Latitude Best Estimate of Trace ditude Subsurface Temperature*** Amal. Longitude	7697.251 1115.7267	YES 42.0067	42,8067	YES 42.7975 115.7087	42.7965	42,7962 115,7076	YES 42,1876	42,7920	42,1919	42.7882	

	42.708	42.7804 RDSS, 1971	42.7906 A055, 1971 115.7216	YES 42,7889 YOUNG, 1973 115,7222	YES 42.7675 MHITEHEAD, 1975 115.7269	42.7660 L0G, 1977 115.7184	YES 42.7177 115.7159	42.7539 YOUNG, 1972 115.7300	42.75617 YOUNG, 1972 115.7364	42.6759 SMANSON, 1977 115.6747	42.6137 L06, 1969 115.0625	42.6094 LDG, 1966 115.0560
	DE-ICING FOROMAYS	GREENHOUSE	SPACE HEATING	HYDROPONICS	SOIL WARMING	FERRENT AT I ON	AQUACULTURE	STOCK WATERING	HORDFONI CS	MUSHROOM GROWING	DE-ICING HIGHMAYS	CATFISH FARMING
	34	\$	106 45	121 43	4	91 35	40	42	37	762 52	238 29	248 27
a	DOMESTIC	UNUSED	IRRIGATION	IRRJGATION	YES UNUSED	IRRIGATION	LANUSED	CIRVIT	YES RECREATION	UNUSED	IRGIGATION	IRRIGATION
	FLOWING WELL	FOUR SPRING VENTS		FLOWING WELL	LOCATED IN BRUNEAU CANYON; NUMEROUS SPRING VENTS	DRILLER'S LOG AVAILABLE; FLOWING WELL	NOT FIELD OFECKED	NUMEROUS SPRING VENTS; TURFERATIORE RANGE 38-42 DEGREES C	NUMEROUS SPRING VENTS		DRILLER'S LOG WAILABLE	DRILLER'S LOG AVAILABLE
	Ra.L. OMEN MELL #11 75 GE 260091	BUCKAROO H S 757 UNATERNARY ALLUYIUM 75 GE 2600015	JEAN LONGHURST WELL 2895 PLIDCENE BASALT 75 GE 27AACT	JANES PRESCOTT MELL PLIOCENE BASALT 75 GE 27ADBI	JEAN PRESCOTT H S 1703 PLIOCENE JOINTED BASALT 75 GE 3400815	R.L. DMEN MELL #12 7570 PLIOGENE SILICIC VOLOMIC 75 6E 3400A1 #12 ROCCS (1)	PRESCOTT w S 75 GE 398841S	LOWER INDIAN BATHTUR 567 TUFF CONTACT WITH TERITARY 85 6E 3ADB15 BASALT	INCLIAN BRITHTUB H S TUFF CONTACT WITH TENTLARY 85 6E 36DDIS BASALT	ULS. CORPS EMGINEERS 908 PLIOCENE AND PLEISTOCENE 95 SE 480AI	TOM MHEELER MELL #1 1396 PLIOCENE SILICIC VOLCANIC 95 12E 28C8B1 ROCKS	TOM MHEELER WELL #2 1703 PLICCENE SILICIC VOLCANIC 95 12E 280001

5pring/Well 1dentification Number & Name	Bis- charge (1/min) Aquifer Age and Rock Type	Geologic Structure	Renarks	Deposition Can- Gas cecus ates	Present üse	Well Surf, Aqui- bepthTemp. Temp. (m) (°C) (°C)	Potential Use Based on Surface Temperature**	Portantial Use Based on Chenk Bast Schiante of Subsurface Temperature*** Anal-	Lafitude & Longifude	Ref er ence
				<u>Ovyhee</u> <u>Cou</u>	<u> Owyhee</u> <u>County</u> (cont'd.)	~				
J. WHEELER WELL #1 95 12E 280BC1	PLIOCENE SILICIC VOLCANIC ROCKS (3)				FRR I GAT I DN	248 35	AQUACUL TURE		42,6125 115,0525	
J. WHEELER WELL #2 95 12E 29AAA1	113 PLIDENE SILICIE VOLCANIC ROCS		DRILLER'S LOG AVAILABLE		IRRIGATION	177 22	FISH FARERING		42.6210 LDG, 1977 115.0659	1977
J. WHEELER WELL #3 95 12E 29ADC1	8327 PLIOCENE SILICIC VOLGNIC ROCKS		DRILLER'S LOG AVAILABLE		IRRIGATION	161 30	CATFLSH FARMING		42-6158 LDG, 1967 115-0688	1967
J. WHEELER WELL #4 95 12E 298961	PLIOCENE SILICIE VOLONIE ROCKS (?)				IRRIGATION	147 28	TRUPICAL FISH FARMING		42.6215 115.0815	
J. MHEELER WELL #5 95 12E 290BA1	6964 PLIOCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE		IRRIGATION	179 30	CATFISH FARMING		42,6146 LOG, 1968 115,0694	1968
J. MHEELER WELL #6 95 12E 290801	4542 PLIOCENE SILIDIC VOLCANIC		DRILLER'S LCG AVAILABLE		REATION	15 061	FERMENTATION		42.6126 100, 115.0696	106, 1971
1 ND 1 AN H S 1 25 7E 35C 1S	TERFLAPY BASALT AND SILICIC VOLCANIC ROCKS		NOT FIELD CHECKED			12	93 REFRIGERATION (LOWER TEMPERATURE RANGE)	drying and curing of light aggregate	42,3333 ROSS 115,6500	POSS, 1971
A. KRAMER WELL 125 10E 1200C1	5677 PLIOCENE SILICIO VOLCANIC POCKS		DR1:LER'S LOG AVAILABLE		IRRIGATION	152 24	HEATING AND COOLING WITH HEAT PUMP		42,5650 L0G, 114,9971	LOG, 1963
MLRPHY H S 165 9E 248861S	PLICCENE BASALT AND SILICIC VOLCANIC ROCKS	~	TWO SPRING VENTS		IRRIGATION	22	ENTIMORE ON GROWING	BARLEY MALTING PROCESS YE	YES 42.0314 R0SS 115.3658	F0S5, 1971
CLARANCE NYE WELL 165 9E 249BDJ	113 PLIOGENE BASALT AND SILICIC VOLCANIC ROCKS	~	DRILLER'S LOG AVAILABLE		DOMESTIC	91 25	HEATING AND COOLING WITH HEAT PURP		42.0312 (0G, 1973 115 . 3655	£791
(Receiver					. E				<u>()</u>	

-318-

(aaaa	42,0310		43.8775 SAVAGE, 1973 116,6900	43.8568 SAVAGE, 1973 116.8923	43.8495 SAYAGE, 1973 110.8883	43.9153 SAVACE, 1973 116.8019	43.9090 SAVAGE, 1975 116.9373	44.0402 .SAYAGE, 1975 116.8681	44.0995 SAVAGE, 1973 116.7310	44.1032 SAVASE, 1973 116.7050	44.0700 SAVAGE, 1973 116.9094		42.8294 LOG, 1954 112.7947
						ATING AND		HATCHING		NG WITH			ING WITH
	CATFISH FARMING		CATFISH FARMING	CATFISH FARMING	DE-ICING ROADWAYS	HEAT PUMP FOR HEATING AND COOLING	CATF15H FARMING	FISH FARMING AND HATCHING	FERMENTATION	HEATING AND COOLING WITH HEAT PUMP	CATFISH FARMING		HEATING AND COOLING WITH HEAT PUMP
	30 23		143 23	108 22	8	107 20	60 20	35 20	ĸ	112 25	QZ 66		76 28
	PUBLIC SUPPLY	Payette County	LIREL GAT FON	DOMESTIC	IRRIGATION	IRRIGATION	DOMESTIC	DOMESTIC	STOCK MATERING	IRRIGATION	COMEST IC	Power County	UNUSED
			DRILLEN'S LOG AVAILABLE	DRILLER'S LOG AVAILABLE		DRILLER'S LOS AVAILABLE		DRILLER'S LOG AVAILABLE		DRILLER'S LOG M'AILABLE; FLONING NELL	DRILLER'S LOG AVAILABLE		NOT FIELD CHECKED
			PLIDCENE AND PLEISTUCENE SEUIMENTS	PLIDGENE AND PLEISTOGENE SEDINERIS	PLIDGENE AND PLEISTOGENE SEDIMENTS	12112 PLIOCENE AND PLEISTODENE SELIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	52 PLIDGENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	1514 PLIOCENE AND PLEISTOCENE SEDMENTS	75 PLLOCENE AND PLEISTOCENE SEDIMENTS		5110 PLEISTOGENE ALLWIUM (7)
	JANAGEK WELL 165 9E 240AA1		A.L. OHRISTENSOR Well 6H 5M 128601	NELSON-DEPPE WELL	6N 5W 2488D1	JAMES 41887 WELL 7N 59 250881	MIKE MCKAGUE WELL 74 SW 53AABI	JAMES MOSIER WELL BN 44 70001	NALTER SMITH WELL 94 34 1900A1	ALBERT COATES WELL 9N 3W 218DC)	LEE REED WELL 94 550CB1		FALL5 IRRIGATION DIST. 75 31E ILAGAI

-319-

Reference		LOG, 1957	6561 '507	1976 MD CARR,	1976 1976	STEARNS AND OTHERS, 1938	1971, 1971	R055, 1971		ROSS, 1971	ROSS, 1971	
Chem/ Lafitude Trace & Anal. Longitude		42.7723 L	42,7160 t 112,8905	42,7551 112,8565	42.7289	YES 42.7554 112.8722 1	42.7236	42.7239 112.8723	42.6246 113.1069	YES 42.5465 112.8987	42.5458 112.9026	ž
Potential Use Based on Best Estimate of Subsurface Temperature***						AN INAL HUSEANDRY				APPLE DEHYDRATION		
Potential Use Based on Surface Temperature**		DE-ICING RUADWAYS	HEAT PUMP HEAT PUMP	CATFISH FARMING	FISH FARMING AND HATCHING	BI DOEGRAD AT I ON	AQUACUL TURE	FERMENTATION		AQUACULTURE	SOIL WARNING	
Weil Surf Aqui- Weil Surf Ar* Depth Temp. Temp. (m) (°C) (°C)	(•p.	162 24	187 22	117 25	164 28	32 71	¥2	55	21	38 72	38	
Seposition Sifi- Car- Car- Car- Car- Car- Sifis- Aresent Use	Power County (cont'd.)	I NOUSTRI AL	IRRIGATION	LIRELIGATION	IRRIGATION	YES RECREATION	YES IRRIGATION	IRRIGATION	UNUSED			4
Remarks		DRILLER'S LOG WAILABLE	DRILLER'S LOS AVALABLE	DRILLER'S LOG AVAILABLE	DRILLER'S LOS AVAILABLE	SEVEN STRING VENTS		FLOWING WELL	NOT FIELD CHECKED SUBMERGED IN LAKE MALCOTT	not field checked; several springs vents, tenperature range 34-38 degrees C	NOT FLELD CHECKED; REPORTED BY ROSS, 1971	
Geologic Structure						NORTHWEST TRENDING FAULT		NORTHMEST TRENDING FAULT				
Dis- charge (1/min) Aquiter Age and Rock Type		15 31E 31ADA1 WELL 7759 PLIESTOGME ALLUIVIUM (7) 75 31E 31ADA1	4239 UUATENARY ALLIVIUM MO BASALTIC LAVA	PALEOZOIC LIMESTONE	5677 PALEDZOLC LIMESTONE	PALEOZOIC LIMESTONE	PALEOZOIC LIMESTONE	1135 PALEOZOIC LIMESTONE		PALEOZOIC LIMESTOME	1892 QUATERNARY ALLUVIUM ADOVE PRE-TERTIARY LIMESTONE	
Spring/Weil D Spring/Weil D Idenfification ch Number & Name [1]		IDAMO POWER CU. WELL 75 31E 31 ADA1	EMIL MAYER MELL BS 50E 24 AGAT	MAX MAYER WELL 85 51E 17ABAT	FRED MAYER MELL 85 31E 1790B1	INDIAN SPRINGS 85 31E 180A815	INDIAN W S BS SIE IBDACIS	D.M. THORNHILL WELL BS 31E 18DACI	LAKE WALCOTT N S 95 29E 19ACD1S	ROCKLAND # S 105 30E 13CDC15	UPPER ROCKLAND N 5 105 30E 2488A15	

(ereste	42.5311 L06, 1975 112.8948		43.6666 MITCHELL, 1978 111.8980	43,4837 LOC,1969 111,323		42-7060 R055, 1971 114-8572	42.7040 RDS5, 1971 114.8365	42.7016 VON LINDERN, 1978 114.8557 (SITE INSPECTION)	YES 42.6920 MLDE AND OTHERS, 114.8592 1972	42.6890 STEANNS AND 114.6298 OTHENS, 1936	42,6880 8055, 1971 114.6256	YES 42.6884 STEARNS AND 114.6297 OTHERS, 1938	42.6881 STEARNS AND 114.6262 OTHERS, 1938	
									PASTEURIZATION			CANNING AND PRESERVING		
	HYDROPONI CS		FISH FARMING	GRAIN-HAY DRYING		MANMAL HUSBANDRY	APPLE DEHYDRATION	6HEENHOUSE	87 BALNEDLOGICAL BATH	SEEDLING OONIFERS	MINODM GROWING	108 LAUNDRY USES	SPACE HEATING	
	184 38		20	353 49		121 65	67	Ð5	55	82 49	55	74 57	64 57	
n Se Se	LIRR I GAT I ON	Teton County	IRRIGATION	IRRIGATION	<u>Twin</u> Falls County >	RECREATION	(?) RECREATION	DOMESTIC	YES RECREATION	YES RECREATION	YES RECREATION	YES RECIRENTION	YES HEATING OF POOL AND HOUSE	
	CRILLER'S LOS AVAILABLE			NOT FIELD CHECKED: TEMPERTURE RANGE 32-49 DEGREES C; CRILLER'S LOG AVAILABLE	<u>a</u> 1	MELL WAS DRILLED NEXT TO AN EXISTING HOT SPRING	YES		ALSO KNOWN AS HOT SULPHUR YES		COMMERCIALLY DEVELOPED			
	5677 PALE0201C LIMESTONE		946 THLASSIC MARINE SEDIMENTS NEAR THRUST FAULT	TRLASSIC SEDIMENTS BENEATH CENDZOIC BASALTS (2)		378 QUATENNARY AND TERFLARY SEDIMENTS	94 QUATENNARY AND TERFLARY SEDIMENTS	ULATERNARY AND TEHTIARY SEDIMENTS	1059 QUATERNARY ALLUVUIM NEAR PLIOCENE BASALT AND OLDER SILICIC VOLCANIC RODCS	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALT (?)	QUATERNARY AND TERTLARY SEDIMENTS	PLIODENE AND PLEISTOCENE SEDIMENTS AND BAGALT (7)	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BAGALT (?)	
	ROSCO NEETON WELL 105 30E 240CC1		TAYLOR SPRINGS 3N 45E 7BAA15	0. NEELY HELL 7N 43E 36AAC1		BILL SLIGER MELL 85 14É JOACH	SALMON FALLS H S BS 14E 30ACD1S	FENTON CONNOLLY WELL 85 14E 3000A1	MIRACLE H S BS 14E 31 AGBIS	HARAY HUTTANUS MELL #1 85 14E 358001	BANBURY H S BS 14E 53CBA15	HARRY HUTTANUS MELL #2 85 14E 330BA1	HARRY HUTTANUS MELL \$3 35 14E 530BA2	

-321-

Spring/Well dentification Number & Name	Dis- charge (l/min) Aquiter Age and Rock Type	Seclogic Structure	Copositi 00 01 01 02 0111 02 03 03 03 03	tion Car- Bon-Present Jse 0	Weil Surf faui- Weil Surf famp. Depth.Temp. (m) (°C) (°C)	Potential Use Based on Chem/ Best Estimate of Trace Surface Temperature** Subsurface Temperature*** Anal.	katitude Longitude Reference
			Twin Falls	<u>county</u> (cont'd.)	Ċ.		
DARWIN COLLIER WELL 85 146: 35GBD1	 ZOU QUATERWARY ALLUVIN OVERLING PLIOCENE RASALT AND QUDER SILICIC VOLCANIC ROXS 		FLOWING WELL	SPACE HEATING	164 44	MISHROOM GROWING	42.6869 LOG, 1976 114.8262
NIKE ARCHIGALO MELL BS 14E 33CCA1	. 1324 PLLOCENE AND PLEISTOCENE JASALT AND SEDIMENTS (7)		DAILLEA'S LOG WAILARE; FLOMIG WELL, USED TO HEAT POOL, BREENHUISE AND HOME	COMMERCI AL	161 45	SEEDLING ODMIFERS	42.6846 STEMANS AND 114.8289 OTHERS, 1938
J. MOODMAN WELL BS 14E 330001	567 QUATERNARY AND TERTLARY BASALT AND SEDIMENTS		FLOWING MELL	SPACE HEATING	146 28	FERRENTATION	42.6827 R055, 1971 114-8286
GEORGE ANTHORY WELL 95 12E 34D0A1	3405 PLIOCENE BASALT AND OLDER SILICIC VOLCANIC ROCKS		DRITLER'S LOG AVAILABLE	I RR IGAT HON	224 B	CATFISH FARMING	42.5976 LOG, 1967 113.0261
POISON SPRING 95 136 1400015			NOT FIELD OPECKED; REPORTED AS BEING WRM, SEVERAL SPRING VENTS NANGING INTO SECTION 23		o		42.6376 114.6917
PHIL RANICK WELL 95 13E 18AAG1				IRRIGATION	89 798	BIODEGRADATION	42,6492 4 . 9722
JACK KINYON WELL 95 13E 310001	6607 PLIDDENE SILICIC VOLCANIC ROCKS AND SEDIMENTS		DRILLER'S LOG AVAILABLE	HRIGATION	187 26	HEAT PURP COOLING WITH	42.5952 LOG, 1965 114.9732
EU JARAMELWIK WELL #1 95 13E 338CD1	5110 PLIOCENE SILICIC VOLCANIC ROCKS AND SEDIMENTS (7)		DRILLER'S LOS AVAILABLE	I RR IGAT I ON	262 31	HTDROPONI CS	42-6017 LOG, 1969 114-9446
ED JARAMELNIK MELL #2 95 15E 33CAB1	6813 PLIOCENE SILICIC VOLCANIC ROCKS AND SEDIMENTS		DR1:LER'S LOG WAILABLE	IRRIGATION	264 31	5ERMENTATION	42.5999 106, 1966 114.9417
ROSE JARAMELNIK WELL 95 135 3308A1	5543 PLIDGENE SILICIO VOLCANIC ROCKS AND SEDIMENTS		DRILLER'S LOG AVALLABLE	IRRIGATION	254 31	AGRI CULTURE	42.6000 LOG, 1966 114.9442
				l Č			

	42.6744 LOG, 1975 4.8244	42.6682 LOG, 1973 114.8239	42.6670 LOS, 1973 114.8221	42.6602 L06, 1973 114.8114	42,6606 LDS, 1971 114,8126	42,6597 LOG, 1974 114,8124	42.6595 L05, 1971 114.8099	42.6333 LOG, 1977 114.7668	42.5988 114.7560	42.6006 L00, 1960 114.7497	42-5962 LOS, 1961 114.7508	42.5901 114.9874
				PASTEURIZED MILK PROCESS YES								
	GRAIN-HAY DRYING	HIDROPONICS	FISH FARMING	78 SOIL WARMING	ApuAdii.Ture	SHRIMP FAMILING	FERRENTATION	HEATING ALD COOLING WITH HEAT PURP	CATFISH FARMINS	HEAT PURP COOLING WITH	BIODESRADATION	FISH FRAMING AND HATCHING
	114 46	230 34	167 57	228 33	161 33	259 32	184 33	42 24	274 30	196 20	322 32	152 26
Ć	DOMESTIC	CATF1SH FARMING	CATF1SH FARMING	STOCK WATERING	DOMESTIC	TROPICAL FISH TEST PROJECT	FISH FAIMING	DOMESTIC	PUBLIC SupplY	COMMERICAL CANNING	Public supply	IRRIGATION
	DRILLER'S LOS AVAILABLE; FLOWING WELL	DRILLER'S LOS AVAILABLE; FLUMING WELL	DRILLER'S LOG WAILABLE	PRILLER'S LOS WAILABLE; FLOWING SELL.	DRILLER'S LOS AVAILABLE; FLOWING WELL	DRILLER'S LOG WAILABLE, S.ONING MELL, OWARF MAS 35 PONDS IN OPERATION	DRILLER'S LOG WAILABLE FLOWING WELL	FLOHING WELL RELIFER'S LOG AVILABLE;		DRILLER'S LOS AVALLABLE	DRILLER'S LOG AVAILABLE	
	1135 PLIDGENE EXISALT AND SEDIMENTS	11355 PLIOCENE BASALT AD	5677 PLIOCENE BASALT AND SEDIMENTS	11355 PLICCENE SEDIMENTS & BASALT AUD SILICIC VOLCANIC ROCKS	2271 PLIOCENE SEDIMENTS AND BASALT	1514 PLIOCENE BASALT AND SILLOIC VOLCANIC ROCKS	3785 PLIOCENE SEDIMENTMRY ROCKS	56 QUATERNARY AND TERTIARY BASALT AND SEDIMENTS	FLICENE BASALT AND SILICEC VOLCANIC ROCKS (2)	4186 QUATERNARY AND TERTIARY BASALT AND SEDIMENTS	2876 PLIOCENE BASALT AND OLDER SILICIC VOLGANIC ROCKS (2)	4942 QUATERNARY AND TERTI ARY BASALT AND SEDIMENTS (?)
	DICK KASTER HELL 95 14E 4BDC1	LED RAY WELL #1 95 14£ 40001	LED RAY MELL #2 95 14E 4(2001	ED KERPA WELL 95 14E 9ADD1	KENNETH HARBAST MELL 95 14E 9ADD2	ROBERT LUNTEY WELL 95 14E 9A005	MESLEY REYNOLDS MELL 95 14E 106CC1	MRIGHT FUEL CO. WELL 95 14E 248CA1	BUHL CLTY WELL #1 95 14E 36DAG1	GREEN GLANT CANNING 95 15E 31CBB1	BUHL CITY MELL #2 95 15E 310081	CHESTER MCCLAIN WELL #1 105 12E 1A401

-323-

-

Dis- charge ((//min) Aquiter Age and Rock Type	Geologic Structure	Deposition Cart Sili- Con- Gas Cecus ates Present Use	Wall Surf. For* DepthTemp.Temp. (m) (90) (90)	I- Potential Use Based on Potential Use Based on Bast Estimate of Surface Temperature** Subsurface Temperature***	n Chen/ Latitude 1 Trace Anal: Longitude Reference
		Twin Falls County (cont'd.)	nt'd.)		
QUATERNARY AND TERTIARY BASALT AND SEDIMENTS (?)		IRRIGATION	152 26	FISH FARMING	42.5896 114,9938
QUATERNARY AND TERTLARY BASALT AND SEDIMENTS (?)		IRRIGATION	152 25	HEATING AND COOLING WITH HEAT PUMP	42,5610
quaternary and terflary Basalt and sediments	DRILLER'S LOG WAILABLE	IRR IGATION	135 25	HEATING & DOLING WITH	42.5796 LOG, 1955 114.9933
		ISR JEAT FON	152 25	FISH FARMING	42.5813
		LIRR I GAT I ON	152 25	STOCK MATERING	42.5822
		IRR IGAT ION	152 26	HEATING AND COOLING WITH HEAT PUMP	42.5812 115.0188
ROCKS	DRILLERIS LOG AVALABLE	IRRIGATION	147 23	FISH FARMING	42,5657 LOG, 1961 115,0136
PLIOCENE BASALT AND SEDIMENTS	ORIGINALLY USED BY FILER SCHOOL WHICH HAS BEEN DEMOLISHED	RECREATION	287 27	FERMENTATION	42.5675 LOG, 1965
		IRGIGATION	S65 28	BLODEGRADATION	42,5487 114,4381
PL FOCENE BASALT AND SED IMENTS	DRILLER'S LOG AVALABLE	DOMESTIC	121 20	HEATING AND COOLING WITH HEAT PUMP	42.5329 LOG, 1964 114.3215
		(

(¹⁰⁰	42,455 14,2285	42.4588 114.2007	42.4276 LOG, 1977 114.2762	42.4176 HQSS, 1971	42.4177 NOSS, 1971	42,4249 ROSS, 1971 114,2605	42.4176 LCG, 1955 114.2385	YES 42.4176 A055, 1971 14.2289	42.4175 R055, 1971 114.2066	YES 42,4175 114,1960	42.3362 114.5246	YES 42.4107 114.5142
		Ŧ						REFRIGERATION (LDMGR TEMPERATURE LIMIT)	IIVS	GRAIN-HAY DRYING		SEEDLING OOMFERS
	FERMENTAT ION	HEAT PLAR COOLING MITH	HYDROPONT CS	BI GDEGRADAT I ON	HYDROPON1 CS	CATFISH FARMING	BI ODEGRADAT I ON	69 SHELING FARMING	FISH FARMING AND HATCHING	51 AQUACUETURE	Aquacuture	45 HYDROPONICS
	8	273 Z	365 27	350 28	156 23	58	312 31	168 33	8	32	67 34	75
	1 IRI ISAT I ON	IRRIGATION	IRRIGATION	FIRE LEAT LON	114 ISATION	IRRIGATION	1981 GAT 5 DN	IPRIGATION	I HR I GAT I ON		IRFIGATION	IRREGATION
			DRILLER'S LOG AVALLABLE				DRILLER'S LOS AVALABLE			NOT FIELD ONEOKED		NOT FIELD OVECKED
		5110 PLIOCENE SALICIC VOLCANIC ROOKS (1)	1992 PLIDCENE SILICIC VOLEANIC 300KS	QUATERANARY ALLUVIUM ABOVE TERTIARY SILICIC VOLCANIC ROCKS	UNTERNARY ALLUVIUM ABOVE TERTIARY SILICT VOLCANIC ROCKS	PLIDCENE SILICIC VOLCANIC ROCKS (1)	PLIDGENE SILICIC VOLCANIC	7305 GUATERMARY ALLUVIUM ABOVE TERTIARY SILICIC VOLCANIC ROCKS	QUATERNARY ALLUVIUM ABOVE TERTIARY SILICIC VOLCANIC ROCKS			
	RAY STANGER & SONS WELL 115 196 21AUD1	STANGER BROTHERS WELL 15 79E 24A0331	DEAN KIDD WELL #1 115 196 3180A1	THERMAN WELLIS WELL	DEAN KIDD WELL #2 115 19€ 310001	FRANK BA990MS WELL 115 19E 32CND1	J. MOOUSON CREED WELL 115 196 350201	SAM HIGH AND SONS MELL 115 19E 330001	RAY STANGER & SONS WELL 115 19E 35CCD1	THEODORE STURGILL MELL 115 20E 34CCC1	PETE SALIZER WELL 125 16E 56CAD1	125 17E 60881

.....

.....

Spring/Well ldentffication Number & Namo	Uis- charge (1/min) Aquiter Age and Rock Type Structure	0 Kenarks	Ceposition : Car- Sas ceous ates Present use	Weil Surf. Aqui- bepth Temp. Temp. Pc (m) (^O C) (^O C)	Potantial Use Based on Surtace Temperature**	Potential Use Based on Bast Estimate of Subsurface Temperature***	Chen/ Latitude Trace à Anal. Longitude Raference
			Twin Falls County (cont'd.)	(d.)			
NAT-500-PAH N S 125 17E 318AB1S	113 QUATERNARY ALLIVIUM NEAR TERTTARY SILICIC VOLCANIC RODCS		YES RECREATION	56 B1 B10	BLODEGRADATION	PRUNE DEHYDRATION	YES 42,3374 09051HWAITE, 1969 114,5087
125 186 JUUAT		NOT FIELD CHECKED		38 65 SOI	Soil warming	APPLE DEHYDRATION	YES 42.4160 114.2996
ROGER JONES WELL 135 16E 12ABB1	946	FOUR WELLS ARE LOCATED IN THIS INMEDIATE AREA		52 35 DE-	DE1C1:NG ROADWAYS		42.3161
JONES CORP. MELL ∉1 135 17E 6CAB1	3705 PALE0201C %TAMORPHOSED SEDIMENTS (7)	ORILLER'S LOS AVAILABLE	IRRIGATION	137 39 SOI	soil warming		42.5218 L06, 1954 114.4645
JONES DORP. MELL, #2 135 17E SOBA1	5110 PALE201C SEDIMENTARY ROLXS (7)	DRILLER'S LOG AVAILABLE	IRRIGATION	167 39 FEH	FERNEN TAT I ON		42.3291 LOG, 1966 114-5114
JONES 0089. MELL #3 155 17E 60801	13248 PLIOGENE SILICIC VOLCANICS AU PALEOZOIC METANGRPHOSED SEDIMENTS (7)	סאוראטרב ומא אאוראטרב	IRRIGATION	182 39 STO	STOCK MATERING		42,3325 L06, 1958 114,5109
HOLLISTER VILLAGE NELL 135 17E 78AB1	340 PALEDZDIC SEDIMENTARY ROCKS	FLOWING WELL DRILLER'S LOG AVAILABLE;	DOMESTIC	105 54 101	SOIL WARMING		YES 42,5167 LGS, 1967 114,5085
H-BAR-H RANCH MELL 165 17E SOACA1	. 170 JUNTERNARY ALLUYLUM. PLIODENE SEDINERITS AND SILLIDIC VOLCHALC NOCKS (2)	FLOWING WELL	RECREATION	73 45 689	נאנאן א-ינאל מצע ואנ		42.0131 LOS, 1969 114-5037 LOS, 1969
MAGIC H 5 165 17E 30ACATS	PLIQDENE SILICID VOLCANIC RODCS	FOUR SPRING VENTS; SLIGHT	YES YES RECREATION	43 68 SEE	SEEDLING OONIFEHS	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 42.0129 ROSS, 1971
ROCKY CARTON H S 114 SE 2903815	189 GRETALEOUS GRANTIC ADOX	THO SPRING VENTS; TEMERATURE MANGE 43-49 DEGREES C; X-RAY AMALYSIS INDIOATED SOME CALCITE	<u>Valley County</u> YES YES UNUSED	49 294	SPACE HEATING		44.2526 ROS5, 1971

÷

(Carlos de la compañía de	9 ROSS, 1971	9 R055, 1971	11 R055, 1971	1) WARING, 1965	17 HOSS, 1971	19 BEARD, 1978 (SITE BINSPECTION)	0 NEWCOMB, 1970	20 R055, 1971	51 R055, 1971	52	52 NEWCOMB, 1970	YES 44-5676 MARING, 1965 113-6950
	44. 5999 115.8199	44.3619 115.8411	44, 5921 115,8336	YES 44.3641 115.6960	YES 44.3297 115.8021	44.4648 116.0368	YES 44.4160 116.0315	44.4500 115.7624	44,4451 113,2388	44,5829 116,1124	YES 44.5110 116.0352	YES 44, 967
				BARLEY MALTING PROCESS	REFRIGERATION (LOWER TEMPERATURE LIMIT)		Ski Hone Ja				Soil warking	BEET SUGAR PROCESSING
		ANIMAL HUSBANDRY	AFDROPONI CS	5 89 PASTEURIZATION	9 74 SOIL WARMING	space Heating	1 99 REFRIGERATION (LOWER TEMPERATURE LIMIT)	٥	o	ø	42 46 SEEDLING CONIFERS	86 147 BLAKHING
	o	5	36	8	39	44	11	Ũ	0		15	æ
	LRR1GATION	YES IRRIGATION	UNUSED	YES YES IRRIGATION	I RR I GAT I ON	YES RECREATION	YES VER UNUSED		UNUSED		YLA PUBLIC SUPPLY	YES YES YES RECREATION
	MOT FIELD CHECKED, SEVERAL SPRING VENTS, REPORTED BY R 055, 1971	SEVERAL SPRING VENTS AND NUMEROUS SEEPS, TEMPERATURE RANGE 28-59 DEGREEES C	MOT FIELD CHECKED; SEVERAL SPRING VENTS	TEAPERATORE RANGE 80-66 Y DEGRES C, NUNEFRACTION VENTS, X-RAYN DIFFRACTION MARLYSIS, TRUICATED SMALL AMOUNT OF CALCHTED SMALL	NOT FIELD ONECKED, EIGHT SPRING VENTS REPORTED REPORTED BY ROSS, 1971	F	THREE SPRING VENTS AND NUMEROUS SEEPS; TEMPERATURE RANGE 56-71 DEGREES C	NOT FIELD CHECKED; SEVERAL SPRING VENTS; REPORTED BY ROSS, 1971	NOT FIELD DHECKED; REPORTED BY ROSS, 1971	NOT FIELD CHECKED; SUBMERGED IN CASCADE RESERVOIR		SLIGHT SULFUR ODOR; NUMEROUS SPRING VENTS; TEMPEROUS SPRING VENTS; DEGREES CI XXXAY MALYSIS
				NORTHEAST TRENDING FAULT			NORTHMEST TRENDING FAULT				NORTHWEST TRENDING FAULT	
	CRETACEOUS CRAWITIC ROCK	ORETACEOUS GRANTTIC ROCK	CREFACEOUS GRAWITIC ROCK	624 CRETACEDUS GRANITIC ROCK	CRETACEOUS GRANITIC ROCK	94 QUATERNARY ALLUVIUM	227 CRETACEOUS GRANITIC ROCK	CRETACEOUS GRANITIC ROCK	CRETACEOUS GRANTIC ROCK		QUATERNARY ALLUVIUM KEAR CRETACEOUS GRANITIC ROCK	2271 CRETACEOUS CRANITIC ROCK
	GOAF M S 12N 5E 2DACIS	DASH CREEK M S 12N SE 1000C1S	GROUND HOG W S 12M 5E 11BBD1S	BOLLING SPRINGS H S 12N 5E 228BC15	STLVER OREEK PLUNGE 124 5E 3608A1S	BELVIDERE H S 13N JE 13A001S	CABARTON H S 13N 4E 31CAB1S	BULL CREEK H S 13N 6E 290AB1S	BEAR VALLEY H S 154 TOE 220AB1S	CASCADE RESERVOIR H S 14N 3E 5A 1S	CASCADE CITY WELL 14N JE 36ABD1	VULCAN H S 14N 6E 118DA1S

-327-

e Reference	ROS5, 1971	R055, 1971	6E.HCONE, 1970	R055, 1971		- WARING, 1965		2 4055, 1971		5 ROSS, 1971	
Chem/ Latitude Trace & Irade Anal. Longitude	44.5543 115.3009	44.5159 115,2946	YES 44,6404 16,0448	44,6209 115,9847	44.6386 115.6709	YES 44.6423 115.6926	YES 44.6315 115.6967	44 . 6263 115 . 7492	44.6278 115.1968	44.6756 115,9427	
Potential Use Based on Best Estimate of Subsurface Tamperature***			ANIMAL HUSBANDRY			PASTEURIZEN MLK PROCESS	WINAL HUSBANDRY				
Aqui- fer* Potential Use Based on (℃) Surface Temperatura*		SEEDLING ONLEERS	62 SPACE HEATING	AQUACULTURE		83 GAME BIRD HATCHERY	62 MUSHROOM GROWING	GRAIN-HAY DRYINS		SEEDLING CONFERS	
Well Surf. Depth Temp. (m) (^O C)	(·	4 V	32	8	¢	5	54	50	o	ŝ	
Deposition Car- Sill- bor- Present Use cous gtes	Valley County (cont'd.)		YES YES IRRIGATION	YES YES IRRIGATION	UNUSED	YES (?) REOREATION		YES RECREATION	UNUSED	YES YES YES RECREATION	
Remarks Sas	NOT FIELD CHECKED; REPORTED	REPORTED BY ADSS-UMABLE TO CONFIRM, TEMPERATURE RANGE 37-45 DEGREES C	SULFUR 2008		Suenergeu in Marn Lake; Three shring vents reported	TEMPERATURE RANGE 52-59 DEGREES C; SEVERAL SPRING VENTS	REPORTED TEMPERATURE; NOT FIELD O4ECKED		NOT FIELD OFFICKED	X-RAY DIFFRACTION ANALYSIS AVAILABLE	
Geologic Structure											
Dis- chorga (I/rain) Aquiter Aga and Rock Type	CRETACEDUS GRANTTIC ROCK	CRETACEOUS GRANITIC ROCK	227 QUATERNARY ALLUVIUM NEAR NIOCENE BASALT AND GRETALEOUS GRANITIC ADGX	227 LAFFACEDUS CRANITIC ROCK		285 CHEFACEOUS GRANTIC ROCK		227 QVETACEDUS DRANITIC ROCK		318 CREFACEOUS CRANITIC ROOK-BRECKINTED	
Spring/Weil : Spring/Weil : Identification co Number & Name (SULPHUR CREEK H S 141 95 134 15	DAGGER ONEEK H S 14N 10E 30C 1S	ARLING W S 1500 JE 1508CIS	HADLEY W S 15N 4E 2108815	NARM LAKE SPRINGS 15N 6E 13ACA15	MOLLY'S H S 15M 6E 14ABB13	SOUTH FURK PLUNGE 13M 6E 14CDB1S	TRAIL OREEK H S 15N 6E 20AAC1S	SMEEPEATER H S ISN 10E 2488815	GOLD FURK H S 16N 4E 5500815	

			1 			
DOLLAR GREEK % S 164 GE 140001S	18 CRETACEDUS GRANITIC ROCK		UNUSED	20 FISH FAMING		44.7173 BEARD, 1976 (SITE 115.7033 INSPECTION)
UPPER PISTOL CREEK H S 16% 10E 14CDA1S	ORETACEOUS GRANITID ROOK	NOT FIELD OFECKED	UNUSED	o		44.7109 ROSS, 1971
LITTLE PISTOL DREEX 164 10E 1408A1S	CRETAGEDUS GRANITIC ROCK	NOT FIELD OFCINED	UNUSED	э		44.728 4055, 1971
PLSTOL OREEK H S 16N 10E 14DBCTS	OREFACEOUS GRANITIC HOCK WITH TERTIARY DIKES	NOT FIELD CHECKED, REPORTED TEMPERATURE	UNUSED	46 63 SOIL WARMING	ANI VAL HUSBANDKY	YES 44.7201 CATER AD CIHERS YES 113.2072 1473
SUNFLOMER FLAT H S 16N 12E 1583815	CRETACEOUS GRANIFIC MOCK	NOT FIELD CHECKED; REPORTED TEMPERATURE	- UNUSED	65 77 APPLE DEHYDRATION	PASTEURIZED MILK PROCESS	YES 44.7295 GARTER AND GTHERS 111.9925 1973
RIVERSIDE M S 16N 12E 16CBB15	QUATEMARY ALLUYUM NEAR GRETACEDUS GRANITIC HOCK	NOT FIELD CHECKED, REPORTED TEMPERATURE	UNUSED	59 80 GAVE BIRD WATCHERY	PRUNE DEHYDRATION	YES 44.2214 CARTER AND OFFERS 113.0132 1973
HOLDOVER H S 17N 6E 28AA15	37 CRETACEDUS GRANTIC ROCK		RECKEATION	47 MLSHROUM GROWING		YES 44.9467 3055, 1971
17N 7E 51BCB15		NOT FIELD CHECKED	UNUSED	9		44.7702 115.66 <i>27</i>
KWISKWIS H S 17N TOE TIBBAIS	CRETACEOUS GRANITIC MOOK	NOT FLELD CHECKED, REPORTED BY ROSS, 1971	UNUSED	69 95 ANTMAL HUSBANDRY	BLANCHING	YES 44.8312 ROSS, 1971 115.2151
MID FK INDIAN CREEK 17N TE 16ACBIS	CRETACEOUS GRANITIC ROCK	NOT FIELD CHECKED, REPORTED INFORMATION	UNUSED	72 142 APLE DEHYDRATION	FREEZE DRY ING	YES 44.8129 10555, 1971 115.1229
INDIAN CREEK H S 17N 11E 21B 2S		NOT FIELD ONECKED, REPORTED INFORMATION	UNUSED	88 142 BURLEY MALTING FROCESS	PDIATOE DEHYDRATION	YES 44.7988 115.1209
COX H S 17N 13E 27AACIS	TERTIARY GRANIFIC ROCK	NOT FIELD CHECKED; REPORTED BY ROSS, 1971	UNUSED	55 73 GRAIN-HAY DRYING	BLAICHING	YES 44.7850 R055, 1971 114.8551

Basic Data Table 4.	ile 4. Location, Geologic Environment, Present Use	ronment, Prese	nt Use and Potential Use of Thermal Springs and Wells in Idaho (continued)	of Thermal S _I	rings and We	ells in Id.	aho (continued)		
Spring/Wel! dentification Number & Name	Dis- charge (l/min) Aquiter Age and Kock Type	Geologic Structure	Remar ks	Jeposition Car- Siti- bon- cœous ates	Present use (n	Well Surf, Aqui- bepth Temp. Temp. (m) (°C) (°C)	Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace å Anai. Longitude Reterence
				<u>Valley County</u> (cont'd.)	{ (cont,q.)				
HOSPITAL H S 17N 14E SCBCES	TERTIARY GAMITIC ROCK		NDY FIELD CHECKEU; REPORTED BY ROSS, 1971	nnu	UNUSED	46 69	SEEDLING ODNIFERS	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 44.8361 ROSS, 1971 114.7904
TEAPDT H S IBN 6E 9ADCIS	56 ORETACEOUS GRANITIC ROCK		SULFUR ODOR	REC	RECKEATION	ð	ANTRAL HUSBANDRY		, YES 44.9137 BEARD, 1978 (SITE 115.7215 INSPECTION)
HOT CREEK W S 18N BE 1790A15	37 DRETACEOUS SRAWITIC ROCK			YES	RECREAT I ON	36 79	DE-ICING	PASTEURIZED MILK PROCESS	YES 44.8996 ROSS, 1971 115-3045
LICK CREEK W S 20N 5E 15DA31S	15 CRETACEOUS GRANITIC ROCK			UNU	UNUSED	55	AQUACULTURE		45,0697 ROSS, 1971
SHEEP CREEK H S ZON 7E 55A 1S	578 QUATERNARY ALLUVIUM NEAR DRETACEOUS BRANITIC ROCK		REPORTED BY ROSS-IMABLE TO CONFINM, TENPERATURE RANGE 32-58 DEGREES C			50	SHTNEOLOGICAL BATHS		45.0353 ROSS, 1971 115.5606
SECESH H S ZIN SE 11D 1S	378 CRETACEOUS GRANITIC ROCK		REPORTED BY ROSS-UNABLE TO			٥			45.1699 ROSS, 1971
				<u>Washington County</u>	1 <u>County</u>				
COVE CREEK H S TON 3W 900015	189.2			CNU C	INULSED	55 172	HOTEEU HEATING	VISCOSE RAYON	YES 44.2112 116.7100
ELVIN CRAIG WELL 11N 2W 16AAB1	10977 MICCENE BASALT			*	IRSIGATION	134 21 83	FISH HATCHING	PASTEURI ZATION	YES 44.2941 YOUNG NED OTHERS, 116.5762 1977
PHIL SOULEN WELL	757 QUATERNARY AND TERTLARY SEDIMENTS		DRILLER'S LOG AVAILABLE	121	IRRIGATION	150 25	DE-LCING		44.26.28 YOUNG AND OTHERS,
CRANE OREEK H 5 11N 3M 7EDBIS	סאבערעוועפ אוסכבאב מאפערע ארועוועא אוסכבאב מאפער	NORTHMEST TRENDING FAULT	NUMEROUS SEEPS; TENPERATURE RANGE 56-74 DEGREES C	YES UNL	CI35 NNN	74 172	172 APPLE DEHYDRATION	DRYING OF FISH NEAL	YES 44.3064 NEWCURB, 1970 16.7455
Network									

1. MARET		RTH TRENDING	PLOWING WELL, DRILLER'S LOG		424 36 AQUAQULTURE	ų		44.2848 L00, 1967
MILLIAM BYUMMET MELL 11N 4W 33D3AJ	ULAILINANY PUL IEKILAKY SEDIMENTS	AULT RENDING	HUNDERS MOT FIELD		R	ų		115,8119 UU, 1797
DOUGLAS MOGINNIS WELL 5W 206001	113 PLOCENE AND PLETSTOCENE SEDIMENTS		DRILLER'S LUG AVAILABLE	STOCK WATERING	59 21 61 CATFISH FARMING		ANIMAL HUSBANDRY	YES 116,3624 LOS, 1964
30681			NOT FIELD CHECKED		182 24 45		SEEDLING CONFERS	YES 44.3177 117.0412
11N 6W 3DCBT 11N 6W 3DCBT	189 PLIOCENE AND PLEISTOCENE SUNNENTS, MIOCENE BASALT (7)			UNU SED	66 28 69 FERRENTATION	NO	APPLE CEHYDRATION	YES 44.3143 YONG MD OTHERS.
VELSER H S 11N 6W 10ACB1S	18 PLIODENE AND PLEISTOGENE SEUIMENTS, MIOCENE BASALT		MAINLY SEPAGE		22 42 FISH FARMING	SM 1	SC MO40240744	YES 41.3065 YUNG AU OTHERS, 117.0420 1977
GEOSOLAR GROWERS WELL #1 11N 6W 10CCA1	5677 MIOCENE BASALT		FLOWING WELL; SULFUR COOR; CRILER'S LOG MAILAGLE; ALSO KNOM AS WEISER H S WELLS	RECREATION	121 70 140 REFRIGERA TEMPERATU	REFRIGERATION (LOWER TEMPERATURE LIMIT)	POTATOE DEHYDRATION	YES 44.2989 NEWCUVB, 1970 117.0490
GEDSOLAR GROWERS MELL #2 11N 6W 10CCA2	75 ALOCENE BASALT		FLOWING WELL; SULFUR COOR	RECREAT I ON	31 77 145 APPLE DEMYDRATION	YDRAT I ON	ODRN PRODUCTS (SYRUP, 01L)	YES 44.2995 NEWCONB, 1970 117.0497
GEDSOLAR GROWERS WELL #3 11N 6W 10CCA3	37 MICCENE BASALT		FLOMING MELL, SULFUR COOR	RECREATION	27 76 156 ANIMAL HUSHANDAY	SIANDRY	BEET SUGAR PROCESS	44.2994 NEWDWB, 1970 8860-1112,0488
NAK AMJRA BROTHERS WELL 11N 6W 1500A1	1249 PLIOCENE AND PLEISTODENE SEDIMENTS		DRJILER'S LOG AVALNALE; FLOWING WELL; SULFUR COOR	IRIGATION	92 30 Aquaduture	뀓		44.2857 LOG, 1977 117.0334
FRANK CHANDLER WELL 12N 5W 330BC1	1514 QUATERNARY AND TERTIARY SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	42 24 BLODEGRADATION	ATION		44.3313 YOUNG MD OTHERS, 116.9422 1970
OLD HOMESTEAD W S 12N 6M 288881S				UNUSED	6 0 FISH FARMING	9N		4125. 14 Elfo. 11
MIDVALE CITY WELL	7570 MIOCENE BASALT; QUATERAARY AND TERTIARY SEDIMENTS		DRILLER'S LOG MAILABLE; FLOWING WELL	PUBLIC SUPPLY	293 29 HYDROPONICS	cs	MASHING AND ORYING OF NOOL YES 44.4716 MALKER, 1964 116.7319	YES 44.4716 WALKER, 1964 116.7319

-331-

÷

Reference		WALKER AND SESCO.	NEWCOMB, 1970	1977	NEWDONE, 1970	NEWCOMB, 1970	151
		WALKES	NEWCOR	1977			901
Latitude \$ congitude		YES 44,4660 116,7655	44 . 5860 1 16 • 6 304	44.5738 116.6218	44,5728 116,6778	44 . 5313 116 . 7535	44.6477 LOG, 1977 116.6829
Chem/ L Trace Anal.		YES	YES		YES	YES	
Potentia; Use Based on Best Éstimate of Subsurface Temperature***		GRAIN-HAY DRYING	PASTEURIZED MILK PROCESS			APPLE DEHTORATION	
iqui- ter* Potentiai Use Based on PC) Surtace Temperature**		51 F1SH FARMING	70 APPLE DEHYDRATION	FISH FARMING		63 BALNEOLOGICAL BATHS	FISH HATCHING
Surf. fer* Tamp. Temp. (°C) (°C)		\$	70	ន	×	22	۲Z
Wel: S Depth T. (m)	تع • ت	415		20	582 5		6
Present Use	<u>punty</u> (cont'	IRRIGATION	SPACE HEATING	RRIGATION	ୟୁମ୍ବାର ଆଜନ୍ୟ	YES UNUSED	DOMEST IC
Caposition Sas Ceous ates	<u> Washington County</u> (cont'd.)		YES			YES	
Remarks		FLOWING NELL	NUMEROUS SPRING VENTS; TEMPERAURE 63-70 DEGREES C SULFUR COOR	DRILLER'S LOS AVAILABLE	RLOWING WELL; DRILLER'S LOG WAILABLE		DRILLER'S LOS AVAILABLE
Geologic Structure							
Dis- chorge (I/ain) Aquifer Age and Rock Type		151 MIOCENE BASALT	378 QUATEWARY ALLIVIUM NEAR NIOCENE BASALT	1135 PLIOCENE MU PLEISTOCENE SENIMENTS	1514 MIOCENE BASALT	378 JUATERNARY ALLIVIUM NEAR MIDIENE BASALT	131 PLIUCENE AND PLEISTUCENE SEDIMENTS E WASALT
Spring/Wall D Identification ch Number & Name (1		FAIRCHILD LUMBER OD. 15N 4W 13BAC1	LAKEY H S 14N 2W 688A1S	SALUBRIA CEMETERY WELL 14N 2M GDCB1	CAMBRIDGE CITY WELL 14N 3W 300C1	FARRONLD H S 34N 3W 1908D15	KERMIT MICSINS WELL 154 SE 100BCI

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

(interpretention of the second second

PRELIMINARY ENVIRONMENTAL ASSESSMENT

(more

IDAHO GEOTHERMAL RESOURCE AREAS

by

S.G. Spencer

and

J. F. Sullivan

EG&G Idaho, Inc. Idaho Falls, Idaho

(messe)

·

TABLE OF CONTENTS

Page

(internet

I.	Introduction	337
II.	Description of Potential Activity	2/1
III.	Description of Existing Environment	241
	A. Council-Cambridge	341
	B. Boise-Weiser	347
	C. Bruneau-Grandview	
	D. Mountain Home	365
	E. Blue Gulch, Twin Falls, and Artesian City	372
	F. Pocatello	378
	G. Hailey	386
IV.	Potential Environmental Impacts	392
TA.		392
	A. Air Quality	202
	B. Noise	222
	C. Soils	392
	D. Water Resources	392
	E. Seismicity	393
	F. Subsidence	393
	G. Flora	393
	H. Fauna	394
	I. Socioeconomics	394
	J. Archaeological and Historical	394
	References	395
	Relerences	222

-335-

(intervent

I. INTRODUCTION

This preliminary environmental assessment was prepared to address the major environmental concerns in nine areas in Idaho (figure I-1) with significant geothermal resource potential. This assessment is brief and is not intended to provide a comprehensive environmental analysis of each area; instead, it has been compiled to provide preliminary environmental information as a companion to resource data for these areas. The nine areas addressed are:

A. COUNCIL-CAMBRIDGE

An area encompassing approximately 96,000 ha (hectares) in the Weiser River drainage of western central Idaho.

B. BOISE-WEISER

friday

An area approximately encompassing 460,000 ha in western Idaho, including parts of Washington, Payette, Gem, Canyon and Ada counties.

C. BRUNEAU-GRAND VIEW

An area of approximately 186,000 ha just south of the Snake River in Owyhee County in southwest Idaho.

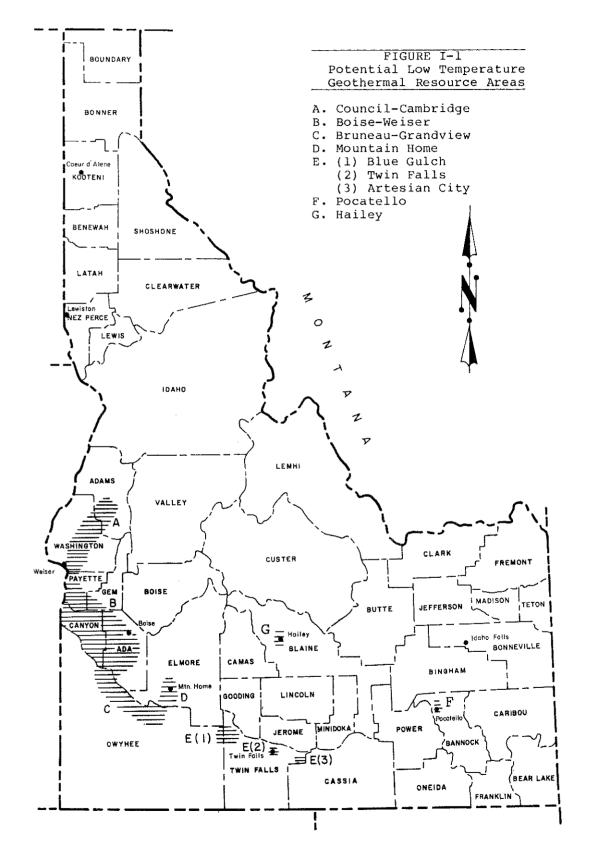
D. MOUNTAIN HOME

Approximately 54,000 ha surrounding the city of Mountain Home in southwest Idaho.

E. BLUE GULCH, TWIN FALLS, AND ARTESIAN CITY

Three areas encompassing 38,000, 13,000, and 10,000 ha, respectively, south of the Snake River in southcentral Idaho.

F. POCATELLO


An area of approximately 11,000 ha north and west of the city of Pocatello in southeastern Idaho.

G. HAILEY

An area encompassing 16,000 ha in Blaine County in central Idaho.

STATE OF IDAHO

(internet

II. DESCRIPTION OF POTENTIAL ACTIVITY

émese.

Geothermal developments currently underway include expansion of the space heating system in Boise and the drilling of wells in Twin Falls for space heating at the College of Southern Idaho. Development in the other areas under consideration is limited; however, enough interest has been expressed in developing the resources in these areas that it can be assumed that geothermal activity will increase.

Nearly all resources identified in the areas under consideration are low to moderate temperature resources below 50°C (Celsius). These can be developed for a variety of direct uses, including greenhouses, space heating and cooling, pasteurization, food processing, aquaculture, and animal rearing. In each of these processes, the geothermal fluid replaces the water-boiler systems or the heating systems and thus no major change in system design is required.

Wells drilled to provide geothermal fluids for direct use processes will generally range from less than 100 m (meters) in depth to over 1200 m deep, depending on the location and temperature of the resource. State regulations require that such wells be drilled by a licensed driller under a permit and that they be cased and cemented to preclude contamination of shallow groundwater supplies. Where higher temperatures may be encountered, blowout prevention equipment is required.

Less than 0.5 ha of land is generally cleared and graded for a drilling pad. Small reserve pits may be excavated to contain fluids encountered during drilling. When mud is used to drill the wells, mud tanks or lined mud pits are generally used as reservoirs for the mud circulation system. Access roads to move drilling equipment to the drill site are usually one-lane, ditched for drainage, and gravelled.

In addition to the drill rig, office trailers, equipment storage sheds, pipe racks, generators, and fuel tanks may be moved onto the site. All of these facilities are portable and are on location only during drilling and testing of the well. Portable sanitary facilities and water supply may also be provided.

Upon completion of the well, a wellhead is installed and connected to a supply pipeline or ditch. Geothermal pipelines are generally insulated and buried to prevent large heat losses during transport. Disposal of the geothermal fluids downstream of the processes will vary. Currently used methods of disposal include injection, discharge to a surface water source (including irrigation canals) and cycling through other uses (including domestic water supply). The disposal method chosen depends on the quality of the geothermal fluids, local regulations, the type of process, and economic considerations.

6.009

III. DESCRIPTION OF EXISTING ENVIRONMENT

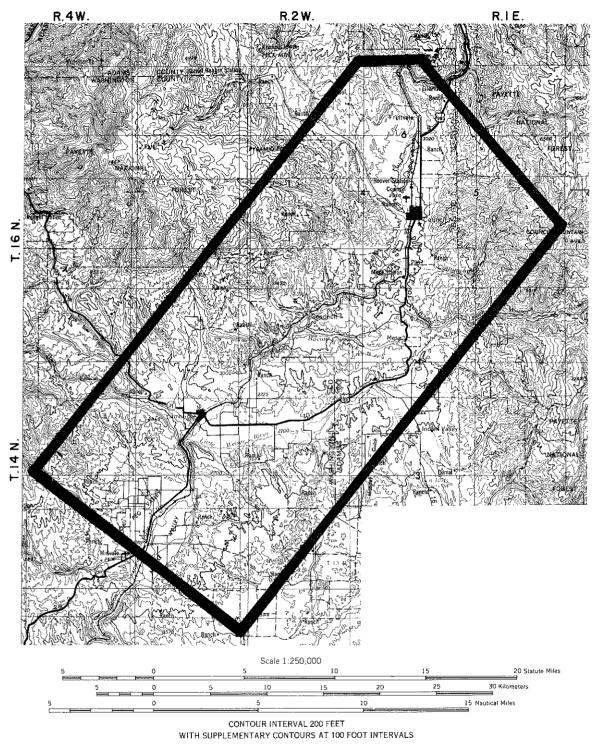
A. COUNCIL-CAMBRIDGE

(inter-

1. Physical Environment

a. Climate

The climatic conditions of the Council-Cambridge area are generally influenced by predominant lows in the winter and highs in the summer. As a result, heavy winter snows and spring rains are usual, while summers are hot and Precipitation ranges from 64 cm (centimeter) at' dry. Council in the Weiser Valley to over 115 cm in the surrounding mountains. Eight percent of the precipitation falls primarily as snow in the period from October through Frequent chinook storms in December and January April. result in rapid melting of the snowpack and subsequent erosion damage. Temperatures at Council range from -32 to 43°C with the annual temperature averaging 4°C. There are approximately 138 frost-free days annually in the valleys of the Weiser basin (USFS, 1975).


b. Air Quality

In general, the air quality in the area is good, with the average background level of particulates estimated at less than 15 μ g/m³ (micrograms per cubic meter). Sources of pollution include sawmills at Council, slash burning, road dust, vehicle emissions on Highway 95, rock-crushing, and campfires. In general, pollutants are readily dissipated. However, frequent inversions in the fall during slash burning combine to hold smoke in the upper valleys.

c. Land Resources

(1) Topography

The Council-Cambridge area is located in the Wallowa-Seven Devils section of the Columbia Plateau physiographic province. North-south trending block mountains and structurally-controlled landscapes are typical. The Weiser basin is very irregular with rolling profiles in the valleys. The main feature in the area of interest is the valley of the Weiser River, which trends south from the Seven Devils Mountains to the river's confluence with the Snake River at Weiser. The valley is bounded on the east by the West Mountain block. On the west, the Cuddy Mountains separate the valley from the canyon of the Snake River. Elevations range from 820 m at Midvale in the south to 2480 m on Council Mountain in the northeast corner of the area.

TRANSVERSE MERCATOR PROJECTION

A. Council-Cambridge Study Area

(2) Geology

filling.

Plateau basalt flows of the Columbia River formation are the most extensive rock type in the area. These basalts are usually weakly weathered and moderately to well-fractured. Granitics of the Idaho Batholith occur in scattered exposures in the area. In the valleys of the Weiser River and its tributaries, the basalts are overlain by colluvium, fanglomerates, stream and lake deposits, and alluvium. A significant area of glaciation and associated glacial debris is located on Council Mountain in the northeast corner of the area. Primary faulting in the area occurs perpendicular to the Weiser Valley.

(3) Soils

The primary parent material of soils in the Council-Cambridge area is the Columbia River basalts. These soils are generally fine to medium-textured loams and silt loams ranging in depth from 76 cm to 127 cm. Productivity is relatively high and erosion hazards are moderate to low. Soils overlying the granitics are much less extensive, coarse-textured loams and sandy loams with moderately low productivity. The erosion potential in these latter soils is moderate to high, while the basaltic soils are generally stable. Mineral fertility is high in most soils. Caliche and relatively high salinity occur in the soils overlying the lacustrine deposits on foothill slopes.

d. Water Resources

(1) Surface Water

The primary stream in the area of interest the Weiser River, which drains 1567 km² (square is kilometer) above the gaging station at Cambridge. The discharge at this station averages 19 m³/s (cubic meter per second) and ranged from a maximum of 286 m^3/s on 12/22/55 to a minimum of $0.23 \text{ m}^3/\text{s}$ on 11/16/58. The source of water in the basin is snowmelt. Because of the irregularity of the basin, more than 60 percent of the annual runoff is contributed by tributaries on the east-side of the basin. Warm temperatures and rainstorms produce significant runoff in the winter and spring. In the 1974-1975 water year, 80 percent of the total flow of the river occurred in the period from March through June, with an average discharge during May of nearly 80 m³/s. Total suspended solids during the same period ranged from 22 mg/l (milligram per liter) to 229 mg/1. Measurements of daily sediment discharge were 247 metric tons in February, 1316 metric tons in May, and 21 metric tons in July. The average quality of the river near Cambridge in 1974 and 1975 is shown in table A-1.

TABLE A-1 QUALITY OF WEISER RIVER (mg/1)						
Ca	9.9	HCO ₃	56			
K	1.5	SO4	4.3			
Mg	3.5	TDŜ	82			
Na	6.4	рН	8.0			
C1	1.7	Specific	100			
_		Conductance				
F	0.1		a definitely and the answer with reaction reaction and a same state			

é e e constante

Flow in the river is regulated to some extent by the Lost Valley Reservoir, 92 km upstream from the mouth, and by other smaller reservoirs. Diversions above Cambridge are used to irrigate about 5000 ha. Downstream, water is used for irrigation in the lower Weiser Valley and for power production on the Snake River (USFS, 1975).

(2) Groundwater

Groundwater in the upper Weiser basin occurs primarly in the Columbia River basalts under both water table and artesian conditions. Some water occurs in the thin layers of sand and gravel sediments in the valley bottoms around Cambridge. Depth to water in irrigation and domestic wells in the area ranges from 0.06 m to 34 m. The average quality of water produced from these wells is shown in table A-2. Domestic and stock water supplies are generally derived from individual wells and springs. Industrial water use is limited to the timber industry and primarily obtained from surface water with some is supplemental groundwater.

TABLE A-2 GROUNDWATER QUALITY (mg/1)						
Ca K Mg Na_ C <u>1</u> F	16 7.7 6 29 2.8 0.4	HCO ₃ SO 7 TDS PH	143 17 210 7.6			

2. Natural Environment

a, Flora

Écontra de

The vegetation in the Council-Cambridge area can be divided into two basic types, based on elevation. At lower elevations there are scattered stands of ponderosa pine (Pinus ponderosa), with bluegrasses (Poa secunda), bluebunch wheatgrass (Agropyron spicatum), and Idaho fescue Big sage (Artemísía tridentata) is common (Festuca sp.). and primary forbs include phlox (phlox sp.), asters (Aster sp.), and western yarrow (Achillea sp.). Some rocky areas support only sparse grasses and forbs. At higher elevations in the mountains east of Council, ponderosa pine predom-The understory is much heavier and is composed of inates. species such as snowberry (Symphoricarpos albus), chokeberry (Pontentialla virginiana), and ninebark (Physocarpus sp.). Forbs includes asters, horsemint (Monarda sp.), geranium (Geranium sp.), and buckwheat (Fagopyrum sp.). Douglas fir (Pseudotsuga taxifolia) is common and becomes dominant above Western larch (Larix occidentalis) is scattered 1500 m. (Picea the douglas fir and Engelmann spruce amongst engelmannii) occurs along creek bottoms in the mountains. A few whitebark pine (Pinus sp.) grow on top of Council Mountain (USFS, 1975).

b. Fauna

Although detailed inventories have not been taken, surveys of fauna in the area have identified 81 species of birds, 32 species of mammals, and 15 species of rep-This diversity is primarily due to tiles and amphibians. the variety of cover types and the range of elevations. biq game is not abundant, some mule deer Although (Odocoileus hemionus), elk (Cervus canadensis), and numerous black bear (Ursua americanus) inhabit the mountain area. In one season, 53 black bear were tagged on the Middle Fork of Council Mountain is the most important mule the Weiser. deer habitat in the area. Coyote (Canis latrans), red fox (Vulpes fulva), muskrat (Ondatra zibethica), badger (Taxidea taxus) raccon (Procyon lotor), and skunk (Mephitis mephitis) Small mammals include Columbian ground squirrel are common. golden-mantled ground squirrel (Citellus columbianus), lateralis), yellowpine chipmunk (Eutamias (Citellus amoenus), and snowshoe hare (Lepus americanus). Common reptiles and amphibians are western rattlesnake (Cortalus viridis), leopard frog (Rana pipiens), and bullfrog (Rana catesbeiana). In addition to a large variety of passerines, several species of hawks (Buteo sp.), golden eagles (Aquila chrysaetos), and bald eagles (Halliaeetus leucocephalus) are found throughout the area. Blue grouse (Dendragapus obscurus) and ruffed grouse (Bonasa umbellus) are abundant (USFS, 1975).

c. Aquatics

The Idaho Department of Fish and Game classes the streams in the area as good to excellent. There is a fair trout fishery in the three forks of the Weiser River and these streams are stocked several times a year. Game fish include rainbow (Salmo gairdneri), brook trout (Salvelinus fontinalis), a few cutthroat (Salmo clarki), and Dolly Varden (Salvelinus malma). A significant number of nongame fish are found in the lower Weiser River. Éncierte:

3. Cultural Environment

a. Land Use

Nearly all land in the area of interest is privately owned. Approximately 9500 ha in the northeast corner of the area are controlled by the U.S. Forest Service, and parcels of land under the jurisdiction of the state and BLM are scattered through the area. Primary land uses include farming along the Weiser River, timber harvest, range, and recreation. The area was seriously overgrazed in the late 1800's, but careful range management and range restoration have resulted in much of the land being considered an important range resource. At one time, Council was the center of extensive apple orchards, but water shortages, low prices and increased costs have resulted in a decline.

b. Socioeconomics and Demography

The area of interest includes parts of both Washington and Adams counties. The combined population of these counties is 11,800 (1976). The population density of Adams County is 0.9 people/km², less than half the density of Washington County. The larger communities in the area and their 1970 populations are Council (899), Cambridge (383), and Midvale (176). The unemployment rate in Adams County in 1976 averaged 13.6 percent and that in Washington County averaged 8.6 percent. Primary contributors to the total employment in each county include farm proprietors, manufacturing, state and local, and trade. Per capita income in the area is 90 percent of the state average and 74 percent of the national average.

c. Archaeologic and Historical

Council Valley was an important meeting place for the NezPerce and Shoshone tribes, the valleys providing a winter retreat and the mountains excellent hunting. Little is known of early occupation of the area, although the potential for prehistoric occupation in the valley areas is good. Both Council and Cambridge were settled in the 1870's. Council grew rapidly as a result of mining activity in the Seven Devils. Cattle and sheep grazing were well established by 1880, and the subsequent overgrazing of the area resulted in heavy soil loss in the lowlands in the early 1900's.

d. Aesthetic Values

The study area is composed of both mountains and valleys. The mountainous regions are utilized for recreational purposes such as backpacking, hunting, and fishing, while the valleys are fairly well developed. Two national forests are touched by the area: Boise and Payette, both of great recreational value.

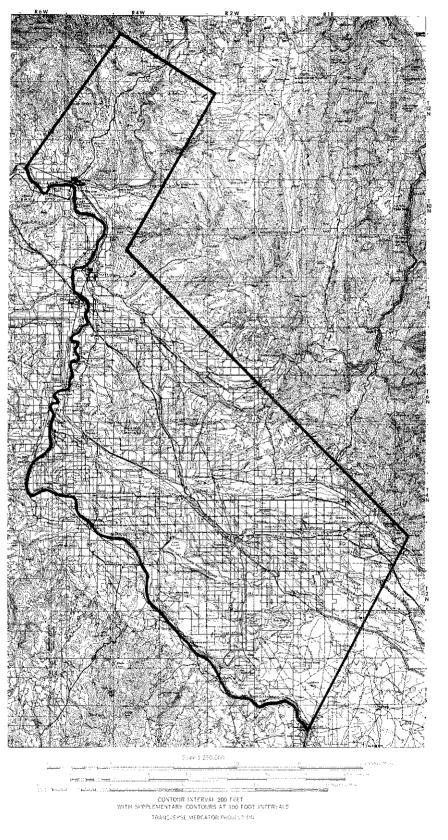
B. BOISE-WEISER

fam.

1. Physical Environment

a. Climate

Limited climatological data are available for selected sampling locations within the Weiser-Boise study area (National Oceanic Atmospheric Administration, 1977). These are summarized as follows:


(1) Weiser - located in the uppermost part of the study region in Washington County. The average annual temperature is 10.6° C, with January and July averaging -2.5 and 23.3°C, respectively. Rainfall averages 29 cm/yr with July and January averaging 0.28 and 4.39 cm, respectively. Relative humidity peaks at 40-50 percent in summer and 70-80 percent in winter.

(2) Payette - located in the northwest of the study region in Payette County. The average annual temperature is 10.8°C, with January and July averaging ~2.2 and 23.6°C, respectively. Rainfall averages 28.3 cm/yr with July and January averaging 0.33 and 3.96 cm, respectively.

(3) Caldwell - located in Canyon County in the middle of the study area. Average annual temperature is 10.7° C with January and July averaging -1.5 and 23.2°C, respectively. Rainfall averages 28.3 cm/yr with July and January averaging 0.33 and 3.96 cm, respectively.

(4) Boise - located in Ada County in the eastern portion of the study area. Average annual temperature is 10.6° C with January and July averaging -1.5 and 23.3°C, respectively. Rainfall averages 29.2 cm/yr with July and January averaging 0.38 and 3.73 cm, respectively.

The climate is therefore characterized by hot dry summers. Snowfall is a major contributor to the total precipitation,

B. Boise-Weiser Study Area

notably at the higher elevations. The dry grassland climate provides well-defined seasonal characteristics.

b. Air Quality

Air masses from the Pacific reach the study area but are considerably modified over that distance point. Their influence contributes mildly to periods of cloudy or stormy winter weather. Air pollution is not a major problem in the area as a whole, however, the Boise region experiences intermittent temperature inversions which effectively trap particulates and gasses at low levels, thus creating stagnant air masses. The Metropolitan Boise Intrastate Region (including Boise, Nampa, and Caldwell) violates secondary air quality standards for particulate matter (U.S. Sources are fuel combustion and industrial EPA, 1972). process losses, primarily asphalt and ready-mix concrete Additionally, dust from agricultural lands operations. contributes to the particulate load during certain seasons.

The Boise area is the only portion of Idaho to experience significant emissions from aircraft or automobiles. Reduced visibility is a consequence of such air quality degradation during severe temperature inversions (Ada Council of Government).

c. Land Resources

(1) Topography

The Boise-Weiser study area is located on the western border of the state and includes portions of Ada, Canyon, Gem, Payette, and Washington counties. The Boise Mountains border the east side of the region while Oregon borders the west side. The Snake River forms the southern boundary and the Council-Cambridge study area is adjacent on the northern border. Elevations in Ada County range from 822 m on the valley floor to 1890 m on the ridge crest.

The Boise-Caldwell area is of lower elevation than the eastern portion of the Snake River Plain. The topography is generally flat with thick lake and stream sediments interbedded with basalt flows. The lower Boise and Payette River basins are included in the area (BLM, 1976).

(2) Geology

Geological information is primarily limited to Ada County, which is mainly composed of the Idaho Batholith and the Idaho Group. The Idaho Batholith is of granitic origin and is found along the steep face and crest of the Boise Ridge while the Idaho Group represents the valley fill materials, composed of gravel, sand, silt, and clay (Ada Council of Governments, 1973).

The general geology of the area is summarized as follows. Cenozoic flows include: 1) the Basalt flows of the Idaho and Snake River groups in the Boise area; 2) alluvial, glacial, and lake deposits in Canyon, Payette, and Gem counties; 3) sedimentary rocks of the Idaho Group, including lake and stream deposits of the Chalk Hills formation in upper Canyon and lower Payette counties; 4) sedimentary rocks associated with the Columbia River Basalt in Payette and Gem counties; and 5) Columbia River Basalt in Gem, Payette, and Washington counties. Mesozoic rocks include granite rocks of the Idaho Batholith in Ada County (BLM, 1976).

(3) Soils

Available soil data for the entire study area are inadequate for a precise description. Soils in Ada and Canyon counties are moderately to very deep with silty subsoils on gentle to strong slopes. The frost-free season ranges from 120-160 days. Crops, including cereals, potatoes, sugar beets, beans, and hay, require irrigation. Rangeland soils include both coarse-silty and fine-silty Parent materials are alluvium on the terraces and soils. loess on the uplands. The profile depth ranges from 51-152 cm with moderate permeability. The major soil problems appear to be erosion, alkaline conditions and droughtiness. These are being mitigated by residue management, crop sequencing, irrigation, and rangeland management and crossslope operations (BLM, 1976). Land in the Weiser area is subhumid grassland and semiarid grazing land; some is irrigated.

- d. Water Resources
 - (1) Surface

Surface water features in the study area include the Snake River, Payette River, Weiser River, Boise River, Arrowrock and Lucky Peak reservoirs (on the middle fork of the Boise River). Spangler Reservoir in Washington County, Lowell Lake in Canyon County, and Black Canyon Reservoir on the Payette River in Gem County. Additionally, irrigation canals and drainage ditches have been constructed throughout principal irrigation areas.

Swan Falls Dam, constructed in 1901 on the Snake River south of Boise, creates a slack water pool for approximately 19 km. Otherwise, the Snake River is free flowing. The Snake River receives pollutants from agricultural practices, industrial processing plants (primarily potato and sugar refining), untreated domestic sewage, and irrigation returns. Water quality of the river is degraded by input from the Owyhee, Payette, and Boise rivers (BLM, 1976).

free constant

The Boise River flows in an east to west direction through Ada County and drains about 6993 km² of mountainous terrain north and east of Ada County. Since this river receives a large part of its water from seasonal runoff and snowmelt, it is characterized by high flows in spring through early summer and low flows from late summer through winter.

Water quality data for the region is summarized in Table B-1 (USGS, 1976). Lake Lowell near Caldwell is formed by two earth embankments. Storage began in 1908, with the capacity 218 hm³ (cubic hectometer). The lake receives water from the Boise River and local drainage; water is used primarily for irrigation. The maximum observed content (221 hm³) was recorded on 4/27/22 and the minimum (6.7 hm³) was observed on 10/22/24.

Lucky Peak Reservoir near Boise is formed by an earth-fill dam. Storage began in 1954. Water (capacity 378.6 hm^3) is stored for flood control and irrigation of Boise valley lands. The maximum observed content (376 hm^3) was recorded on 6/25/55 and the minimum (35.5 hm^3) was observed 12/21/61.

Arrowrock Reservoir on the Boise River is formed by a gravity-section concrete-arch dam which was completed in 1915 and raised 1.5 m in 1937. Water (current capacity 353 hm³) is used for irrigation in Boise valley; silt deposition has decreased the storage capacity over time. The maximum content (371 hm³) was recorded 5/29/48and the minimum occurred during several years when the gates were open and natural river flow passed through the reservoir.

The Boise River is clean as it leaves Lucky Peak Reservoir; however, the quality is degraded as the river leaves Boise. The most severe degradation occurs after the water flows by Eagle Island where the combined effluent from Meridian, Nampa, and Caldwell enter the river along with wastewater returns from vast areas of irrigated farmland (Bureau of Reclamation, 1977). The major pollutants are nitrogen, phosphorus, bacteria, and sediment.

(2) Groundwater

Detailed groundwater data is lacking for the entire study area. However, groundwater data are

Sampling	Snake River at		Boise River at Lucky Peak		Payette River 2.9 km south of		Weiser River	
Station		ng, ID	Lake Outlet		Payette		near Weiser	
Drainage area (km ²)	_	5.940		8,390		3,780	
Average discharge		_		m ³ /s	89.2	m ³ /s	33.1	m3/c
Extremes for perio		_		6/14/1896		12/14/64		12/23/55
of record $(m^3/.$			-			10/13/35		8/07/11
or record (m)	3,			are closed		10/13/33	0.7	0/07/11
Conductivity	478	(52)	-	(8.5)	131	(61.4)	119	(26.0)
(µmhos/cm)								
pH (units)	8.6	(0.23)	7.0	(0.14)	8.0	(0.57)	7.9	(1.2)
Temperature (^O C)	12.3	(7.1	9.5	(6.1)	12.5	(8.6)	11.3	(8.0)
Ca (mg/l)	46.8	(3.1)	8.5	(2.1)	12.6	(6.2)	12.4	(1.8)
Na (mg/l)	28	(5.6)	3.0	(1.3)	12.4	(7.9)	7.0	(1.4)
HCO_3 (mg/l)	163	(57)	39	(7.1)	67	(38.2)	75	(14.0)
TDS (mg/l)	291	(32)	49	(7)	89	(42)	97	(12)
K (mg/1)	4.4	(0.7)	0.7		1.6	(1.1)	1.9	(0.3)
Mg_(mg/1)		(2.2)	1.2		2.3	(1.6)	4.7	(0.5)
C1 (mg/1)		(4.9)	0.7		3.1	(0.7)	2.1	(0.8)
F (mg/1)				5 (0.07)		(0.07)		(0.00)
$SO_{\overline{4}} (mg/1)$	47.5	(6.8)	3.8	, .	7.9		4.3	(1.2)

TABLE B-1 SURFACE WATER DATA FOR THE BOISE-WEISER STUDY AREA

1

.

available for Ada County, where ample water is available for domestic, industrial, and irrigation purposes. Water within Ada County is primarily available from deep permeable sediments of the Glenns Ferry Formation, shallow alluvial or stream deposits, and Snake River Basalt lava flows (Ada Council of Governments). The Glenns Ferry Formation provides the deep aquifer with both clay and sand strata. Clay beds produce 0.32 - 1.6 lps (liter per second) while sand and gravel beds produce up to 102 lps. Well yields from shallow alluvial or stream terrace deposits range from 32 to 64 lps. The Snake River basalt formation is responsible only for shallow, domestic water resources. Ada County groundwaters are mainly calcium-magnesium bicarbonate type. Total dissolved solids (TDS), however, often exceed drinking water standard of 200 mg/l. Water the U.S.P.H.S. quality problems are associated with excessive hardness, dissolved iron, and magnesium levels.

fine.

The Boise River Valley has wells that are utilized mainly for domestic purposes. Of 60 major wells monitored by CH_2M Hill, 15 percent were contaminated by coliform bacteria, gram negative, nonsporulating, rod-shaped bacteria that are natural flora to the gastro-intestinal tract of warm-blooded animals.

The Boise Front is the major deep groundwater recharge system for the area, while irrigation seepage and surface water seepage and precipitation recharge the shallow aquifers.

Available information indicates that a decline in groundwater levels is not occurring and that recharge is balancing water removal from the aquifer.

The Weiser River basin drains approximately The principal use of water is for irrigation, 4100 km^2 . surface waters meeting the bulk of the demand. with Groundwater is supplied by two main aquifers: 1) in the basalt of the Columbia River Basalt Group and 2) in Tertiary and Quaternary sedimentary rocks. overlying Individual wells and springs supply domestic and stock Municipal water for the towns of Council, supplies. Cambridge, and Midvale are derived from seven wells open to the Columbia River Basalt Group. Weiser obtains its water from three wells open to the sedimentary-rock aquifer (Young, Harenberg, and Seitz, 1977).

Groundwater in the Weiser River basin is recharged mainly from precipitation falling within the basin. The basalt aquifers are recharged via precipitation on the surrounding uplands and mountains, with snowmelt the greatest contributor. The sedimentary rock aquifers are recharged primarily during snowmelt runoff and the irrigation season, with water infiltration from streams, canals, ditches, and irrigated fields. Water levels in the various aquifers vary with snowmelt conditions.

<u>kanan</u> -

Groundwater supplies are affected by the thermal waters known to occur in the region. Wells in the Midvale area discharge water in the 28°C range. Municipal wells at Weiser, which draw water from the shallower sedimentary rocks, have TDS concentrations in the 393-514 mg/l range, considerably harder than from the deeper basalt aquifer.

2. Natural Environment

a. Flora

Species expected to occur in the valleys of Payette, Gem, Washington, and upper Canyon counties include those that are found in the Payette Forest. Examples are ponderosa pine, bluebunch wheatgrass, Idaho fescue, big sage, and western yarrow.

Adjacent to the Snake River lies a salt desert shrub plant community which boasts common stands of white sage or winterfat (Eurotia lanata), once common throughout The sagebrush-grassland community the intermountain area. found throughout Ada and Canyon counties has species such as bia saqebrush, low sagebrush (Artemesia arbuscula). bluebunch wheatgrass, Idaho fescue, Indian ricegrass (Oryzopsis hymenoides) anđ cheatgrass brome (Bromus Repeated fires, overgrazing, and agricultural tectorum). conversion has altered this once diverse and abundant plant cover to little more than a sagebrush and/or annual grass community.

A forest community is found along the northeastern border of Ada County, comprised of yellow pine (Pinus ponderosa) and Douglas fir (Pseudotsuga menziesii) with an associated shurb understory.

b. Fauna

Animal species which inhabit the study region include:

(1) Mammals

Large mammals are limited by cover, forage, and water availability. Limited numbers of mule deer are found along the Snake River Canyon with a few migrants from the Boise drainage basin. Predator species include the coyote, bobcat (Lynx rufus), skunk, and short-tailed weasel (Mustela erminea). Rodents include the yellow-bellied mar-

-354-

mot (Marmota flaviventris), muskrat, Townsend's ground squirrel (Citellus townsendi), and Columbian ground squirrel.

(2) Birds

Birds associated with the area total 110 species, including 40 waterfowl or aquatic species, 4 upland game birds, 22 raptors, and 44 other smaller species (Ada Council of Governments, No. 9). The birds of prey are discussed in the Bruneau-Grand View section of this report. Game species include pheasant (Phasianus colchicus), ruffed grouse, chuker (Alectaris graeca), Hungarian partridge (Perdix perdix), and quail (Oreortyx pictus). Duck species include mallard (Anas platyrhynchos), pintail (Anas acuta), blue wing teal (Anas discors), ruddy (Oxyrua jamaicensis) and cinnamon teal (Anas cyanoptera).

(3) Reptiles/Amphibians

Reptiles/amphibians occur in rocky canyons and desert lowlands where the prey base is good. Representative species are: leopard lizard (Cortaphytas wislizenii), western skunk (Eumeces skiltonianus), Great Basin gopher snake (Pituophis melanoleucus), and western rattlesnake.

c. Aquatics

The Boise Front tributaries are sediment-laden from ground disturbances and contribute to an excessive sediment load in the Boise River which adversely impacts the ecosystem and has eliminated the fisheries in some portions. The only trout habitat is between Barber Dam to Middleton, a distance of 35 km. The 13 km length of the Boise River between Discovery State Park and Barber Dam is severely silted and does not support a fish community. Fish species in the river include Rocky Mountain whitefish (Coregonus sp.), (family Catistomidae), carp (Cyprinus carpio), suckers sculpin (Cottus sp.), shiners (Notropis sp.), and squawfish (Ptychocheilus oregonensis). Gamefish and invertebrate populations are severely impacted by the 7-14 day annual shutdown of Lucky Peak Dam for inspection purposes, This results in a 1:1 ratio of sewage effluent: river water below the Boise sewage treatment plant, with residual chlorine at levels toxic to trout and whitefish. Additionally insect larvae are wiped out with the drastic flow decrease and excessive siltation. It is felt that the trout fishery could be reestablished in the Boise River in both Ada and Canyon counties. (A second tunnel has been authorized by Congress and is expected to be under construction within the next two years. This will eliminate the annual shutdown of Lucky Peak flows.)

Healthy fish populations are found in the Snake River below Swan Falls Dam, including channel catfish (Icatlurus punctatus), largemouth bass (Micropterus salmoides), smallmouth bass (M. dolomieu), and crappie (Poxomis sp.).

Écons,

The Weiser River supports a trout fishery with supplemental stocking from the Idaho Department of Fish and Game. Game species include brook trout, rainbow trout, cutthroat trout, and Dolly Varden. Additionally, nongame species are also in the Weiser River.

- 3. Cultural Environment
 - a. Land Use

Land ownership and use in the five counties within the Boise-Weiser study area are listed in table B-2.

TABLE B-2							
LAND OWNERSHIP AND USE IN BOISE-WEISER AREA							
	Ada	Canyon	Payette	Gem	Washington		
% Federal Land	46.2	4.3	25.9	37.9	37.0		
% State Land	6.7	0.6	3.5	6.6	6.8		
% Private Land	45.9	94.9	69.8	55.0	55.9		
Total Land (ha)	270,223	149,784	104,095	143,827	378,773		
% Urban or							
built-up	4.5	2.9	1.1	0.5	0.4		
<pre>% Agricultural</pre>	25.6	84.4	33.7	18.5	13.8		
<pre>% Rangeland</pre>	69.0	7.7	64.0	66.3	74.6		
% Forest	0.3	3.0	0.0	13.9	9.9		
% Water	0.6	2.0	1.2	0.8	1.3		

b. Socioeconomics and Demography

The study area is varied and diverse in that it includes the densest county (Ada) in the state as well as sparsely populated counties (Washington and Gem). The socioeconomic data for the area are summarized in table B-3.

Employment data are summarized in table B-4.

- Maren Sanara (Sanara) (Kalan Sanara) (Kalan Sanara) (Kalan Sanara) (Kalan Sanara) (Kalan Sanara) (Kalan Sanar

			E B-3				
SOC	LOECONOMIC	DATA FO	R THE BOIS	SE-WEISER	AREA		
	U.S. Average	Idaho Averaqe	Ada County	Canyon County	Payette County		Wash- ington County
#787*41755.0711-0	Average	Average	county	councy	councy	councy	councy
Population as Percent of 1976 State Total			16.81	8.83	1.80	1.28	1.02
1975 Birth Rate	14.8	19.8	17.1	18.5	17.4	16.9	18.9
1975 Fertility Rate	66.7	92.0	76.0	87.5	91.3	84.2	100.6
1976 Percent of Unemployment			4.4	6.0	6.0	10.3	8.6
1976 Median Family Income	e	\$	14,375 \$1	L1 , 375 \$3	LO , 375 \$	511,625 Ş	10,250
Number of Hospitals			4	3	0	1	0
Number of Persons per M.D.		969	627	969	4,800	2,140	2,100
Potal 1976 Crimes			8,380	3,691	645	314	259
% Murder			0.12	0.16	0	0	0
% Larceny			66.	67.	56.	68.	71.
% Burglary		<u> </u>	22.	24.	31.	27.	20.
% Rape			0.64	0.41	0.4	0	0
1975 Suicide Rate (per 1,000 persons)		16.4	23.3	15.1	13.9	9.3	16.4
1975 Marriage Rate (per 1,000 persons)		15.5	10.9	9.3	14.2	10.0	15.5
1975 Divorce Rate (per 1,000 persons)		6.3	8.9	6.9	8.3	8.5	6.3

	TABL	E B-4			
1975 EMPLOYMEN	r data fo	R THE BOIS	E-WEISER	AREA	
					Washing-
-	Ada	Canyon	Payette	Gem	ton
¥ of Females in Labor Force (1970)	44.4	41.2	38,9	29.1	34.1
Total Employment	68,744	31,464	4,431	4,007	3,352
Farm Proprietors	1,664	2,619	734	637	598
Nonfarm Proprietors	5,481	2,853	667	370	455
Federal Civilian Employ- ment	3,208	191	38	59	50
State and Local Employment	10,866	3,480	631	510	501
Manufacturing Employment	6,014	6,250	597	733	382
Trade Employment	16,143	5,581	536	498	574
Services Employment	11,062	4,563	319	377	190
Construction Employment	5,089	1,035	132	30	95
Farm Employment	511	2,581	390	644	339

line en esta

c. Archaeological and Historical

The Oregon Trail passes through Ada and Canyon counties; additionally the Kelton Road is located in the northeast corner of Ada County. The site of the 1834 Fort Boise is located in northwestern Canyon County. Archaeological surveys in Idaho are limited; however, it is felt that the western Snake River Plain has the potential to yield data of major scientific significance (BLM, 1976). It is hypothesized that the western Snake Plain contained extensive cultural diversity during the late prehistoric and early historic periods. The valleys of the Boise, Payette, and Weiser rivers were important grounds for several distinct Indian groups, including the Northern Paiute, Nez Perce, Cayuse, Shoshoni, and Bannock tribes.

d. Aesthetic Values

The several large rivers and mountainous regions in the study area are utilized extensively for recreational purposes. State parks include Discovery and Lucky Peak in Ada County, Black Canyon in Gem County, Ontario in Payette County, and Mann Creek in Washington County. Several of these parks offer camping services and are therefore a valuable resource. In general, aesthetic resources in the area require preservation, since Idaho boasts some of the most pristine areas left in the country. The Birds of Prey Natural Area lies along the Snake River on the southern border of Ada County. For details see the Bruneau-Grand View section of this report.

C. BRUNEAU-GRAND VIEW

(inner

1. Physical Environment

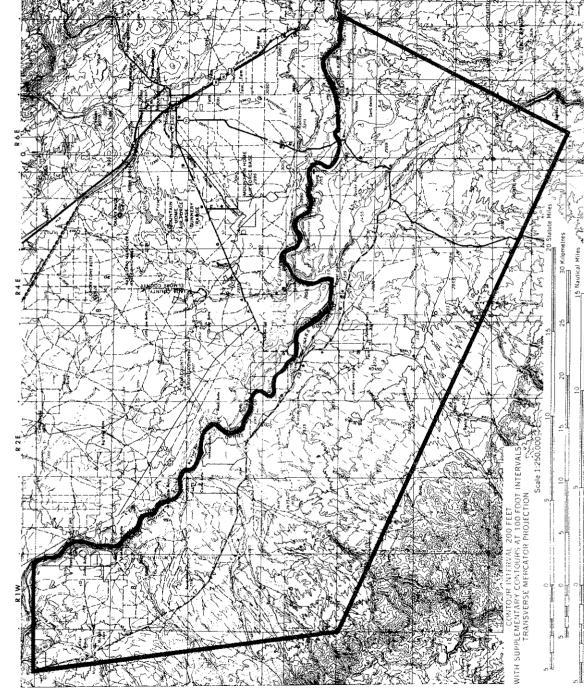
a. Climate

The climate of Owyhee County is moderate, ranging from 0° C in January to 27° C in July. Extremes of -33 to 46° C have been recorded for Grand View. Rainfall averages 20 to 25 cm per year along the Snake River, with May and June the heaviest precipitation months. Relative humidity is characteristically low, with moderate winds frequent. The growing season in the study approximates 140 days.

b. Air Quality

Prevailing wind currents are from the westnorthwest and follow the Bruneau River and Snake River valleys. Wind speeds average 8-32 km/hr with infrequent gusts up to 96 km/hr. The air quality is considered very good, with agriculture the main contributor to particulate matter. Range fires also contribute smoke and ash to the particulate load during the dry season; however, air pollution on the whole is minimal. Concentration levels of CO, NO_X , SO_X , and hydrocarbons are unknown but are thought to be low since no major point sources exist in the study area.

c. Land Resources


(1) Topography

The Bruneau-Grand View area lies in the western part of the Snake River Plain east of the Owyhee Mountains. The area includes: 1) the Snake River valley ranging in altitude from 700 to 999 m; 2) the plateau ranging from 900 to 2130 m; and the 3) eastern portion of the Owyhee uplift with altitudes from 900 to 2560 m (Rightmire and others, 1976). Both the Bruneau and Snake River valleys are bordered by flat-topped bench plateaus, some of which have been dissected by steep walled canyons and ravines, thus forming buttes. Slopes range from less than 2 percent to vertical (EAR No. 11-010-5-77).

(2) Geology

The lithology of the area includes Cretaceous age granite rocks, Miocene age rhyolitic rocks, Pliocene age volcanic rocks, and the Idaho Group of Pliocene and Pleistocene age. The mountainous region is composed of granite core overlain by younger igneous and sedimentary rocks. Mineralized rhyolitic core, overlain by a similar sequence of rocks, characterizes the rolling upland areas. Foothill and lowland areas consist of poorly consolidated sedimentary formations interspersed with basaltic lava. Bruneau-Grandview Study Area

ċ

(3) Soils

para ante

The soils in the area of the Bruneau KGRA (known geothermal resource area) are primarily developing in mixed alluvium and lacustrine sediments on stream bottoms, alluvial fans and terrace escarpments. These soils are deep, with few areas that are shallow. Surface textures are dominated by siltloam and loam with minor areas of fine sandy loam, cobbly sandy loam, and silty clay loam. The soils of the area are nearly level to gently sloping, with few steep slopes. Mean soil temperature is approximately 9-11°C with the frost-free period greater than 120 days (BLM, 1977).

d. Water Resources

(1) Surface

study area lies primarily in The the River drainage basin which rises in Nevada's Bruneau Jarbidge Mountains and flows in a northerly direction to the Snake River in Idaho. The main water sources for agricultural purposes are groundwater and water taken from the Snake River and C.J. Strike Reservoir. Additionally, intermittent feeder streams are used for irrigation and agri-The Snake River comprises the entire cultural purposes. northern border of the Bruneau-Grand View study area. The Bruneau River drainage area above Hot Spring, Idaho, measures approximately 6810 km^2 with a mean altitude of 1710 m.

The Bruneau River gaging station near Hot Spring yields an average discharge over 38 years of 11.3 m^3/s with extremes of 0.71 m^3/s and 184 m^3/s for 1964 and 1910, respectively. Water quality for 1975-1976 sampling season are as follows: 1) mean conductivity 198 µmhos/cm (standard deviation [s.d.] = 97); 2) mean pH 7.5 (s.d. = 1.3); 3) mean hardness 45 mg/l; 4) mean dissolved solids 121 mg/l (average of 2 sampling periods only); and 5) alkalinity 64 mg/l CaCO₃. The Bruneau River is under consideration by Congress for addition to the National Wild and Scenic Rivers System, created to assure a heritage of protected waterways.

The Snake River gaging station located near Murphy in the northwestern portion of the study region yielded an average discharge over 63 years of 314.4 m³/s with extremes of 110 m³/s and 1340 m³/s recorded for 1949 and 1918, respectively. Mean water quality data for the 1975-1976 sampling season are as follows: 1) conductivity 460 μ mhos/cm (s.d. = 53); 2) pH 6.4 (one sample only); 3) hardness 175 mg/l (2 samples only); 4) dissolved solids 281 mg/l (2 samples only); and 5) alkalinity 161 mg/l CaCO₃ (2 samples only).

(2) Groundwater

Groundwater resources in the Murphy area have not been developed on a major scale, while both shallow and deep aquifers have been developed in the Grand View area. However, the major development has occurred in the Bruneau region where the deep aquifer has been extensively developed by irrigation wells. The source of groundwater in the Murphy area is thought to be precipitation on the Owyhee Mountains, with local precipitation making only a small contribution to groundwater recharge. Aquifers in the Murphy area include the Poison Creek Formation, Banbury Basalt, Glenns Ferry Formation, and Bruneau Basalt. Water level decline or well interference have not been reported in the area. The temperature of the groundwater ranges from 21 to 32°C. Water quality ranges from poor from the sediments to good from basalt (Ralston and Chapman, 1969).

The groundwater resources in the Grand View area have been developed for both domestic and irrigation usage. The three aquifer systems of importance in the area are: 1) a hot artesian system in the Tertiary Silicic Volcanics; 2) a warm artesian system in the sediments of the Idaho Formation; and 3) a cold water table system in the alluvium and upper portion of the Idaho Formation. The source of groundwater to the deep aquifers is primarily Owyhee Mountains precipitation while some water is recharged from streams flowing over fractured outcrops of the Banbury Recharge to the shallow aquifer is directly from Basalt. precipitation, canal seepage, and sewage and irrigation effluent (Ralston and Chapman, 1969). Wells in the Grand View area include shallow domestic, irrigation, and unused flowing wells. Shallow domestic wells along the Snake River are characteristically less than 15 m deep. It is thought that some of these wells located near Grand View may experience degradation of water quality due to sewage Irrigation well depth varies from 30 to disposal methods. 1097 m, with 50 percent of the wells penetrating the hot (52 to 66°C) artesian groundwater system. Unused flowing wells range in temperature from 27 to 38°C. Declines in water levels in wells of less than 152 m have been reported, indicating that groundwater recharge is not keeping pace with consumption of the resource. Water quality in the area varies, with TDS (total dissolved solids) content ranging from 190-334 mg/l.

The source of groundwater in the Bruneau area is thought to be recharge from the Owyhee Mountains and Owyhee Uplift. The geologic formations important as aquifers include: 1) Tertiary Silicic Volcanics; 2) Banbury Basalt; and 3) the Glenns Ferry Formation. Irrigation well depths vary from 213 to 640 m and exhibit discharges from 6 to 158 lps. Domestic well depths are less than 152 m with their prime water source the Glenns Ferry Formation. Annual water level declines have been recorded from 1966 to the present in Little Valley but not in Bruneau Valley. Total dissolved solids for the area range from 200 to 400 mg/l. The thermal groundwater has excessive concentrations of fluorides (Ralston and Chapman, 1969).

In general, groundwater in the Bruneau-Grand View area is derived from Owyhee Mountains rainfall, with a portion being heated at great depths. Due to this thermal effect, higher than normal salinities render the water only fair for irrigation purposes. Soils in the area tend to be fine grained; thus leaching of salts from the soil is limited.

2. Natural Environment

a. Flora

for the

The five vegetative communities in the area include: 1) streamside; 2) sagebrush-grass; 3) shadscale-grass; 4) annual grass and 5) crested wheatgrass seedlings. It is felt that overgrazing disrupted natural sagebrushgrass ecosystems, with resultant invasion by less productive annual grasses such as cheatgrass. The ecosystem is now dominated by an overstory of big sagebrush with an understory of cheatgrass brome (Bromus tectorum). Other species include Indian ricegrass (Oryzopsis sp.), bottlebrush squirreltail (Sitanion sp.) and Sandberg bluegrass (Poa secunda). The shadscale-grass ecosystem is dominated by shadscale (Atriplex confertifolia) with an understory of cheatgrass. The annual grass system exists as a function of fire-altered shrub-grass ecosystems. Characteristic species include cheatgrass and tumble mustard (Sisymbrium altissimum). Crested wheatgrass (Agropyron desertorum) has been introduced following overgrazing and range fires to prevent erosion and promote livestock grazing. The stream-side vegetation includes willows (Salix sp.), cottonwood (Populus sp.), wild rose (Rosa woodsii), golden gooseberry (Ribes grossularia), chokecherry, poison ivy (Roxicodendron radicans), elderberries (Sambucus coerulea), currants (Ribes satiuum), honeysuckle (Lonicera sp.), yellow foxtail (Alopecurus sp.), sagebrush, grasses, and yarrow.

b. Fauna

A large variety of wildlife inhabits the area, including ruminants, large predators, song birds, raptors, reptiles, and waterfowl and upland game birds. Mammal species include (but are not limited to) the mule deer, pronghorn antelope (Antilocarpa americana), yellow bellied marmot, coyotes, bobcats, jackrabbits (Lepus townsendii), ground squirrels, and mice (Perognathus sp., Reithrodontomys sp., and Peromyscus sp.). Numerous passeritormes are found in the area. Raptors include (but are not limited to) the bald eagle, golden eagle, prairie falcon (Falco mexicanus), red-tailed hawk (Buteo jamaicensis), and great horned owl (Buteo virginianus). Waterfowl include Canadian geese (Branta canadensis) and Mallard ducks, Representative game species are chukars, Hungarian partridge, and pheasant. Reptiles include numerous snakes, frogs, and lizards; rattlesnakes are very common.

(anana

Little is known of energy flow through the food web; however, the diversity and abundance of plant and animal species indicate a complex, rather stable ecosystem with all major ecological compartments well represented.

c. Aquatics

Abundant plant and animal species occur within streams of the study area. Trout and whitefish are found in the Bruneau River. Additionally, area streams support warm water fish populations, of which largemouth bass, bluegill (Lepomis macrochirus), yellow perch (Perca flavescens) and channel catfish are representative. Insect species include caddisflies (Trichoptera), mayflies (Ephemeroptera), stone flies (Plecoptera), and snails (scientific taxa not known). Aquatic flora are abundant, including several algal species, cattail (Typha sp.), duckweed (Lemna sp.), and spike rush (Eleocharis sp.).

3. Cultural Environment

a. Land Use

The land in the area is owned primarily by the Bureau of Land Management (BLM) which administers 77 percent of Owyhee County's 1,975,256 ha, 7 percent is state owned, and 16 percent is owned privately. Irrigated land in the area is very limited (approximately 18,650 ha) and is adjacent to the Snake River, Bruneau River, or Little Valley Creek with the major crops being potatoes, alfalfa, sugar beets, corn, and small grains. Little arable land exists in the Bruneau-Grand View area and is found only along the Snake River, Little Valley Creek, and Bruneau River. Approximately 37,300 ha east and west of Bruneau have been identified as a proposed area for new irrigation development between 1974 and 2020 (BLM, 1976). Ninety-three point five percent of Owyhee County is utilized for rangeland, 2.1 percent is forest land, and 3.9 percent is agricultural land.

b. Socioeconomics and Demography

Owyhee County, with 7900 persons in 1976, comprises less than one percent of the state's total population. Both the birth and fertility rates exceed those for the state and nation. In 1976, 5.5 percent of the labor force was unemployed. Employment data report that 2,512 people were employed in 1975. The greatest number of people are employed as farm labor, followed by state and local government, trade, and services. Median family income in 1976 was \$7,875. A total of 235 criminal offenses was reported for 1976, 74 percent of which were attributable to larceny. Suicide rates were quite high in 1975: 165 percent of the state rate. Marriage and divorce rates are both low, only 37 percent and 19 percent of state values, respectively.

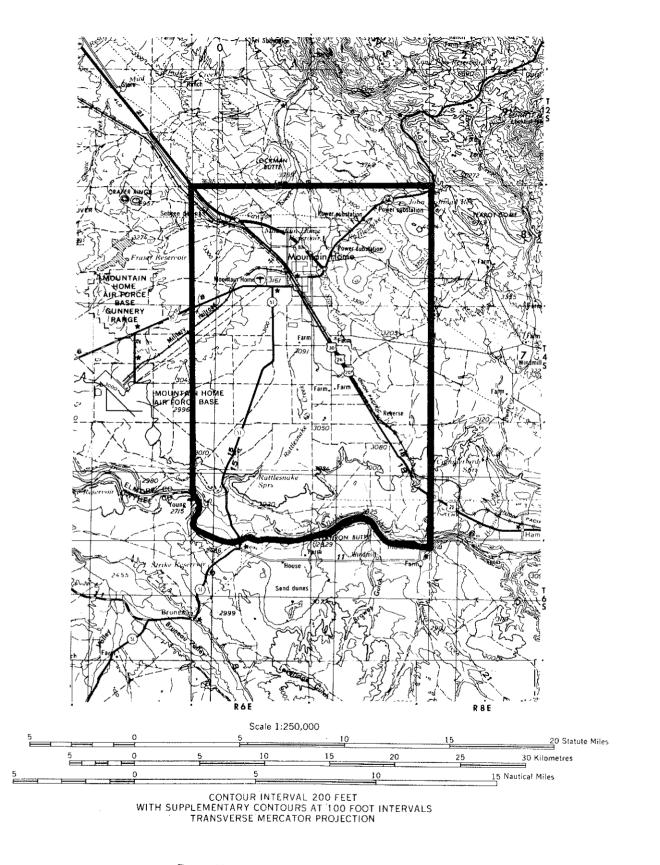
c. Archaeological and Historical

The Oregon Trail runs through the study area south of the Snake River, with wagon wheel ruts still evident in many areas. Silver mining in the 1860's in Owyhee County was responsible for the first large-scale permanent settlement in the state, with farming, banking, and commerce responding to the population growth (BLM, 1976).

d. Aesthetic Values

The C.J. Strike Recreation Area lies within the study region; however, no wilderness or Rare II regions have been designated. The Bruneau Dunes State Park is also located within the study area and is used for recreational purposes.

A significant feature in the study area is the Snake River Birds of Prey Natural Area (BPNA), established by the Secretary of the Interior in 1971 to protect eagles, hawks, owls, falcons, vultures, and ospreys. The BPNA encompasses 12,546 ha, 10,522 ha of which is federally owned. The excellent raptor habitat is provided by the rugged river canyon and is utilized as a recreational resource by large numbers of visitors. For the 14 species of raptors sighted at the BPNA, the BLM protects vital habitat and nesting grounds.


D. MOUNTAIN HOME

filmen.

1. Physical Environment

a. Climate

Mountain Home is located in Elmore County in southwestern Idaho in a semiarid region characterized by hot

D. Mountain Home Study Area

summers and cool winters. The average annual temperature is approximately 10° C with the mean annual precipitation estimated as 24 cm. Extreme recorded temperatures are -37 and 43° C.

b. Air Quality

genera.

Prevailing wind currents are from the northwest, east, or southeast. Wind speeds average less than 9.6 km/hr (kilometer per hour) 39 percent of time and 11-24 km/hr 41 percent of the time (Longyear and others, 1978). Air quality is considered very good, with agricultural particulates contributing to the ambient air load during certain seasons. No significant point sources exist for NO_X , SO_X hydrocarbons or CO; thus preservation of air quality is an important consideration in the area.

c. Land Resources

(1) Topography

The Mountain Home area lies north of the Snake River in the western part of the Snake River Plain. Geographic features in the area include: 1) the Mt. Bennett Hills, 2) the Mountain Home Plateau, and 3) the Snake River Canyon. The Mt. Bennett Hills are a high relief mountain range north of the city of Mountain Home, with an average elevation of 1828 m. The Plateau ranges from 1219 m adjacent to the Mt. Bennett Hills to 914 m near the Snake River. The Snake River Canyon drops 91-152 m below the plateau to the Snake River.

(2) Geology

The study area is located between the central Idaho Tertiary and Cretaceous granitics and the Tertiary and Quaternary rocks of the Snake River Plain to Mountain Home lies on the northwest-southeast the west. trending fault that marks the relatively abrupt transition zone northwest of the KGRA near Boise. The major hot in the area are controlled by faulting. springs Thelithologic types found in the Mountain Home area are Pliocene and Pleistocene sediments, Pleistocene Basalts, and Tertiary silicic volcanics overlying Cretaceous granite. The silicic volcanics are Miocene Rhyolites. The Idavada volcanics underlying the Idaho group are considered to be the most important aquifer and the source of hot water. The Idavada volcanics are lower silicic volcanics, and generally the water produced from the complex are at significantly higher temperatures than those at nearby wells from overlying units.

(3) Soils

Only limited, generalized soil data are available (BLM, 1976) to assess soil types and characteristics. The frost free season is approximately 120-140 Agricultural products include cereals, alfalfa, and days. potatoes, with 70 percent of such crops irrigated. Surface soils are primarily silt loam on clay or silt loam with profile depths ranging from 3 to 18 m. Parent materials include loess, a basic igneous rock (35 percent), and alluvium (45 percent). Water retention capabilities range from low on the surface to good at greater depths. Major soil associated with drought, erosion, problems are soil alkalinity, and inability of roots and water to penetrate clay subsoils. Rangeland management is currently employed to minimize problems associated with erosion.

lesso.

d. Water Resources

(1) Surface Water

The Snake River comprises the entire southern boundary of the study area. An important surface water feature is Canyon Creek, which flows southwesterly from Long Tom Reservoir to the Snake River; however, no water quality data are available for either the reservoir or river. Surface runoff from the Mt. Bennett Hills is ultimately to Canyon Creek and is regulated by Long Tom Reservoir. Irrigation waters are drawn from the Mountain Home Feeder Canal, Canyon Creek, Rattlesnake Creek, Bennett Creek, Cold Springs Creek and King Hill Creek. Data for the Murphy gaging station on the Snake River are included in the Bruneau-Grand View section of this report.

(2) Groundwater

Groundwater resources have been developed for both domestic and irrigation purposes. Ralston and Chapman (1968) studied the hydrology of the Mountain Home area and subdivided the region into five areas based on water levels, well yield, water temperature, water quality, geologic character of the aquifer. The subdivisions are summarized as follows: 1) the Mt. Bennett Hills subarea, 2) Hot Springs, 3) Mountain Home, 4) Air Base, and 5) Glenns Ferry.

The Mt. Bennett Hills region is the primary area for recharge to the Mountain Home plateau aquifers.

The Hot Springs region runs along the Mt. Bennett Hills and includes a hot artesian groundwater system. Hot Springs has an estimated natural discharge of 35 lps with a mean temperature of 66°C. Groundwater

-368-

recharge is thought to be from precipitation, irrigation seepage and streamflow; however, little of the recharge enters the warm water system. Hot water (38-71°C) has been reported at three locations at three water level elevations, indicating a series of subparallel northwest trending faults. The faults are believed to allow the downward flow of cold recharge water and the upward flow of heated water and steam. The cold groundwater system is limited in the region.

The Mountain Home area surrounds the city of Mountain Home with both domestic and irrigation water derived from the aquifer. Sources of recharge include precipitation, streamflow, irrigation seepage, and sewage effluent. The aquifer has been well developed for both irrigation and domestic purposes, with wells ranging in depth from 1.8-183 m.

The Air Base area (adjacent on the west side of the Mountain Home area) includes the groundwater system south and west of Mountain Home as well as the deep wells developed in the city of Mountain Home. Recharge to the area is limited as a function of low precipitation and the deep static water level. An estimate of well development puts the number of wells for irrigation, municipal, and domestic use at 50, ranging in depth from 122-274 m. Water temperatures are generally uniform, in the 21-24^oC Range.

The Glenns Ferry area (adjacent on the east side of the Mountain Home area) is north of the Snake River and surrounds the towns of Hammett and Glenns Ferry. Groundwater recharge within the area is minimal, with streamflow, irrigation seepage, and precipitation as Groundwater resources have not been extensively sources. developed, with most wells located along the Snake River, ranging in depth from 3-439 m. Shallow wells tap the cold while deeper wells water aquifer penetrate the warm $(70-100^{\circ}F)$ aquifer system. Indications are that a deep groundwater gradient towards the Snake River exists, with aquifers discharging into the river.

In summary, the main sources of groundwater are the Bruneau and Glenns Ferry Formations with their basalts and fine-grained sediments, respectively. Available records do not indicate declines in groundwater levels; however, data are limited.

- 2. Natural Environment
 - a. Flora

¢......

The study region is characterized by modified sagebrush-grass communities, typically found along unculti-

vated portions of the Snake River Plain. Annual grasses found with sagebrush include Western cheatgrass, filagree (Erodium cicutarium), balsamroot (Balsamorhiza hookere). Shadscale is found on saline or heavier soils. Crested wheatgrass is common. Information indicates that three plants on the endangered or threatened list have been found western portion of the Snake River Plain: in the Henderson's desert parsley (Lomatium hendersonnii), loco weed (Astrogalus comptopus) and pepper grass (Lepidium montanum), however, it is not known if these species are in the Mountain Home study area. Juniper (Juniperus sp.) trees are found within the Snake River canyon. Greasewood and rabbitbrush are found adjacent to streams, ponds, and river.

2.....

b. Fauna

Examples of animal species that inhabit the sagebrush-grass communities include Richardson's ground squirrel (Citellus richardsonii), kangaroo rat (Dipodomys sp.), sagebrush vole (Lagurus curtatus), jackrabbit, mule deer, pronghorn antelope, golden eagle, Swainson's hawk (Buteo swainsoni), and sparrow hawk (Falco sparverius). Game birds include sage grouse (Centrocercus urophasianus), chukar, pheasant, and mourning dove (Zenaidura macroura). Reptiles include sagebrush lizard (Sceloporus graciosus) and striped whipsnake (Masticophis taeniatus).

c. Aquatics

The variety in habitat types renders the area suitable to diverse and abundant aquatic communities. Both native and introduced fish species are found in the Snake River. Native species include rainbow trout, cutthroat trout, and mountain whitefish. Introduced species include brown trout (Salmo trutta), largemouth bass, bluegill, channel catfish, carp, and suckers. Freshwater clams and molluscs are expected to occur in the Snake River since a diverse variety of habitats are available. Insect species include mayflies, midges (Piptera), caddisflies, and beetles (Coleoptera).

3. Cultural Environment

a. Land Use

Land in the Mountain Home study area comprises approximately 55,944 ha, of which 18,648 ha is federally owned (BLM), 9,324 ha is state owned, and 27,972 ha is under private ownership. The area was heavily grazed by sheep prior to the advent of high lift pump irrigation practices which rendered such ventures profitable. Land use within Elmore County in 1976 was as follows: 66 percent rangeland, 26 percent forest land, 7 percent agricultural land, 1 percent water, and 0.6 percent urban or built-up.

b. Socioeconomics and Demography

finnen

The Mountain Home study area is located entirely within Elmore County, with socioeconomic data available only on a county-wide basis. The population of Elmore County was 19,500 people in 1976, or 2.34 percent of Idaho's total. The population density increased from 5.7 km² in 1950 to $16.6/\text{km}^2$ in 1976. The birth rate for the county was 28.0 in 1975, as compared with a state rate of 19.8. The fertility rate is quite high, 127.9 in 1975 as compared to Idaho and U.S. rates of 92.0 and 66.7, respectively.

Unemployment is steadily rising; the 1970 average was 3.9 percent and rose to 7.4 percent in 1976. Wage and salary employment indicate the greatest number of people are employed by the military (Mountain Home Air Force Base employed 3,935 people in 1975); followed by federal civilians (1,027); trade (808); state and local government (786); farm (636) and services (389); trade, commerce and public utilities (276); and finance, insurance and real estate (203). The 1976 HUD (Housing and Urban Development) estimate for the median family income was \$10,125.

Health care in the county is comparatively poor. The average number of persons per medical doctor was 4,950 in Elmore County for 1975, as compared to 969 for the state average. Two hospitals are located in the county with 77 acute care beds.

Criminal offenses rose from 464 in 1973 to 555 in 1976. In both years, larceny was the prime offense and rose from 63 to 71 percent of the total offenses. No murders were reported in 1973 with two committed in 1976. The suicide rate of 15.2/100,000 persons in 1975 was very close to the state rate of 16.4/100,000.

c. Archaeological and Historical

Both the Oregon Trail and Kelton Road are historical markers of importance in the Mountain Home study area and run through the northeast portion of the region. There is no archaeological survey recorded; however, the probability of archaeological sites is very high and likely cover a time span ranging from prehistoric times to the present.

d. Aesthetic Values

A rural and open space atmosphere predominates in the study area. Mountains to the north and the Snake River Plain to the south and east comprise the scenery. Island Crossing State Park is located within the region and has facilities for overnight camping. No wilderness or Rare II lands are found within the Mountain Home area of concern.

E. BLUE GULCH, TWIN FALLS, AND ARTESIAN CITY

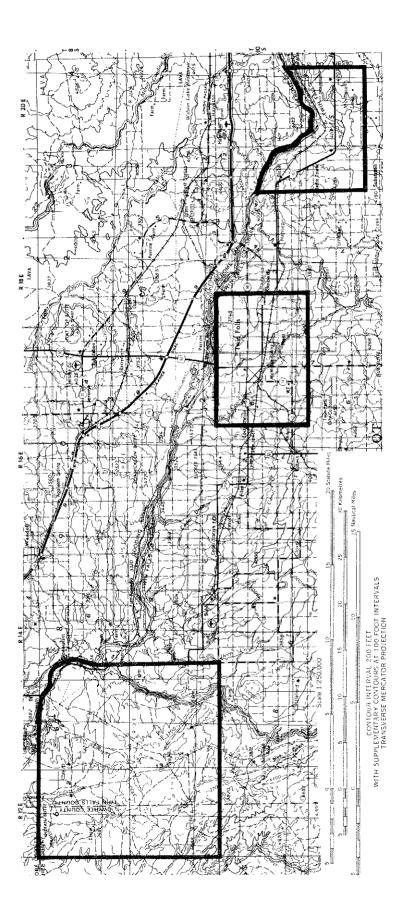
1. Physical Environment

a. Climate

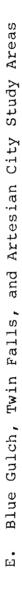
Normal annual precipitation ranges from 20 cm in the Blue Gulch area to 30 cm near Artesian City. With only 20 cm of precipitation, the Blue Gulch area is one of the driest parts of the Snake River Plain. Most of the precipitation in the area falls as snow during the winter months. The source of this precipitation is storms originating off the Pacific Coast; as a result, rain and snowfall patterns are erratic. Summers are generally warm and dry, with mean temperatures of 21° C and ranges of -6 to 36° C. Although local wind patterns are affected by topography, winter winds are generally southeast winds, while summer winds generally trend from the northwest. (.....

b. Air Quality

Air quality in this part of the Snake River Plain is good, although particulates are sometimes high in a general area north and east of Blue Gulch. There are no large point sources of significant air pollution in the area, even near Twin Falls. The annual geometric mean particulate level at two stations in Twin Falls in the period from 1971 to 1974 averaged 94 μ g/m³ during the same period.


c. Land Resources

(1) Topography


The three areas under consideration lie on the southern edge of the Snake River Plain and are bounded on the north by the canyon of the Snake River. Elevations range from 880 m at the mouth of Salmon Falls Creek to 1275 m at Artesian City. The Blue Gulch and Twin Falls areas are relatively flat with gradients of approximately 12 m/km. Artesian City lies at the base of the foothills of the Rock Creek Hills. Monument Peak, 32 km south of Artesian City, has an elevation of 2400 m.

(2) Geology

Blue Gulch, Twin Falls, and Artesian City lie in the eastern Snake River Plain geomorphic province. This area is geologically unique, characterized by horizontal flows of basalt. The surface of the plain is a youthful lava plateau partially covered with loess. Basalt flows on the plain can be classified in two age groups: older Miocene-Pliocene and younger Pliocene-Recent. Surface flows

Carrier Constant

through most of the area consist of lower Pleistocene to Pliocene basalts and associated tuffs. A small area of Pliocene olivine basalts occurs along the canyon of the Snake River from Twin Falls to the mouth of Salmon Falls Creek. Some Pleistocene and Pliocene colluvium, fanglomerate, and stream and lake deposits overlie the basalts northwest of the lower portion of Salmon Falls Creek. Major faults occur in two locations: parallel to the Snake River across the Salmon Falls Creek Canyon and trending north and northwest along the northern edge of the Rock Creek Hills.

Économ

(3) Soils

Soils throughout the area consist primarily of loess of varying depths over basalts. Mineral fertility is generally high but organic content is low. Along stream valleys, alluvial deposits overlie alluvial outwash from mountains to the south. Siltloams, ranging in depth from 25 cm to 150 cm, overlie bedrock on gentle to moderate slopes in both the Blue Gulch and Twin Falls areas. Forty percent of soils in the Artesian City area are a fine-loamy mixed soil while 20 percent are a fine montmorillontic soil. These soils range in depth from 40 cm to 100 cm. Permeabilities in all soils range from slow to moderate and the most significant soil problem is erosion.

d. Water Resources

(1) Surface Water

Primary streams in the areas under consideration include: Snake River, Salmon Falls Creek, Rock Creek, and Dry Creek. Salmon Falls Creek flows through the Blue Gulch area to the Snake River and drains an estimated 5490 km² of Idaho and Nevada. Flow in the creek is regulated at the Salmon Creek Reservoir 71 km upstream from the mouth. Except for significant leakage all of the water supply above this dam is diverted for irrigation. Diversions below the dam are used to irrigate land outside the drainage basin. Average discharge at the mouth of Salmon Falls Creek is $4.87 \text{ m}^3/\text{s}$ and extremes at this point are $0.34 \text{ m}^3/\text{s}$ and $38.5 \text{ m}^3/\text{s}$.

Rock Creek drains an estimated 483 km² and discharges to the Snake River 10 km northwest of Twin Falls. Flow in the creek is partially regulated by a fish hatchery and irrigation waste flow and many irrigation diversions exist upstream. The mean discharge for the creek during the period of record (1 year) is $6.6 \text{ m}^3/\text{s}$, and the extremes during this period were $2.6 \text{ m}^3/\text{s}$ and $13.5 \text{ m}^3/\text{s}$. Monthly flows in the creek during that year differed from the mean by less than 50 percent.

During low flow years, all flow is topped in the Snake River at Milner Dam, 19 km northeast of Artesian City. The largest inflow below the dam is Thousand Springs which contributes an estimated $184 \text{ m}^3/\text{s}$ to the river as inflow from the Snake River Plain aquifer. The water quality of the Snake River declines gradually as it flows west through the area receiving pollutants from agricultural industrial processing plants, and untreated activity, domestic water return. Twin Falls has been listed by the EPA as needing improved waste treatment facilities. Nitrate and phosphate in the river from natural and manmade sources The contribute to periodic excessive algal and weed growth. only lake occurring in the area is Murtaugh Lake in the Artesian City area. This manmade lake is on Dry Creek and has a surface area of approximately 250 ha. Surface water quality for streams in the area is shown in Table E-1.

finnes.

	TABLE E-1		<u>مەر مەرەپ مەرە</u>			
SURFACE WATER QUALITY						
	(mq/l)					
میں بندی ہور _ک ار میں ایک کار میں ایک کار میں میں کر میں تکرین کار میں میں ہور کار میں کر میں کر میں کر میں کر	Salmon Falls	Snake River	Snake River			
	Creek	(Kimberly)	(King Hill)			
	70	а Г.	47			
Са	70	45	47			
K	7.8	5.2	`4.5			
Mg	23	19	18			
Na	53	31	27			
C1 ⁻	41	24	23*			
Na_ C <u>1</u> F	0.9	0.5	0.7			
HCO3	239	200	187			
SOA	111	47	45			
TDS	480	289	298			
TSS (Total Suspended Solids)	103		27			
pH	8.6	8.7	8.5			
Specific Conductance	766	468	434			

(2) Groundwater

Groundwater occurs in the basalts and alluvial deposits throughout the area. Depths to water range from 24 m in the Rock Creek Basin to 40 m at Artesian City, to 50 m near Kimberly, and as much as 240 m in the Blue The few functioning irrigation wells in the Gulch area. Falls Creek basin are near the Salmon Falls Salmon Reservoir. Groundwater outflow at Thousand Springs provides water from one of the world's most extensive aquaculture programs. Water from the springs has significantly better quality than surface water or groundwater on the south side of the Snake River.

Because of limited water supply and extensive use of groundwater for irrigation, three areas have been designated critical groundwater areas by the Idaho Department of Water Resources. This designation effectively closes these areas to further applications to appropriate groundwater. The three areas included are:

Émocra-

Artesian City - 14,500 ha (est.) including land in T. 11 and 12 S., R. 19 and 20 E., B.M. Nearly all land included in the geothermal area of interest is included in the critical groundwater designation.

<u>Cottonwood</u> - 16,000 ha (est.) adjacent to the Artesian City area on the south.

Blue Gulch - 76,000 ha (est.) on the west side of Salmon Falls Creek. All but approximately 2000 ha of the Blue Gulch geothermal area is included in this designation.

2. Natural Environment

a. Flora

Native vegetation in undisturbed areas is classified in the sagebrush association. Primary species found in the area are big sagebrush and cheatgrass. Early records indicate that much of the area was once covered with bunchgrasses and some sagebrush. Heavy use of the area by livestock led to the establishment of the present native species. A small stand of pinion-juniper is located just southeast of Artesian City. Where native vegetation has been disturbed, areas have been reseeded with crested wheatgrass. Much of the land in the areas of interest is currently cultivated.

b. Fauna

Major habitat areas that have been identified include: deer habitat along the lower 10 km of Salmon Falls Creek, birds of prey habitat along the canyon of the Snake River, a curlew habitat area southwest of Twin Falls, and a high density of rough-legged hawks and chukar partridge in the Salmon Falls Creek Canyon. Animals well adapted to the sagebrush habitat include the Richardson ground squirrel, Great Basin kangaroo rat, sage grouse, vesper sparrow, and sagebrush lizard. Year-round residents of the area include the coyote, ground squirrel, blacktail jackrabbit, golden eagle, sparrow hawk, pheasant, house finch, and horned lark. Snakes, particularly the western rattlesnake, the pygmy rabbit and the Ord kangaroo rat are declining as native habitats are converted to cropland.

c. Aquatics

for the second s

Aquatic plants, including duckweed, cattail, sedge (Carex), and a common reed (Phargmites), are common in streams throughout the area. The Snake River has annual extensive algal blooms. Construction of dams on the Snake river has replaced free-flowing habitat preferred by coldwater game fish with lake-like situations. Small numbers of rainbow and cutthroat trout are native in this stretch of the river. Suckers and squawfish thrive in the reservoirs. Sixteen species of fish have been identified by the Idaho Fish and Game Department in the Snake River below Shoshone Falls and eleven species have been identified above. Trout occur in both sections, while coho salmon (Oncorhynchus kisutch) occur only in the upper section. Sunfish (Lepomis sp.), catfish, and sucker are common in the lower section.

3. Cultural Environment

a. Land Use

Arable land occurs on both sides of the Snake River and along its tributaries. The Salmon Falls Creek drainage contains an estimated 82,000 ha of arable land. Cultivation of these lands is limited by availability of water. Approximately 80 percent of the croplands in the area are irrigated. Most of the Artesian City area, acreage south of Twin Falls, and the western part of the Blue Gulch area are included in proposed areas for new irrigation development in the next 30 years.

Most of the land being considered is privately owned and used for grazing and crop production. Intermittent areas of private ownership are generally associated with the livestock industry, mining, and recreation. Approximately 37,300 ha of BLM land, 1550 ha of state land (school endowment), and 4150 ha of private land occur in the Blue Gulch area. No nonprivate land occurs in either the Artesian City or the Twin Falls area. The metropolitan area of Twin Falls includes about 1500 ha.

b. Socioeconomics and Demography

The three areas under consideration are in Twin Falls County, which has a population of 47,300 (1976). Towns included in these areas are Twin Falls (1970 population 21,194), Kimberly (1970 population 1,557), and Murtaugh (1970 population 124). The population density of the area is nine people/km². The birthrate and fertility rate for the county are 20.6 and 98.8, respectively, and compare to values of 19.8 and 92.0 for the state and 14.8 and 66.7 for the United States. The number of new housing units authorized annually increased from 85 in 1971 to 221 in 1976 in Twin Falls and from 1 to 23 in Kimberly during the same period. The unemployment in the county in 1976 was 6.2 percent, an increase of 1.6 percent over the 1970 value. The main employers in the county are trade, services, nonfarm proprietors, and manufacturing. Larceny and burglary accounted for 84 percent of all crimes in 1976.

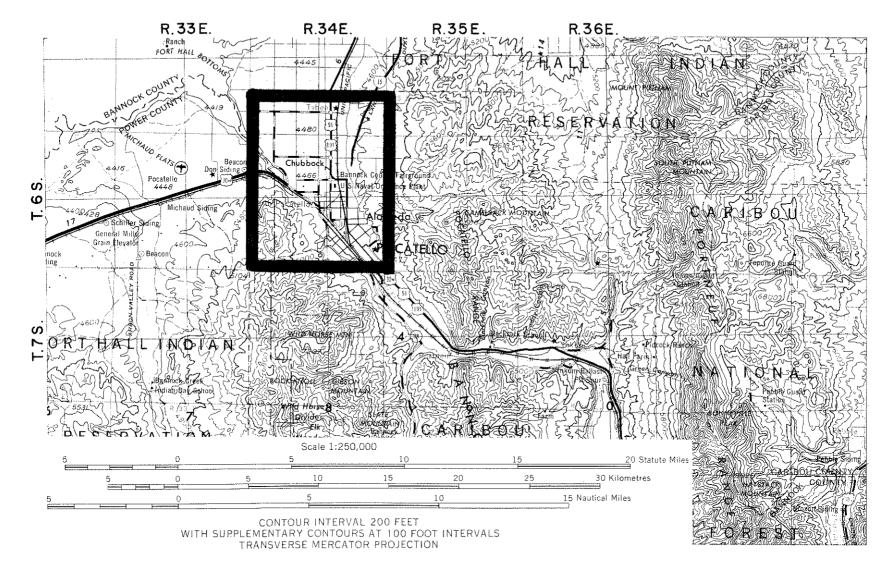
Émoios.

c. Archaeological and Historical

This area of Idaho contained great cultural diversity during the late prehistoric and early historic periods. Several distinct Indian groups inhabited the Snake River Plain in the recent past. Although only limited archaeological surveys have been conducted in the area, indications are that the western Snake River Plain is exceptional in its potential to yield archaeological data of major scientific significance.

Fur trappers were the first white people in the area in any number. Immigration in the 1840's, 1850's, and 1860's brought thousands of people through the area, however, permanent settlements were slow in developing. Farming began in the late 19th century. Historical areas are generally associated with the immigrant trails, and a segment of the Oregon Trail at the mouth of Salmon Falls Creek is being considered for historical status. The only other historic or natural area in this region is the Hagerman Fossil Natural Area established by the BLM in the Blue Gulch area.

d. Aesthetic Values


Recreational and/or aesthetic sites in the three study regions are diverse. Balance Rock is a scenic anomaly located on Salmon Falls Creek Canyon near Blue Gulch and is quite unusual and picturesque. The Snake River Canyon through Twin Falls plunges with sheer cliffs and dropoffs and is quite magnificant. Murtaugh Lake located near Artesian City is utilized for recreational purposes. As is true for most of Idaho, the open, rolling land and clean, fast rivers afford the viewer a sense of solitude and freedom in an area not yet overpopulated with resultant industrial development and environmental degradation.

F. POCATELLO

1. Physical Environment

a. Climate

Pocatello is located in the southeast corner of the Snake River Plain where the climate is a middle-latitude steppe type. Spring months are the wettest and windiest,

 $\overline{}$

F. Pocatello Study Area

-379-

while cool nights and warm days predominate during the summer. Percent of possible sunshine averages over 80 percent in July, August, and September. General snowcover begins in December and freezing temperatures occur until May. Mean monthly temperatures range from -4° C in January to 23° C in July. Maximum and minimum recorded temperatures are 40 and -34° C. Wind directions reflect the orientation of nearby mountain ranges, with over 50 percent of the winds orginating in the southwest quadrant. Thirty percent of wind speeds are less than 2 m/s, while 5 percent occur within the 2 m/s to 6 m/s range. Relative humidity exceeds 30 percent only a third of the time during July and only a half of the time in January. Average potential evapotranspiration exceeds the average precipitation all months except November, December, January, and February (USFS, 1977).

leases.

b. Air Quality

The primary sources for air pollution in the Pocatello area are the phosphate and elemental phosphorus plants west of the city. Air quality measurements that have been taken have been directed at characterizing the effluents from these plants. The annual geometric mean of suspended particulates from four Pocatello stations ranged from 41 to 145 μ g/m³ during the period from 1971 to 1974. The primary and secondary standards for suspended particulates are exceeded at 1 km from the plants. During a ten-month period in 1972 and 1973, the 24-hour standard for sulfates was exceeded 14 times.

c. Land Resources

(1) Topography

Elevations in the area of interest range from 1700 m in the southwest to 1340 m along the lower Portneuf River near its confluence with American Falls Reservoir. The city of Pocatello has an elevation of 1360 m. Here the canyon of the Portneuf River meets the southeast boundary of the Snake River Plain. The foothills of the Bannock Range are southwest of the city and the Pocatello Range is to the east.

(2) Geology

Pocatello lies within the margin of the middle Rocky Mountain Province typified by complexly folded and faulted ranges of the extreme southeastern Snake River Plain of the Columbia Intermountain Province.

Beginning in the Precambrian, the area surrounding Pocatello lay within a geosyncline into which vast amounts of sand, shale, and limestone were deposited. These sediments underwent metamorphism to produce quartzites, argillites, and marbles now exposed in the ranges southeast of Pocatello. During early Paleozoic era a geosyncline reappeared collecting sand shales and limestones. The relative coarseness of these sediments exposed suggest that the Paleo shoreline was very near the Pocatello area.

Beginning in late Cretaceous, major folding and faulting (including thrust faulting) warped and broke great thicknesses of sediments in southeastern Idaho, moving rock units from west to east. The most noticeable in the area is the Bannock Overthrust extending from Idaho Falls southward near Pocatello to the Idaho-Utah border. Subsequently, basin and range structures developed, related to those of the Great Basin in Utah and Nevada.

At the same time, the introduction of felsic and basaltic lava began on the Snake River Plain. The tunnel of the newly forming Snake River Plain cut across the northwest trending landforms developed from Laramide and Basin and Range Structures and is now the most prominent physiographic element in the area. By late Pliocene, pediment fans began to encroach on the newly developed basins. Concurrently, tension faults allowed lava to again spread across the countryside. The most notable in the area are those flows now exposed at Ross Park in Pocatello. The distribution of these flows with the forthcoming glacial activity prompted damming of the major drainages including the Snake River and the outlet of Pluvial Lake Bonneville. Numerous lake bed deposits are identified northwest of Pocatello in the area where American Falls Reservoir is now located. To the south, Lake Bonneville was filling due to the increased precipitation and decreased evaporation until the water level overlapped Red Rock Pass. Enormous volumes of water swept down Marsh Creek and the Portneuf River to the Snake River. As the flood waters entered the Snake River Plain, their energy decreased leaving large boulder and gravel deposits which now skirt the foothills and mountains flanking Pocatello.

(3) Soils

filmer.

Soils in the Pocatello area are generally loess deposited on bedrock of Snake River Basalt and the Salt Lake Formation. Slopes of the foothills are moderately stable and depth to bedrock usually exceeds 3 m throughout the area. Surface soils are primarily silt loams and subsoils range from silty clay loams to heavy silt loams. Natural vegetation occurring on these soils include sagebrush, grasses, and mountain brush. Soils near the processing plants west of Pocatello show increased concentrations of trace elements.

d. Water Resources

(1) Surface Water

The Portneuf River is the primary stream in the area, draining approximately 3300 km². It rises on the Ft. Hall Indian Reservation approximately 38 km northeast of Pocatello and flows south to Lava Hot Springs. Here, it turns west through a gap in the Portneuf Range, then flows north for 18 km. At its confluence with Marsh Creek, the main tributary of the Portneuf, the river turns to the northwest and empties into the American Falls Reservoir. Flows in the river are regulated by the Portneuf Reservoir and the Chesterfield Reservoir. Diversions from the river are used to irrigate an estimated 17,000 ha upstream from Pocatello. The average flow of the Portneuf at Pocatello is 7.6 m^3/s and the extremes during the 63-year period of record are 84.7 and 0.01 m^3/s . In the 1976 water year, 42 percent of the total flow of the river occurred in April and May. Streams draining the Pocatello Range flow into the Fort Hall Main Canal, from which a series of laterals run to the west across the area of interest. Uses of surface water include municipal, industrial, irrigation, domestic use, stock watering, recreational use and power generation. Patterns of streamflow are affected by regulation of supply for these uses.

Quality of the Portneuf River in the area of interest is shown in table F-1. Sources of inflow in this section of the river include an oil separation plant, elemental phosphorus and fertilizer plant effluent, sewage treatment plant, springs, and a fish hatchery. The estimated flow from these sources is $0.5 \text{ m}^3/\text{s}$.

TABLE F-1							
WATER QUALITY OF PORTNEUF RIVER							
and a second	(3 locations -	mg/l)					
Fe	0.02	0.01	0.03				
ĸ	7.4	11	7.4				
Na	37	43	33				
C1	8.0	10	6.0				
F	0.4	0.1	0.6				
HCO3	281	232	283				
NOT	0.8	0.5	5.6				
PO₫	0.28	0.19	0.86				
TDŠ	480	412	440				
Specific	610	512	590				
Conductance							
(µmhos)							
рН	6.2	8.2	8.1				
т (^о С)	15.5	15.5	14.0				
DO	13	13					

(2) Groundwater

familie

Groundwater in the Pocatello area occurs in alluvium and alluvial-fan deposits and in the underlying volcanics which range in depth from 30 m to 120 m. Wells in the alluvium north and northwest of Pocatello have yields ranging from 0.06 to 0.19 m³/s with less than 30 m of drawdown. Recharge in the flatlands northwest of the city comes from precipitation and underflow from the surrounding hills. There is significant groundwater outflow to the Portneuf River in the Pocatello area. The combined discharge of these springs is approximately 9 m³/s.

Uses of groundwater include municipal, industrial, irrigation, private residence, and stock supplies. Municipal uses account for withdrawals of about $0.4 \text{ m}^3/\text{s}$, while withdrawals for the phosphorus and phosphate plants average $0.5 \text{ m}^3/\text{s}$. Groundwater quality from three wells in the Pocatello area is shown in table F-2. The source of the nitrate in the city wells is unclear, since these wells are several kilometers upstream from the processing plants. In many wells, the total dissolved solids content is higher than the drinking water standard of 500 mg/l.

TABLE F-2 GROUNDWATER QUALITY							
	(mg/l) Dis-			Ni-	Phos-		
Well	Date	solved Solids	-	trate as NO ₃	phate, as PO4		
	4-27-65	5 360	104	6.6		0.05	
80 Acres No. 1 Do	4-27-63 5-20-66		104 90	38		0.32	
Pocatello No. 3 Do	1-04-61 8-31-66		58 72	5.3 27	0.02	0.22 0.53	
Pocatello No. 23 Do	10-21-64 8-31-66		75 123	58 345	0.12	0.35 0.44	

2. Natural Environment

a. Flora

Regional flora is transitional between the Great Basin vegetation to the south and the Rocky Mountain vegetation on the north. Two primary native cover classifications have been identified in the area:

<u>Mountain/brush</u> - dominated by species such as bitterbrush (Purshia tridentata), serviceberry (Amalanchier alnifolia), and juniper. Sagebrush is almost always present.

(marine)

Sagebrush/grass - dominated by sagebrush, bitterbrush, bluegrass, and Indian ricegrass.

The mountain-brush association occurs on all aspects at lower elevations, but is generally confined to south and west slopes at higher elevations. The sagebrush-grass association occurs at lower elevations on less productive soils. No plant species included on the 1974 Smithsonian Institute plant list are known to occur in the area.

b. Fauna

Elk and mule deer winter in the mountains south Other game species which occur in the area of Pocatello. include sage/grouse, sharptailed grouse (Pedioecetes phasianellus), Hungarian partridge, and chukar partridge. Small mammals which are found in all cover types include whitetail jackrabbit (Lepus townsendi), cottontail (Sylvilagus nuttalli), and pygmy.

Mourning doves are found in the area in the and are associated with the sagebrush-grass, summer mountain-brush, and agricultural cover types. The area is located in the Pacific waterfowl flyway and a large number ducks and geese concentrate at the American Falls of Reservoir before moving south. The most common insectivorous birds in the area include the western meadowlark neglecta), swallows (Hirundinidae), (Sturnella and nighthawks (Chordeiles minor). Several species of reptiles and amphibians inhabit the area, including western toad (Bufo boreas), leopard frog, gopher snake, and western rattlesnake.

c. Aquatics

Rainbow trout are stocked in the Portneuf River; other species found in the river include brook trout and brown trout. The upper Portneuf and its tributary, Marsh Creek, are classed as Class IV streams by the Idaho Department of Fish and Game, and fishing pressure is moderate to intense in some areas.

3. Cultural Environment

a. Land Use

All land in the area of interest is privately owned. The Fort Hall Indian Reservation, which was established in 1868, borders the area on the west and north, and Caribou National Forest lands lie to the south. Approximately 3880 ha of land is included with the metropolitan area of Pocatello. Additional land uses include grazing, dry and irrigated farming, and phosphate processing. The Simplot plant, a completely integrated fertilizer complex, was established in 1945 and processes about 750,000 tons of phosphate rock annually. The FMC elemental phosphorus plant, established in 1949, has an annual production capacity of 127,000 metric tons.

b. Socioeconomics and Demography

A.

The population (1970) of Pocatello is 40,000, about 77 percent of the population of Bannock County. The population has steadily increased and forecasts (some controversial) indicate that the population of the city may increase by 30,000 by 1980. The projected increase is primarily based on growth of the Bucyrus-Erie plant. The birth rate and fertility rate for the county in 1975 were 23.3 and 101.5, respectively. They compare to respective values of 19.1 and 92.0 for Idaho and 14.8 and 66.7 for the United Eighty-three new housing units were States as a whole. authorized in Pocatello in 1970; in 1976, 1104 were authorized. Primary employers in the county in 1975 were trade (5,065), state and local (4,547), services (3,437), transportation and utilities (2,859), and manufacturing (2,653). The percent of the labor force unemployed in 1970 was 5.7 percent; in 1976 it had dropped to 4.9 percent. Ten percent of families were below the poverty level in 1969, and an average of 1,400 persons utilized welfare in 1975. Larceny offenses accounted for 66 percent of all crime in the county in 1976, while murder accounted for less than 0.1 percent.

c. Archaeological and Historical

The Pocatello area was an area of extensive travel by fur traders and immigrants in the early 1800's. The Oregon Trail, its south alternate, and the Lander Road all entered Idaho east of Pocatello. The latter two trails met the Oregon Trail on what is now the Fort Hall Indian Reservation, 40 km northeast of Pocatello. They continued west to the Snake River, then followed its course to the southwest. The California Trail took off from the Oregon Trail at Soda Springs and traversed the area south of Pocatello. By 1860, permanent settlements were underway.

Southeast Idaho is part of the Great Basin ethnographic culture area. The natives were hunters and gatherers. Because of their seasonal treks, there is no large accumulation of artifacts in any one area.

d. Aesthetic Values

Poor air quality is a major problem in the Pocatello area and impacts the recreational value of the region. The main recreational asset of the area is American Falls Reservoir, which lies outside the Pocatello study area. Pocatello is located at the foot of rather picturesque mountains, which affords some aesthetic value to the local residents. ging and a

G. HAILEY

1. Physical Environment

a. Climate

The Hailey area is characterized by long, cold winters and short, dry summers. Average monthly temperatures range from -7° C in January to 20° C in July. The normal annual precipitation ranges from 38 cm at Hailey in the Wood River valley to over 48 cm in the nearby foothills. Nearly 50 percent of the annual precipitation falls as snow from December through February. The snow depth peaks in March at 113 cm (1890 m elevation). The maximum snow depth recorded at this station is 183 cm. Wind patterns are determined almost entirely by topography and vary significantly over the area.


b. Air Quality

The are no major air-polluting industries in the central Idaho region; as a result, the air quality of the Hailey area is extremely good. There are two air quality stations in the region, one 110 km south on the southern Snake River Plain and one at Craters of the Moon National Monument, 80 km to the east. The normal suspended particulate concentrations at these two stations are 40 μ g/m³ and less than 10 μ g/m³, respectively. Estimates of the particulate levels around Hailey indicate that normal concentrations at Craters of the Moon.

c. Land Resources

(1) Topography

The general topography of the area is steep and rough and exhibits the effects of both extensive glaciation and stream erosion. Elevations in the area of interest range from 1630 m at Hailey to 2700 m on Kelly Mountain. Elevations in the main Sawtooth Mountains to the northwest exceed 3150 m. The valley of the Wood River, which forms the eastern boundary of the area, opens onto the Snake River Plain 24 km south of Hailey. East-west trending

<u>j</u>énnan

G. Hailey Study Area

ridges and valleys dissect the area, resulting in the steep slopes and high relief characteristic of the region.

ģi....

(2) Geology

The geology of the Hailey area reflects uplift, intrusion, glaciation, vulcanism, and stream erosion, all of which have played a major role in the structure of the area. Hailey is located at the boundary of the Idaho Batholith and the Snake River Plain. As a result, both the granitics of the Batholith and volcanic flows and Glacial deposits and alluvium overlie debris predominate. volcanic debris, marine detritus, and quartzite in the normal-faulted Wood River valley. In addition to the faults bounding the valley, a major northeast-southwest trending thrust-block boundary fault is evident along Deer Creek canyon extending into the Pioneer Mountains to the east of Like the Snake River Plain, the Hailey area the valley. seems aseismic, although a large number of earthquakes occur in the Sawtooth Mountains north of Stanley.

(3) Soils

Soils range from deep and productive in the valley bottoms to shallow and unproductive on the steep south slopes. Much of the area is characterized by fluvial slopes with soils formed from underlying granitics, sandstone, volcanic rhyolites, and metamorphosed sediments. Soils derived from the granitics of the Batholith are generally gravelly, sandy loams or loamy sands. The profile is not well developed and ranges in depth from 25 cm to 90 Sedimentary soils are moderately deep clays or cm. clayloams over well-fractured bedrock. Soils whose parent material is volcanic are loams or clay loams with shallow to moderately deep profiles. The soils of the Batholith are highly erosive, while the sedimentary and volcanic soils are very cohesive and much less erosive.

d. Water Resources

(1) Surface Water

The primary stream in the area is the Big Wood River, which is fed largely by snowmelt in the upper reaches of the watershed. Temperature variations control the stream discharge during the high spring runoff. Precipitation rarely contributes directly to high runoff in the basin. The Big Wood River drains over 1660 km² of the Boulder, Pioneer, and southern Sawtooth Mountains. The river empties into the Magic Reservoir which provides irrigation water supply for Lincoln and Gooding counties, 25 km south of Hailey. Diversions above Hailey are used to irrigate an average of 4000 ha. The average discharge of the river at Hailey is 10.8 m³/s, with recorded extremes of 141 m³/s and 0 m³/s. Forty-seven percent of the total flow of the river in the 1976 water year occurred in May and June. Average water quality of the river in 1975 and 1976 just south of Hailey is shown in table G-1. Irrigators are generally short of water each year. Decreed water rights on the river above the Magic Reservoir total approximately 28 m³/s.

	WATER	QUALITY	OF	THE	BIG	LE G-1 WOOD 1/1)		1975	AND	1976
Ca		39				HC	203			140
K		l.	.1			SC				15
Mg		7.	. 6			TI	-			149
Na -		3.	.3				pecific Conduc	tance		290
C <u>1</u> F		1. 0.				рH	I			8.3

(2) Groundwater

The Wood River aquifer is unconfined fluvio-glacial sedimentary deposit underlying the valley to depths of more than 90 m. Beds of sand and gravel interbedded with clays and silt yield large supplies of water to wells up to 30 m deep in the valley. The water table, which has an average gradient of 7.6 m/km, is deepest in late winter and shallowest in June. The groundwater is of uniformly good quality, although it ranges from moderately hard to hard. Groundwater outflow from the upper Big Wood Basin totals about 6000 hm³ annually.

2. Natural Environment

a. Flora

The dominant vegetation types around Hailey and in the mountains to the west are conifer timber and sagebrush-grass. Lodgepole pine (Pinus contorta) and Douglas fir occur primarily on the north and east slopes, while mountain big sagebrush, bitterbrush, blue bunch wheatgrass, and chokecherry generally occur on the south and west slopes. Associated vegetation types found in the valley bottoms include grassland, meadow, aspen, and riparian. Slopes along the north side of upper Deer Creek are highly sensitive and difficult to revegetate. Although vegetation types throughout the area are well-established, forest fires and timber harvests result in local short-term changes.

b. Fauna

Primary large mammals in the area include mule deer, elk, black bear, and mountain goats (Oreamnos americanus). Predators include bear, mountain lion (Felis concolor), lynx (Lynx canadensis), bobcat, and coyote. Common rodents include the Columbian ground squirrel, red squirrel (Tamiasciurus hudsonicus), chipmunk (Eutamias sp.), deer mouse (Peromyscus maniculatus), and snowshoe rabbit. Forest grouse (Teraonidae) are common in the timbered areas, while passerine species including fox sparrow (Passerella iliaca), song sparrow (Melospiza melodia), and yellowthroat (Geothlypis trichas) are found throughout the area. Beaver (Castoridae), muskrat, snipe (Scholopacidae), blackbirds (Corvidae), frogs, and garter snakes (Thamnophis sirtalis) are common in the marshy valley bottoms. Summer range for deer and elk is abundant. Extremely valuable winter range is located in Deer Creek canyon, on Buttercup Mountain to the west, and along Willow Creek to the south. Approximately 100 elk and 300 deer winter along the sagebrush-covered south slopes of Deer Creek canyon. Cow Creek canyon in the northern part of the area is vegetated with aspen and provides good elk forage during calving in May and June. From 40 to 60 elk can be found in the area during this period.

<u>pinen</u>

c. Aquatics

Fish found in the major streams of the region rainbow, cutthroat, eastern brook trout, include and Dolly Varden trout and kokanee salmon whitefish. (Oncorhynchus nerka) are found in the South Fork of the Boise River just west of the area of interest. Fisheries capability is low throughout the tributaries of the Big Wood These streams do contain some native rainbow trout. River. Several times a year, fish are planted in Soldier Creek, Willow Creek, and Deer Creek.

3. Cultural Environment

a. Land Use

Of the 30,600 ha in the area of interest, an estimated 11,700 ha are under the jurisdiction of the Sawtooth National Forest, 9800 ha are controlled by the Bureau of Land Management, 1500 ha belong to the State of Idaho, and the remainder is private land. Land uses on the USFS and BLM in the western half of the area of interest include snowmobiling, hunting, cross-country skiing, scenic travel, and summer recreation, mining (16 lead and silver mines are located in the area), and cattle and sheep grazing. Recreational facilities at Clarendon Hot Springs are the only geothermal development in the area. The eastern half of the area is used for grazing, farming, a travel corridor, and residential.

b. Socioeconomics and Demography

All of the area of interest is located in Blaine County, which had a population in 1976 of 7900. The population density in the county in that year was 1.7 people/km². Eighteen percent of the county population is classed as rural-farm, while 82 percent is classed as rural-nonfarm. Hailey, the county seat, had a population in 1970 of 1425. The county population increased 38 percent in the six years from 1970 to 1976, compared to a 16.5 percent population increase in the State of Idaho during the same period. Migration accounted for 79 percent of the county's population increase.

The unemployment rate in the county in 1976 was 14.4 percent, ranging from 10.6 percent in September to 22 percent in May at the end of the ski season. Services as a group employ the largest number of people (27 percent of total), with trade, state and local, and nonfarm proprietors together accounting for an additional 40 percent. Per capita income in 1970 was 114 percent of the state average.

c. Archaeological and Historical

Archaeological surveys in the region indicate that primitive man inhabited the area; however, no extensive archaeological studies have been conducted which yield specific data for the area. The first white man in the area was a trapper traversing the mountains to Boise in 1824. A gold discovery in 1863 led to the founding of Hailey and Ketchum. Many of the mining towns established during the subsequent 30 years are now ghost towns. Homesteading fluorished in the 1880's and sheep grazing was extensive until the Sawtooth National Forest was established in 1905. The Union Pacific Railroad began construction of the Sun Valley Resort in 1936, marking the advent of recreation as a major industry in the area.

d. Aesthetic Values

The Hailey area is highly prized for both its abundant wildlife and near-pristine wilderness. Located on the edge of the Sawtooth National Recreation Area, the only road into the region is heavily utilized by recreational travelers. The study area receives heavy use in summer by backpackers and campers and in winter by skiers, who frequent the area from all parts of the world. Preservation of the environment in this area would be a major concern to potential developers.

IV. POTENTIAL ENVIRONMENTAL IMPACTS

phone and a second

The environmental impacts that may result from the development of geothermal resources in the areas under consideration will vary significantly. In general, the developments will be on a relatively small scale, so that cumulative impacts in any one area will be minor.

A. AIR QUALITY

Sources of air pollution from geothermal development include dust from cleared areas and roads, vehicle emissions, dissolved gasses in the geothermal fluids, and emissions from industrial processes. Dust can be controlled to a certain extent by gravelling, watering, or oiling roads and sites. The dissolved gas content (especially hydrogen sulfide) in most geothermal resources in Idaho is very low. Geothermal systems will be a closed cycle unit in most processes, resulting in no release of dissolved gasses to the environment. Where this is not the case, gas emissions reduced through the use of scrubbing can be units. Emissions from industrial processes will vary and can be controlled, if necessary, to meet state and federal regulations.

B. NOISE

Noise levels during geothermal development will generally be highest during well drilling. Noise levels from drill rigs range from less than 50 dBA at 6 m for cable tool rigs to higher than 70 dBA at 6 m for oil rigs. Drill rigs may operate for 24 hours a day where the noise does not cause disruption. The noise from open water discharge lines from a geothermal well rarely exceeds 70 dBA at 1.5 m. Any of these noise levels should be reduced to less than 60 dBA at 300 m.

C. SOILS

The primary environmental impacts of geothermal development on soils will be increased erosion on cleared land and instabilities on steep slopes. To a great extent, these impacts can be reduced through careful siting of well and plant sites. The hills surrounding Pocatello and the canyons in the Hailey area are especially susceptible to soil stability problems.

D. WATER RESOURCES

The impact of goethermal resources on water quality and supply is one of the major concerns in the State of Idaho.

Water contamination can result from casing leaks, seepage from holding ponds, uncontrolled discharge from wells, and improper disposal of the geothermal fluids. Regulations require that geothermal wells be cased and cemented through shallow groundwater aquifers to reduce the chance of geothermal fluids leaking into these aquifers through the Drilling muds help to reduce the seepage from wellbore. holding ponds; however, if seepage of poor quality fluids is high, the holding ponds can be lined. Proper design of wells, wellheads, piping systems, and discharge systems should reduce the chances of water contamination from these sources. Samples from thermal wells and springs across the state indicate total dissolved solids ranging from 180 to 13,000 mg/l, with a mean of 630 mg/l. The quality of some geothermal fluids, then, can be expected to be compatible with surface and shallow groundwaters. Indications are that geothermal systems in Idaho are not completely separated from other groundwater aquifers. As a result, production of geothermal fluids may interfere with groundwater supplies in some places.

E. SEISMICITY

Geothermal areas have been associated with areas of significant seismic activity. Production and injection of geothermal fluids may increase the activity in some areas. The Snake River Plain in Idaho is considered very aseismic and background levels of seismic activity in the areas under consideration are low. Depending on the amount of faulting and the imbalance created by production and injection in these areas, microseismic activity may or may not increase.

F. SUBSIDENCE

Whenever large quantities of fluids are withdrawn from unconsolidated sediments or when declining reservoir pressures reduce the support for overburden, subsidence may result. In some areas in Idaho, subsidence due to the withdrawal of water for irrigation has been documented. The adverse impacts of subsidence depend on the location. Significant subsidence in a city may result in structural damage to many buildings. The same amount of subsidence in an undeveloped or agricultural area may not result in any damage.

G. FLORA

The major impact to flora generally results from the clearing of land for roads, drill sites, and process facilities. If those disturbed lands are revegetated with native species following development, the impact can be reduced. If not, soil erosion may increase and a significant invasion of noxious species such as halogeton (Halogeton glomeratus) may result. Reestablishment of native vegetation on unstable slopes is difficult and in areas with low moisture availability, this reestablishment may take decades.

H. FAUNA

The impact on local fauna in developed agricultural or metropolitan areas will be minimal. The prime species displaced by development in those areas will be small In the undeveloped areas of Hailey, Blue Gulch, mammals. and Bruneau-Grand View, development may result in major Each of these areas is prime habitat for impacts to fauna. elk, mule deer, and raptors. Nesting and calving areas are particularly vulnerable in the spring and early summer and development in these areas should be avoided. Aquatic species may be impacted as a result of increased erosion or discharge of poor quality goethermal fluids to streams. In most cases, design of facilities will reduce this impact.

I. SOCIOECONOMICS

If major development occurs in sparsely populated areas, the population influx may result in significant social and economic impacts. These impacts would include lack of housing, strain on utilities and service, especially water supply and medical services. If development occurs in an orderly manner, there may be an opportunity for planning early in the development phase which could reduce many of the adverse impacts. The kinds of development that can be expected in the areas under consideration are either retrofitting existing processes to utilize geothermal fluids or small-scale new processes. These developments should result in few adverse socioeconomic impacts.

J. ARCHAEOLOGICAL AND HISTORICAL

All of the areas under consideration are known to or are expected to have significant heritage resources. Where these resources have been documented (e.g., the route to the Oregon Trail), they should be protected during development. Archaeological curves should be conducted in undisturbed areas where no data exist. If archaeological resources are uncovered during development, state archaeologists will be consulted.

REFERENCES

- Ada Council of Governments, 1973. Background Information for Ada County, Idaho. Environmental Planning Report 3.
- Ada Council of Governments. Waste Water Sources and Water Use, Environmental Report 8.
- Ada Council of Governments. Ada County Ecology. Environmental Report 9.
- Bureau of Land Management, 1976. Environmental Analysis Record for the Agricultural Development Program.
- Bureau of Reclamation, 1977. Water Quality Study-Boise Valley, Vol. 1. Bureau of Reclamation, Pacific Northwest Region, Boise, Idaho.
- EAR No. 11-010-5-77. Geothermal Leasing and Development on Potential Areas within the Boise District-Bruneau, Grandview and Bennett Mountain. Bureau of Land Management, Boise District, Boise, Idaho.
- Longyear, A.B., W.R. Brink, L.A. Fisher, R.H. Matherson, J.A. Neilson, S.K. Sanyal, 1978. Mountain Home Geothermal Project - 1st Quarterly Report IDO/1704-1. U.S. Department of Energy, August 1978.
- National Oceanic & Atmospheric Administration, 1977. Climatological Data Annual Summary. Vol. 80 (No. 13), National Climatic Center, Asheville, N.C.
- Ralston, D.R. and S.L. Chapman, 1969. Ground-Water Resources of Northern Owyhee County, Idaho. Water Information Bulletin 14. Idaho Dept. of Reclamation.
- U.S.E.P.A., 1972. Idaho Environmental Status and Program Evaluation. Region IX EPA, Seattle, Washington.
- U.S. Forest Service, 1975. Proposed Land Use Plan, Council Planning Unit, Payette National Forest.
- U.S. Forest Service, 1977. Final Environmental Impact Statement, Development of Phosphate Resources in Southeastern Idaho.
- U.S. Geological Survey, 1976. Water Resources Data for Idaho, Water Year 1976. Report ID-76-1.
- Young, H.W. and R.L. Whitehead, 1975. Geothermal Investigations in Idaho - Part 3: An Evaluation of Thermal Water in the Weiser Area, Idaho. Idaho Department of Water Resources Water Information Bulletin 30.

Young, H.W., W.A. Harenberg, and H.R. Seitz, 1977. Water Resources of the Weiser River Basin, West-Central Idaho. Water Information Bulletin No. 44, Idaho Department of Water Resources.