
GEOTHERMAL INVESTIGATIONS IN IDAHO

PART I GEOCHEMISTRY and GEOLOGIC SETTING of SELECTED THERMAL WATERS

IDAHO DEPARTMENT OF WATER ADMINISTRATION WATER INFORMATION BULLETIN NO. 30

MAY 1973

WATER INFORMATION BULLETIN NO. 30

GEOTHERMAL INVESTIGATIONS IN IDAHO

Part I

Geochemistry and Geologic Setting of

Selected Thermal Waters

by

H. W. Young U. S. Geological Survey

and

J. C. Mitchell Idaho Department of Water Administration

Prepared jointly by the

U. S. Geological Survey

and

Idaho Department of Water Administration

May 1973

CONTENTS

Abstract 1
Introduction
Previous Work
Well- and Spring-Numbering System
Use of Metric Units
Methods of Data Collection
Selection of Sampling Sites
Measurements of Water Quality and Quantity
Geologic Reconnaissance
Geology of Thermal-Water Areas
General Considerations
Generalized Geologic Setting of Idaho
Inventoried Springs and Wells
Geochemical Thermometers
Summary of Geochemical Thermometers Available
Silica Geochemical Thermometer
Sodium-Potassium and Sodium-Potassium-Calcium Geochemical Thermometers 21
Analyses of Data
Summary of Findings
Future Work
Selected References

ILLUSTRATIONS

Figure

1.	Map showing lands classified as valuable for geothermal resources in Idaho 3
2.	Diagram showing the well- and spring-numbering system
3.	Graph showing Celsius-Fahrenheit temperature relationship
4.	Map of the generalized geology of the State of Idaho and sampled spring and well locations in pocket
5.	Map showing estimated aquifer temperatures for sampled springs and wells . in pocket

ILLUSTRATIONS (Cont'd.)

Figure	Page
6. Map showing areas selected for future study	

TABLES

Table

1.	Geologic environment of selected springs and wells in Idaho
2.	Chemical analyses of thermal waters from selected springs and wells in Idaho 23
3.	Estimated aquifer temperatures and atomic ratios of selected chemical constituents . 29

GEOTHERMAL INVESTIGATIONS IN IDAHO

Part 1

Geochemistry and Geologic Setting of Selected Thermal Waters

by

H. W. Young and J. C. Mitchell

ABSTRACT

At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. One hundred twenty-four of these were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of rock types – igneous, metamorphic, and both consolidated and unconsolidated sediments. Twenty-eight of the sites visited occur on or near fault zones while a greater number were thought to be related to faulting.

Measured water temperatures at the 124 wells and springs inventoried ranged from 12^o to 93^oC (degrees Celsius) and averaged 50^oC. Estimated aquifer temperatures, calculated using the silica and the sodium-potassium-calcium geochemical thermometers, range from 5^o to 370^oC and averaged 110^oC. Estimated aquifer temperatures in excess of 140^oC were found at 42 sites. No areal patterns to the distribution of temperatures either at the surface or subsurface were found.

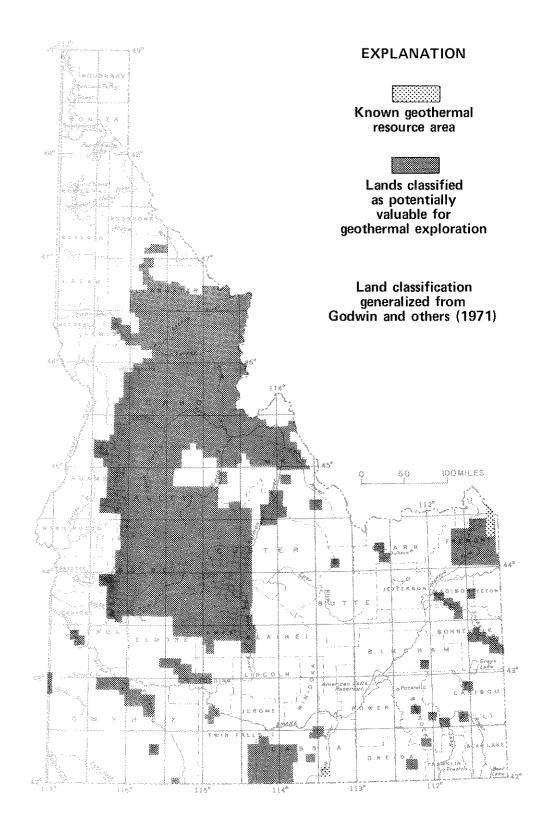
Generally, the quality of the waters sampled was good. Dissolved-solids concentrations range from 14 to 13,700 mg/l (milligrams per liter) and averaged 812 mg/l, with higher values occurring in the southeastern part of the State.

No hot springs or wells were found within the Yellowstone KGRA (known geothermal resource area) in northeastern Idaho. At the Frazier KGRA in Raft River Valley, water temperatures at the surface above 90° C were measured at two wells. Geochemical thermometers indicate temperatures of 135° to 145° C may exist at depths. Dissolved-solids concentrations in waters issuing from the two wells were 1,720 and 3,360 mg/l. The minerals being deposited by these waters consist chiefly of halite (NaCl) and calcite (CaCO₃).

Twenty-five areas were selected for future study. Of these areas, 23 were selected on the basis of estimated aquifer temperatures of 140°C or higher and two on the basis of geologic considerations.

INTRODUCTION

The search for energy resources in the United States continues in an effort to meet increasing demands for electric energy. Widespread interest in converting the natural heat of the earth into electric power, shared by the general public, governmental agencies, and the power industry, stems from the hope that this source of energy will become a viable component of existing modes of power generation. If that hope can be realized, fossil fuel can be conserved, proposed dam sites can be saved for their scenic value, and some of the fears concerning the environmental effects of using nuclear fuels can be avoided.


The recent interest in geothermal energy and the need to establish exploration leasing rights led the United States Congress to pass the Geothermal Steam Act of 1970 (Public Law 91-581, Godwin and others, 1971, p. 10-18) which makes provision for leasing, development, and utilization of geothermal resources found on Federal lands. The Idaho Geothermal Leasing Act of 1972 (sections 47-1601 to 1611, Idaho Code) makes similar provisions for geothermal resources found on State and school lands. As provided in the Federal act, pre-leasing land classification, including Federal, State, and private lands, was conducted on a reconnaissance level by the U. S. Geological Survey and a total of 44 KGRA's (known geothermal resource area) were designated in the nine western states (Godwin and others, 1971, p. 2). Approximately 1.8 million acres of land was included in this classification. Two of the areas in Idaho, the Yellowstone KGRA in eastern Fremont County and the Frazier KGRA in the Raft River basin (fig. 1), include about 21,800 acres and represent about 16 percent of the area in the KGRA's designated in the Pacific Northwest.

In addition to KGRA's, lands potentially valuable for geothermal exploration were also designated. A total of nearly 96 million acres in 14 states is in this category. In Idaho, nearly 15 million acres or approximately 30 percent of the State (fig. 1) was classified as potentially valuable for exploration.

Economic or beneficial present uses of Idaho's geothermal resources, although of long standing, have been of only minor importance (Ross, 1971). These uses have been primarily for irrigation and secondarily for recreation and space heating of a few homes and greenhouses.

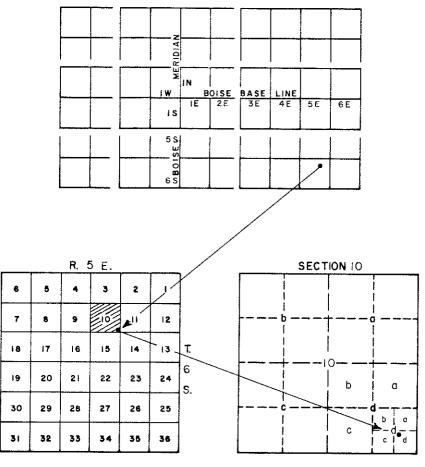
Existing knowledge and laws have been adequate with regard to development and regulation of the resource for these minor uses. However, recognition of the possibilities for development of Idaho's geothermal resources for power, also brought the realization that little information concerning both the source of the hot water and its adequacy for power development was available. Despite this lack of information, interest in looking for geothermal areas capable of sustaining power plants is keen and private interests have requested permits from the Idaho Department of Water Administration that would allow them exploration and development rights as provided in Idaho's Geothermal Resources Act of 1972 (sections 42-4001 to 4015, Idaho Code).

In recognition of the needs for information noted above, the U.S. Geological Survey in cooperation with the Idaho Department of Water Administration initiated a study to

FIGURE 1. Location of known geothermal resource areas and areas classed as potentially valuable for geothermal exploration.

investigate the potential for geothermal resource development in Idaho. This report summarizes the effort in which 124 selected thermal springs and wells were visited during the spring and summer of 1972. The objectives of this progress report are: (1) to present the chemical analyses of 124 selected thermal springs and wells, estimate aquifer temperatures for them, and reconnaissance data on their geologic setting; and (2) to designate for additional study areas where: (a) estimated aquifer temperatures of 140°C or higher (a temperature of 140°C was arbitrarily selected by the authors as the minimum needed for usable water) were found, using the silica and sodium-potassium-calcium geochemical thermometers or (b) favorable geologic conditions indicate work is needed.

Previous Work


Numerous reports have briefly mentioned or described the occurrence and characteristics of thermal waters within a particular region or section of Idaho. However, only three reports (Stearns and others, 1937, Waring, 1965, and Ross, 1971) have described thermal waters throughout the State. These reports are mainly a collection of pre-existing data compiled by various workers over a time span of approximately 50-60 years. The information given in Stearns and others (1937, p. 136-151) for Idaho is essentially repeated by Waring (1965, p. 26-31). The most comprehensive of the three reports, (Ross, 1971, p. 47-67), includes data on 380 thermal springs and wells, and evaluations of the geothermal potential of some areas. Although the three reports contain much useful information applicable to this investigation, they are lacking in the water-chemistry data needed for purposes of this study.

Well- and Spring-Numbering System

The numbering system used by the U. S. Geological Survey in Idaho indicates the location of wells or springs within the official rectangular subdivision of the public lands, with reference to the Boise base line and meridian. The first two segments of the number designate the township and range. The third segment gives the section number, followed by three letters and a numeral, which indicate the quarter section, the 40-acre tract, the 10-acre tract, and the serial number of the well within the tract, respectively. Quarter sections are lettered a, b, c, and d in counterclockwise order from the northeast quarter of each section (fig. 2). Within the quarter sections, 40-acre and 10-acre tracts are lettered in the same manner. Well 6S-5E-10ddd1 is in the SE¼ SE¼ SE¼ SE¼ Sec. 10, T. 6 S., R. 5 E., and was the first well inventoried in that tract. Springs are designated by the letter "S" following the last numeral; for example, 4S-13E-30adb1S.

Use of Metric Units

In this report, metric units are used to present concentrations of water-quality parameters determined by chemical analyses and the temperature of water. Chemical data for concentrations are given in milligrams per liter (mg/l) rather than in parts per million (ppm), the units used in earlier reports of the U.S. Geological Survey. However, numerical values for chemical concentrations given in this report would be essentially the same

6S-5E-10ddd1

FIGURE 2. Diagram showing the well- and spring-numbering system.

whether reported in terms of milligrams per liter or parts per million. Water temperatures are presented in degrees Celsius (^oC). Figure 3 shows the relation between degrees Fahrenheit and degrees Celsius.

METHODS OF DATA COLLECTION

Selection of Sampling Sites

There are at least 380 thermal springs and wells in Idaho (Ross, 1971, p. 47-64). Because the time required to visit all of these was considered excessive, only a limited number of them could be visited, examined, and water samples collected. Generally, selection of the 124 springs and wells visited was made using the following criteria: (1) location within a classified area, figure 1; (2) temperature known or reported to be above 20°C; (3) known or reported water chemistry suggestive of higher temperatures at depth; or

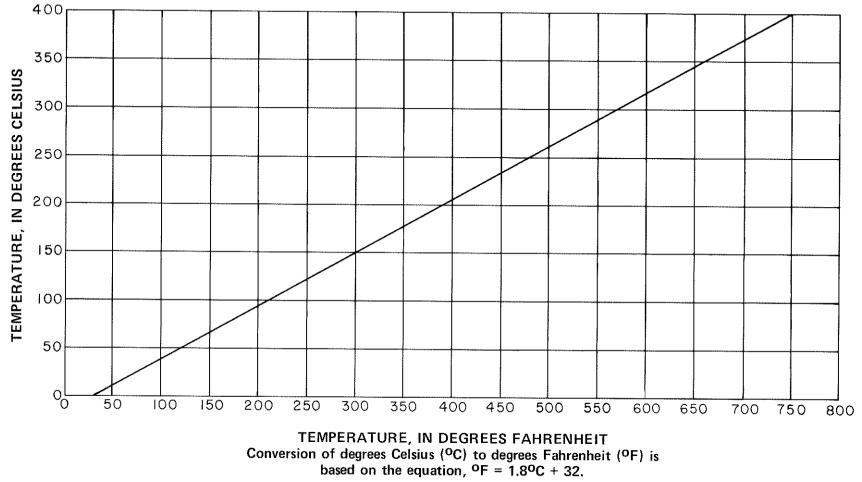


FIGURE 3. Temperature-conversion graph.

တ

(4) geologic conditions suggesting an association with some inferred heat source. Where several springs or wells were closely grouped, water from the spring or well having the highest water temperature at the surface was preferentially sampled. This procedure was based on the hypothesis that the hottest waters would best reflect conditions at depth. That is, they probably would not have undergone as large a temperature decrease through conduction with the wall rock, alteration of composition by mixing with waters of intermediate levels, flashing to steam, or other alteration processes during their ascent to the surface.

Measurements of Water Quality and Quantity

Field data collected at each sampled site included measurements of pH, water temperature at the surface, and discharge. These measurements were made as close as possible to the spring vent or well discharge pipe. In some instances, only estimates of discharge could be obtained.

Water samples were collected at each spring or well for standard chemical analysis. A separate sample was collected for silica determination. This sample was diluted in the field with distilled water (one-part sample to nine-parts distilled water) to prevent silica polymerization prior to analysis.

Geologic Reconnaissance

A brief geologic reconnaissance made at each site included (1) identification of the lithology at or near the spring vent, and (2) identification of the structural setting of the site with emphasis on faulting and the intersection of fracture zones. Available geologic maps were used to aid understanding of geologic conditions in areas of interest and to determine the age of the rocks. In addition, available drillers' logs were examined to assess well construction, and aquifer or aquifers penetrated by the well.

Active deposition of silicate or carbonate minerals at or near the sample spring or well was noted where possible.

GEOLOGY OF THERMAL-WATER AREAS

General Considerations

The close association of thermal springs with main belts of present or geologically recent volcanic activity was noted by Waring (1965, p. 4). As noted by Waring, the occurrence of thermal waters is most common in extensive areas of lava flows of Tertiary and later geologic age.

Although the association of geothermal activity with specific rock types has not been established, in many areas geothermal phenomena seem more closely associated with acidic volcanic rocks of rhyolitic to dacitic composition, as well as their glassy equivalents, rather than with the more basaltic volcanic types (Healy, 1970, p. 574). The more favorable areas for exploration and development of geothermal steam are probably characterized by recent normal faulting, volcanism, and high heat flow (Grose, 1971, p. 1). Grose further states that thermal springs commonly emerge from faults along caldera margins and that some thermal water areas are indirectly associated with surface or shallow subsurface, time-related volcanism which is not evident in the immediate thermal spring area. The heat source in these areas is believed, in most cases, to come from shallow, magmatic intrusive bodies, that transfer their heat to circulating ground water.

Generalized Geologic Setting of Idaho

The State of Idaho is underlain by rocks of igneous, metamorphic, and sedimentary origins (fig. 4). These formations range in age from Precambrian to Holocene and represent a varied and complex geologic history. Large scale igneous activity has occurred throughout most of the State. Cenozoic lava flows ranging in composition from rhyolite to basalt are exposed in most of the western, central, and southern parts of the State, while Mesozoic and Cenozoic granitic rocks are the predominant rock type of large areas of central Idaho. Marine sedimentary rocks of Paleozoic age are the principal rock type of southeastern Idaho, while metamorphic rocks of Precambrian age are exposed in northern and east-central Idaho.

For purposes of this report the geology of the State of Idaho is divided into nine map units. Each unit was selected on the basis of age and lithologic considerations. The areal distribution and descriptions of these units are given in figure 4.

Although the occurrence of thermal activity and its association to a particular rock type in Idaho is obscure, known thermal anomalies are limited to the central and southern parts of the State. The occurrence and associated rock type of sampled springs and wells is discussed in the following sections.

Inventoried Springs and Wells

A brief description of the geology, including the age and lithology of the spring vent or aquifer, and where possible, the controlling structure, and the active deposition at each spring and well is given in table 1. These descriptions indicate that thermal springs and wells throughout the State issue from a great diversity of rocks types of nearly all ages. However, the lithology and age of the spring vent or aquifer may not be indicative of the aquifer from which the thermal waters originate. Many thermal springs in central Idaho occur in association with fault zones in Cretaceous and Tertiary granitic and related rocks, whereas springs and wells along the margins of the Snake River Plain occur in Cenozoic basaltic and rhyolitic lava flows and associated sedimentary rocks. In southeastern Idaho, springs and wells are primarily associated with fault zones in Paleozoic marine sedimentary rocks that may, in places, be overlain by unconsolidated valley fill.

GEOLOGIC ENVIRONMENT OF SELECTED SPRINGS AND WELLS IN IDAHO

(Dash in column indicates unknown or not observed.)

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active I Siliceous	eposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No. Fig. 6
			A	A COUNTY		······································		, d
5N 1E 35aca1	Pliocene and Pleistocene sediments	-	-	-	-	Flowing well	Savage, 1958	
4N 2E 29acd1	Pliocene and Pleistocene sediments	-	-		-	Flowing well; slight sulfur odor	Savage, 1958	
3N 2E 12cdd1	Pliocene and Pleistocene sediments	Northwest trend- ing fault	Yes	Yes	-	Flowing well; sulfur odor	Savage, 1958	
			ADA	MS COUNTY				
White Licks Hot Springs 16N 2E 33bcc15	Quaternary alluvium, proba- bly less than 5 feet thick, near Miocene basalt and Cretaceous granitic rocks	-	-	Yes	Yes	Numerous spring vents; gas present in several vents; sulfur odor; temperature range 63 to 65 ⁰ C	Waring, 1965	1
Zim's Resort Hot Springs 20N 1E 26ddb1S	Quaternary alluvium near Miocene basalt	Northwest trend- ing normal fault	-	Yes	Yes	Slight sulfur odor	Hamilton, 1969	
Krigbaum Hot Springs 19N 2E 22cca1S	Cretaceous granitic rocks near Miocene basalt	Northeast trend- ing normal fault	-	Yes	-	Two spring vents; temper- ature of 40 and 43 ⁰ C	Newcomb, 1970	
Starkey Hot Springs 18N 1W 34dbb1S	Miocene basalt	-	-	Yes	Yes	Seven spring vents; sulfur odor; second- ary calcite in basalt near spring vents	Livingston and Laney, 1920	
			BANN	OCK COUNTY				
5S 34E 26dab1	Pliocene and Pleistocene sediments (?)	-	-	Yes	-	Flowing well; slight sulfur odor; driller's log available	Ross, 1971	2
Lava Hot Springs 95 38E 21ddab1S	Paleozoic quartzite and younger travertine	Fault	-	Yes	Yes	Numerous spring vents	Stearns and others, 1938	3
Downata Hot Springs 12S 37E 12cdc1S	Quaternary alluvium near Tertiary sediments	-	-	-	Yes (?)	-	Norvitch and Larson, 1970	
			BEAR	LAKE COUNTY				
Bear Lake Hot Springs 15S 44E 13cca1S	Paleozoic limestone	North trending fault	-	Yes	-	Numerous spring vents; sulfur odor	Dion, 1969	4
			BLAJ	NE COUNTY				
1S 17E 23aab1	Quaternary alluvium (?)	-	-	Yes	-	Flowing well; sulfur odor; driller's log available	Smith, 1959	5

T.

.

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active 1 Siliceous	Deposition Carbonates	Gas	Remarks	Principal Refer- ence for	Area No
Mulliber		Structure	STITCEOUS	Carbonates	Gas	Remarks	Geologic Setting	Fig. 6
			BLAINE	COUNTY (Cont'd.)			
Guyer Hot Springs 4N 17E 15aac15	Paleozoic limestone	Northwest trend- ing fault (?)	Yes	Yes	Yes	Numerous spring vents; hydrogen sulfide odor; temperature range 55 to 70 ¹ 2 ⁰ C	Umpleby and others, 1930	
Clarendon Hot Springs 3N 17E 27dcb1S	Paleozoic quartzite	-	-	-	Yes (?)	Numerous spring vents; sulfur odor; tempera- ture range 42 to 47°C	Umpleby and others, 1930	
Hailey Hot Springs 2N 18E 18dbb1S	Paleozoic limestone	-	Yes	-	Yes	Numerous spring vents; sulfur odor	Umpleby and others, 1930	
Condie Hot Springs 1S 21E 14dd1S	Quaternary alluvium near Pleistocene basalt	-	-	Yes	Yes (?)	-	Stearns and others, 1938	
1S 22E 1da1S	Quaternary alluvium near Holocene basalt and Paleozoic quartzite	-	-	Yes	Yes	Three spring vents	Ross, 1971	
			<u>BO</u>	ISE COUNTY				
Bonneville Hot Springs 10N 10E 31c1S	Cretaceous granitic rocks	-	Yes	Yes	-	Eight spring vents and numerous seeps; slight sulfur odor; temperature range 68 to 85°C; granitic rock silicified in places	Waring, 1965	6
9N 3E 25bac1S	Cretaceous granitic rocks		Yes	Yes	-	One vent; slight sulfur odor	Waring, 1965	7
Kirkham Hot Springs 9N 8E 32cac1S	Cretaceous granitic rocks	-	Yes	Yes	Yes	Numerous spring vents; temperature range 48 to 65°C	Waring, 1965	
8N 5E 1bcb1S	Quaternary alluvium overlying Cretaceous granitic rocks	-	-	-	-	-	Anderson, 1947	
8N 5E 10bdd1S	Cretaceous granitic rocks	-	-	-		-	Anderson, 1947	
			BONNI	EVILLE COUNTY				
1N 43E 9cbb1S	Quaternary alluvium with travertine deposits near Paleozoic limestone	Northwest trend- ing fault	-	Yes	Yes	Six spring vents; sulfur odor; temperature range 23 to 25°C	Jobin and Shroeder, 1964	8
			BU	FTE COUNTY				
3N 25E 32cdd1	Pleistocene basalt	-	-	-	-	Driller's log available	-	
3N 27E 9abb1	Pleistocene basalt and sediments		-	-	-	Driller's log available	Ross, 1971	

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active De Siliceous	position Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No. Fig. 6
			CAMA	S COUNTY				11g. 0
Wardrop Hot Springs IN 13E 32abb1S	Quaternary alluvium near Pleistocene basalt and Cretaceous granitic rocks	-	-		Yes	Numerous spring vents	Walton, 1962	5
Worswick Hot Springs 3N 14E 28calS	Cretaceous granitic rocks	-	Yes	Yes	-	Numerous spring vents; granitic rock silicified in places; possible in- tersection of faults	Umpleby, 1913	
Elk Creek Hot Springs IN 15E 14ada1S	Cretaceous granitic rocks near contact with Oligocene silicic volcanic rocks	-	-	Yes	-	Five spring vents and numer- ous seeps; temperature range 43 to 53½°C	Walton, 1962	
1S 12E 31cbc1	Quaternary alluvium	-	-	-	-	Flowing well	Walton, 1962	
1S 13E 27ccb1	Quaternary alluvium	-	Yes	-	-	Flowing well; driller's log available	Walton, 1962	
Barron's Hot Springs 1S 13E 34bcc1S	Quaternary alluvium near Pleistocene basalt and Cretaceous granitic rocks	-	-	Yes	Yes	Numerous spring vents; temperature range 62 to 71 ⁰ C	Walton, 1962	
			CANY	ON COUNTY				
2N 2W 34abcl	Pliocene and Pleistocene sediments	-	-	-	-	Sulfur odor; driller's log available	Savage, 1958	
			CARI	BOU COUNTY				
6S 41E 19baalS	Quaternary travertine	West trending fault (Pelican fault)	-	Yes	Yeş	Ten spring vents; slight sulfur odor; temperature range 34 to 42°C	Mansfield, 1927	9
Soda Springs 9S 41E 12add1S	Holocene travertine near Pleistocene basalt	North trending thrust fault	-	Yes	Yes	Numerous spring vents; slight sulfur odor; temperature range 24 to 31 ⁰ C	Armstrong, 1969	
			CASS	IA COUNTY				
15S 26E 23bbcl	-	-	-	Yes	Yes (?)	Flowing well; slight sulfur odor	Stearns and others, 1938	10
15S 26E 23ddc1	Pleistocene sediments	-	-	Yes	Yes (?)	Flowing well; driller's log available	Nace and others, 1961	10
115 25E 11ccal	Precambrian quartzite	North trending fault	Yes	Yes	-	Flowing well; sulfur odor; driller's log available	Crosthwaite, 1957	
14S 21E 34bdc1	Pliocene silicic volcanic rocks	-	-	Yes	-	Flowing well; sulfur odor; driller's log available	Piper, 1923	

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active De Siliceous	position Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No. Fig. 6
			CASSIA CO	UNTY (Cont'd.	.)			
Oakley Warm Spring 14S 22E 27dcb1S	Precambrian quartzite	-	-	-	Yes (?)	Slight sulfur odor	Anderson, 1931	
15S 24E 22ddb1	-	-	-	Yes	-	Flowing well	Ross, 1971	
			CLAR	K COUNTY				
Warm Springs 11N 32E 25aac1S	Quaternary alluvium near Paleozoic lime- stone	-		-	-	Twelve spring vents; temper- ature range 26 to 29 ⁰ C; travertine deposits near spring vents	Stearns and others, 1939	
Lidy Hot Springs 9N 33E 2bbc1S	Miocene and Pliocene silicic volcanic rocks	North trending fault	-	Yes	Yes (?)	Travertine deposits near spring vents	Stearns and others, 1939	
			CUST	ER COUNTY				
8N 17E 32bcalS	Quaternary alluvium near Tertiary silicic volcanic rocks	-	-	Yes	Yes	Numerous spring vents; hydrogen sulfide odor; temperature range 40 to 54 ⁰ C; secondary quartz in volcanic rocks near spring vents	Waring, 1965	11
14N 19E 34daal	-	-	-	-	-	Flowing well	-	
Sunbeam Hot Springs 11N 15E 19c1S	Cretaceous granitic rocks	-	Yes	Yes	Yes	Numerous spring vents; slight hydrogen sulfide odor; temperature range 65 to 76 ⁰ C	Choate, 1962	
Sullivan Hot Springs 11N 17E 27bdd15	Contact between Oligocene silicic volcanic rocks and Paleozoic dolomite and argillite	-	-	Yes	Yes	Hydrogen sulfide odor	Ross, 1937	
Barney Hot Springs 11N 25E 23cab1S	Quaternary alluvium	12	-	-	Yes	-	Waring, 1965	
Stanley Hot Springs 10N 13E 3cab1S	Quaternary alluvium near Cretaceous granitic rocks	Northeast trend- ing fault	-	Yes	Yes	Six spring vents and numer- ous seeps; hydrogen sulfide odor; temperature range 31 to 41°C	Choate, 1962	
Slate Creek Hot Springs 10N 16E 30alS	Paleozoic argillite	-	-	Yes	Yes	Eight spring vents; hydrogen sulfide odor; temperature range 32 to 50°C	Ross, 1937	
			ELMO	RE COUNTY				
5S 8E 34bdc1	Pliocene and Pleistocene sediments (?)	-	-	Yes	Yes	Flowing well; hydrogen sulfide odor	Ralston and Chapman, 1968	12

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active f Siliceous	eposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No. Fig. 6
			ELMORE C	OUNTY (Cont'd.)			
Neinmeyer Hot Springs SN 7E 24b1S	Cretaceous granitic rocks	-	Yes	-	Yes (?)	Thirteen spring vents; gas present at one vent; temperature range 68 to 76 ⁰ C	Waring, 1965	
Dutch Frank's Spring 5N 9E 7b1S	Cretaceous granitic rocks	-	Yes	Yes	Yes (?)	Numerous spring vents; gas present at one vent; temperature range 53 to 65 ⁰ C	Waring, 1965	
Paradise Hot Springs 3N 10E 33bd1S	Cretaceous granitic rocks	-	-	-	Yes	Several spring vents	Waring, 1965	
35 8E 36cdal	Pliocene and Pleistocene sediments (?)	-		-	-	Flowing well	Dion and Griffiths, 1967	
Latty Hot Springs 35 10E 31ddb1S	Pleistocene basalt	Northwest trend- ing fault	-	-	-	~	Malde and others, 1963	
45 8E 36bbal	Pliocene and Pleistocene sediments	-	-	-	-	Slight hydrogen sulfide odor; driller's log available	Ralston and Chapman, 1968	
45 9E 8ab1	Pliocene and Pleistocene sediments and basalt	-	-	Yes	-	Flowing well; driller's log available	Ralston and Chapman, 1968	
5S 10E 7acd1	Pliocene and Pleistocene sediments (?)	-	-	-	-	Flowing well; slight sulfur odor	Ralston and Chapman, 1968	
5S 10E 32bdb1	Pliocene and Pleistocene sediments (?)	-	-	Yes	-	Flowing well; sulfur odor; driller's log available	Ralston and Chapman, 1968	
			FRAN	KLIN COUNTY				
Maple Grove Hot Springs 135 41E 7acalS	Paleozoic quartzite (?)	North trend- ìng fault	-	Yes	Yes	Numerous spring vents; slight sulfur odor	Dion, 1969	13
145 39E 36adal	Quaternary alluvium (?)	-	-	-	-	Slight sulfur odor	Dion, 1969	13
Wayland Hot Springs 155 39E 8bdc15	Quaternary alluvium with travertine deposits	Northwest trend- fault	-	Yes	Yes	Numerous spring vents	Dion, 1969	13
15S 39E 17bcd1	Quaternary alluvium with travertine deposits	Northwest trend- ing fault	-	Yes	Yes	Flowing well near Squaw Hot Springs	Dion, 1969	13
			FREM	IONT COUNTY				
Ashton Warm Springs 9N 42E 23dab1S	Pleistocene basalt	-	-	-	-	-	Stearns and others, 1939	14

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active Dé Siliceous	eposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No Fig, 6
			FREMONT CO	DUNTY (Cont'd.)			
Big Springs 14N 44E 34bbb1S	Quaternary obsidian (rhyolite)	-	-		-	Numerous spring vents; temperature range 10^{1} to 12° C	Hamilton, 1965	
Lily Pad Lake 10N 45E 35abc1S	Tertiary rhyolite ash flows	-	-	-	-	Assumed numerous small seeps; no inflow or out- flow channels	Hamilton, 1965	
7N 41E 35cdd1	Tertiary silicic volcanic rocks (?)	-	-	Yes	-	-	-	
			GEM	I COUNTY				
Røystone Hot Springs 7N 1E 8dda1S	Quaternary alluvium near Miocene basalt	-	-	-	-	Five spring vents	Newcomb, 1970	15
7N 1E 9cdc1S	Quaternary alluvium near Miocene basalt	-	-		-	-	Newcomb, 1970	
			GOODI	NG COUNTY				
4S 13E 28ab1	-	-	-	Yes	-	Flowing well	Stearns and others, 1938	
White Arrow Hot Springs 4S 13E 30adb1S	Quaternary alluvium near Pliocene basalt	-	-	Yes	Yes	Four spring vents	Malde and others, 1963	
55 12E 3aaal	Pliocene sediments and basalt	-	-	Yes	-	Flowing well; driller's log available	Malde and others, 1963	
			IDAH	O COUNTY		,		
Weir Creek Hot Springs 36N 11E 13b1S	Cretaceous granitic rocks	-	Yes	-	-	Six spring vents; temper- ature range 44 to 47½°C	Waring, 1965	
Jerry Johnson Hot Springs 36N 13E 18a1S	Cretaceous granitic rocks	-	-	Yes	-	Eight spring vents; tem- perature range 41 to 48 ⁰ C	Waring, 1965	
Red River Hot Springs 28N 10E 3d1S	Cretaceous granitic rocks	-	Yes	-	-	Nine spring vents; temper- ature range 37 to 55 ⁰ C	Waring, 1965	
Riggins Hot Springs 24N 2E 14dac15	Quaternary alluvium, probably less than 5 feet thick, overlying Paleozoic and Mesozoic gneiss	North trend- ing normal fault	-	Yes	Yes	Four spring vents and numerous seeps	Hamilton, 1969	
Burgdorf Hot Springs 22N 4E 1bdc1S	Quaternary alluvium near Cretaceous granitic rocks	-	-	Yes	Yes	Two spring vents	Waring, 1965	

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active E Siliceous	Deposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No. Fig. 6
			JEFFE	RSON COUNTY			**************************************	
Heise Hot Springs 4N 40E 25dcb1S	Tertiary silicic volcanic rocks	Northwest trend- ìng fault	-	Yes	-	Sulfur odor; extensive travertine deposits	Stearns and others, 1938	8
			LEN	THI COUNTY				
Big Creek Hot Springs 23N 18E 22c1S	Cretaceous granitic rocks, altered, strong linea- tions (?)	-	Yes	Yes	Yes (?)	Fifteen spring vents; slight sulfur odor; tem- perature range 82 to 93 ⁰ C; travertine deposits below present spring vents	Waring, 1965	16
Salmon Hot Springs 20N 22E 3abd1S	Contact between Oligocene basalt and older tuffaceous rocks	Northeast trend- ing fault	_	Yes	-	Three spring vents	Forrester, 1956	17
Sharkey Hot Springs 20N 24E 34ccclS	Oligocene silicic volcanic rocks	Northwest trend- ing fault	-	Yes	-	Silica deposition along fault trace above spring vent	Anderson, 1957	17
16N 21E 18adc15	Quaternary alluvium, probably less than 5 fect thick, near Precambrian quartzite	-	-	Yes	-	-	Ross, 1963	18
			MADI	SON COUNTY				
Green Canyon Hot Springs 5N 43E 6bcalS	Tertiary silicic volcanic rocks	-	-	Yes	-	Travertine deposits below spring vents	Waring, 1965	
			ONE	IDA COUNTY				
14S 36E 27cda1S	Quaternary alluvium with travertine deposits	-	-	Yes	Yes	One spring vent	Burnham and others, 1969	19
Pleasantview Warm Springs 155 35E 3aab1S	Quaternary alluvium	-	-	Yes	-	Numerous spring vents	Burnham and others, 1969	19
Woodruff Hot Springs 16S 36E 10bbc1S	Paleozoic limestone	Northwest trend- ing fault (?)	-	Yes	-	Nine spring vents; temperature range 27 to 32°C	Burnham and others, 1969	19
125 34E 36bcb15	Paleozoic limestone	-	-	-	÷	Numerous spring vents	Piper, 1924	
			OWY	HEE COUNTY				
45 2E 32bcc1	Pliocene sediments and basalt, and Tertiary silicic volcanic rocks (?)	-	-	-	Yes	Flowing well; sulfur odor	Ralston and Chapman, 1969	20
55 3E 26bcb1	Pliocene sediments and basalt, and Tertiary silicic volcanic rocks (?)	-	Yes (?)	Yes	Yes	Flowing well	Ralston and Chapman, 1969	20

,

Spring or Well Age and Rock Type Principal Refer-Area No Identification Active Deposition of Aquifer(s) or ence for Carbonates Geologic Setting Fig. 6 Number Spring Vent(s) Structure Siliceous Gas Remarks OWYHEE COUNTY (Cont'd.) Flowing well; sulfur odor; 65 3E 20001 Pliocene sediments and Yes Yes Raiston and 20 _ driller's log available Chapman, 1969 hasa1t 6S 5E 10ddd1 Pliocene sediments Flowing well: driller's log Littleton and 20 Yes available Crosthwaite, 1957 20 65 5E 29dcc1 Pliocene sediments Flowing well: slight sulfur Litteton and Crosthwaite, 1957 odor; driller's log availab1e 20 6S 6E 12ccd1 Pliocene sediments Driller's log available Ralston and Chapman, 1969 20 7S_SE_7abb1 Pliocene silicie volcanie Flowing well; driller's log Ralston and Yes rocks available Chapman, 1969 Indian Bathtub Hot Contact between Pliocene Numerous seeps along con-Littleton and 20 Yes Springs basalt and overlying tact; temperature range 3712 Crosthwaite 1957 85 6E 3bdd15 tuffaceous rocks to 39°C 21 Murphy Hot Springs Pliocene silicic volcanic Fault ... Two spring vents Waring, 1965 165 9E 24bb1S rocks 1N 4W 12dbb1 Pliocene sediments Yes Flowing well; hydrogen Raiston and sulfide odor: driller's log Chapman, 1969 available 1S 2W 7ccb1 Pliocene sediments Yes Flowing well; slight sulfur Ralston and _ Chapman, 1969 odor 4S 1E 34bad1 Pliocene basalt and Terti-Yes Flowing well; sulfur odor; Ralston and _ ary silicic volcanic rocks driller's log available Chapman, 1969 Tertiary silicic volcanic 5S 1E 24ad1 Yes Flowing well; slight sulfur Raiston and ... Chapman, 1969 rocks odor; driller's log available SS 2E lbbcI Pliocene sediments and Yes Yes Flowing well; sulfur odor Ralston and basalt (?) Chapman, 1969 75 6E 9bad1 Tertiary silicic volcanic Raiston and Yes Flowing well; sulfur odor rocks Chapman, 1969 Indian Hot Springs Tertiary silicic volcanic Northwest trend-Yes Yes Numerous spring vents: Waring, 1965 -12S 7E 33c1S ing fault sulfur odor rocks POWER COUNTY Indian Springs Paleozoic limestone Northwest trend-Stearns and Yes Seven spring vents ... 3S 31E 18dab1S ing fault others, 1938 10S 30E 13cdc1S Paleozoic limestone Numerous spring vents; tem-Ross, 1971 perature range 34 to 38°C

Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active De Siliceous	position Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No Fig. 6
			TWIN H	ALLS COUNTY				
diracle Hor Springs 35 14E 31acb15	Quaternary alluvium near Pliocene basalt and older silicic volcanic rocks	-	-	Yes	Yes	-	Malde and others, 1972	
3S 14E 33cbal	Pliocene and Pleistocene sediments and basalt (?)	-	-	Yes	-	Flowing well	Stearns and others, 1938	
11S 19E 33ddd1	Pliocene silicic volcanic rocks	-	-	-	-	Driller's log available	Crosthwaite, 1969 _a	
√at-Poo-Paw Warm Springs 12S 17E 31bab1S	Quaternary alluvium near Tertiary silicic volcanic rocks	-	-	Yes	-	-	Crosthwaite, 1969 _b	
125 18E 1bbal	Pliocene silicic volcanic rocks	-	-	-	-	Flowing well	Crosthwaite, 1969 _a	
Magic Hot Springs LGS 17E 31ac1S	Pliocene silicic volcanic rocks	-	-	Yes	Yes	Four spring vents; slight sulfur odor	Ross, 1971	
			VALI	EY COUNTY				
/ulcan Hot Springs L4N 6E 11bda1S	Cretaceous granitic rocks		Yes	-	Yes	Thirteen spring vents; hydrogen sulfide odor; temperature range 84 to 87°C; debris around some vents appears to be silicified	Waring, 1965	22
lot Creek Springs 155 3E 13bbc1S	Quaternary alluvium near Miocene basalt and Cretaceous granitic rocks	-	-	Yes	Yes	Hydrogen sulfide odor	Newcomb, 1970	
Aolly's Hot Springs LSN 6E 14acc1S	Cretaceous granitic rocks		-	Yes	-	Seven spring vents; tem- perature range 58 to 59°C	Waring, 1965	
14N 3E 36abd1	Quaternary alluvium near Cretaceous granitic rocks	Northwest trend- ing fault	-	Yes	-	-	Newcomb, 1970	
Cabarton Hot Springs I3N 4E 31cab1S	Cretaceous granitic rocks	Northwest trend- ing fault	-	Yes	Yes	Numerous springs vents; temperature range 56 to 70 ¹ 2 ⁰ C	Newcomb, 1970	
Boiling Springs L2N SE 22bbc1S	Cretaceous granitic rocks	Northeast trend- ing fault	Yes	Yes	Yes	Numerous spring vents; tem~ perature range 80 to 86°C	Waring, 1965	
			WASHIN	GTON COUNTY				
4N 3W 3ddc1	Miocene basalt	-	-	-	-	Flowing well; driller's log available	Newcomb, 1970	1
13N 3W 8ccc1	Miocene basalt	-	-	Yes	-	Flowing well; driller's log available	Walker and Sisco, 1964	1

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active I Siliceous	eposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No Fig. 6
		444, - 44, -	WASHINGTON	COUNTY (Cont'	d.}			
11N 6W 10cca1	Miocene basalt	-	-	-	Yes	Flowing well; hydrogen sulfide odor; driller's log available	Newcomb, 1970	23
11N 3W 7bdb1S	Quaternary alluvium, probably less than 5 feet thick, overlying Miocene basalt	Northwest trend- ìng fault	-	Yes		Two spring vents and numerous seeps; temper- ature range 54 to 87°C	Newcomb, 1970	23
14N 3W 19cbd1S	Quaternary alluvium near Miocene basalt	~	-	Yes	-	-	Newcomb, 1970	
14N 2W 6bbalS	Quaternary alluvium near Miocene basalt	-	-	Yes	Yes	Numerous spring vents; sulfur odor; temperature range 63 to 70 ⁰ C	Newcomb, 1970	
13N 4W 13bac1	Miocene basalt	-	-	Yes	-	Flowing well; driller's log available	Walker and Sisco, 1964	

Although nearly one-fifth of the sampled springs issue from known faults, a few of which are shown in figure 4, a greater number are thought to be associated with faulting. Also, some of the wells sampled are known to intersect fault zones. Determination of the geologic structure at many of the springs and wells was not possible from the brief field examination, or from existing geologic maps.

Active deposition of minerals from water discharged by thermal springs and wells occurs throughout the State. Minerals deposited include gypsum, halite, and various carbonates, and silicates. Carbonate deposits were identified using diluted hydrochloric acid while siliceous deposits were identified by hardness and visual examination.

GEOCHEMICAL THERMOMETERS

Summary of Geochemical Thermometers Available

In recent years the concentrations of certain chemical constituents dissolved in thermal waters have been used to estimate water temperatures in the thermal aquifer. However, these geochemical thermometers are useful only if the geothermal system is of the more common hot-water type rather than of the vapor-dominated or steam type, none of which is known to occur in Idaho.

Geochemical thermometers that are useful in describing and evaluating geothermal systems (excluding the sodium-potassium-calcium thermometer) have been summarized by White (1970). Part of his summary is as follows:

"Chemical indicators of subsurface temperatures in hot-water systems.

Indicator	Comments
1) - SiO2 content	Best of indicators; assumes quartz equilibrium at high temperature, with no dilution or precipitation after cooling.
2) - Na/K	Generally significant for ratios between 20/1 to 8/1 and for some systems outside these limits; see text.
3) - Ca and HCO ₃ contents	Qualitatively useful for near-neutral waters; solubility of CaCO ₃ inversely related to subsurface temperatures; see text and ELLIS (1970).
4) - Mg; Mg/Ca	Low values indicate high subsurface tem- perature, and vice versa.

5) - ***	* * *
6) - Na/Ca	High ratios may indicate high temperatures (MAHON, 1970) but not for high-Ca brines; less direct than 3?
7) - CI/HCO ₃ + CO ₃	Highest ratios in related waters indicate highest subsurface temperatures (FOURNIER, TRUESDELL 1970) and vice versa.
8) - CI/F	High ratios may indicate high temperature (MAHON, 1970) but Ca content (as controlled by pH and CO_3^{2-} contents) prevents quantitative application.
9) - ***	* * *
10) - Sinter deposits	Reliable indicator of subsurface temperatures (now or formerly)>180°C.
11) - Travertine deposits	Strong indicator of low subsurface tem- peratures unless bicarbonate waters have contacted limestone after cooling."

The general principles and assumptions on which the use of geochemical thermometers (White, 1970) is based are: (1) the chemical reactions controlling the amount of a chemical constituent taken into solution by hot water are temperature dependent; (2) an adequate supply of these chemical constituents is present in the aquifer; (3) chemical equilibrium has been established between the hot water and the specific aquifer minerals which supply the chemical constituents; (4) hot water from the aquifer flows rapidly to the surface; and (5) the chemical composition of the hot water does not change as it ascends from the aquifer to the surface.

The fact that these principles and assumptions more often than not can not readily be verified in a field situation requires that the concept of geochemical thermometers be applied with caution and in full recognition of the uncertainties involved. With that understanding, geochemical thermometers provide a useful point of departure for reconnaissance screening and provisional evaluation of thermal areas.

Silica Geochemical Thermometer

The silica method of estimating aquifer temperatures (Fournier and Rowe, 1966) appears to be the most accurate and useful proposed to date. Experimental evidence has established that the solubility of silica in water is most commonly a function of temperature and the silica species being dissolved.

Practical use of the silica geochemical thermometer assumes that there is equilibration of dissolved silica with quartz minerals in high-temperature aquifers and that the equilibrium composition is largely preserved in the silica-bearing thermal waters during their ascent to the surface. White (1970) stated that while equilibrium is generally attained at high aquifer temperatures, silica may precipitate rapidly as waters cool to about 180°C and, therefore, the silica method commonly fails to predict actual aquifer temperatures much above 180°C. The rate of precipitation of silica decreases rapidly as the temperature cools below 180°C.

White (1970) also cautioned against using the silica geochemical thermometer in acid waters which have a low chloride concentration, because at temperatures near or below 100°C these waters are actively decomposing silicate minerals and thereby releasing highly soluble amorphous SiO₂. In this case, the basic assumption of equilibration with quartz would be rendered invalid.

Dilution effects caused by mixing of thermal with non-thermal waters can be a cause of erroneous temperature estimates. Cool ground waters containing low silica concentrations that mix with thermal waters rich in silica would effectively lower the silica concentration of the thermal water and a lower aquifer temperature would be indicated. Generally, as with the other geochemical thermometers described below, the possible effect of both dilution and enrichment of thermal waters on the temperature calculated using any geochemical thermometer must be considered.

The Sodium-Potassium and Sodium-Potassium-Calcium

Geochemical Thermometers

The sodium-potassium (Na/K) geochemical thermometer plots the log of the atomic ratios of Na/K against the reciprocal of the absolute temperature. White (1970) stated that ratios are of general significance only in the ratio range between 8/1 and 20/1. He also reported that Na/K temperatures are not significant for most acid waters, although a few acid-sulfate-chloride waters yield reasonable temperatures. Fournier and Truesdell (1973) point out that Ca enters into silicate reactions in competition with Na and K and the amount of Ca in solution is greatly dependent upon carbonate equilibria. Calcium concentration from carbonates decreases as temperature increases, and may increase or decrease as the partial pressure of carbon dioxide increases, depending on pH considerations. Therefore, the Na/K ratio should not be used for purposes of geochemical thermometry when partial pressures of carbon dioxide are large, as higher carbon dioxide partial pressures may permit more Ca to remain in solution and consequently a smaller Na/K ratio. Fournier and Truesdell (1973) suggest that this ratio should not be used when the $\sqrt{M_{Ca}}/M_{Na}$ (square root of molar concentration of calcium/molar concentration of sodium) is greater than 1.

The sodium-potassium-calcium (Na-K-Ca) geochemical thermometer devised by Fournier and Truesdell (1973) is a method of estimating aquifer temperatures based on the molar concentrations of Na, K, and Ca in natural thermal waters. Accumulated evidence suggests that thermal, calcium-rich waters do not give reasonable temperature estimates using Na/K atomic ratios alone, and that the Ca concentration must be given consideration.

Fournier and Truesdell (1973) showed that molar concentrations of Na-K-Ca for most geothermal waters cluster near a straight line when plotted as the function log K* = log (Na/K) + β log (\sqrt{Ca}/Na) versus the reciprocal of the absolute temperature, where β is either 1/3 or 4/3, depending upon whether the waters equilibrated above or below about 100°C and where K* is an equilibrium constant. For most waters they tested, the Na-K-Ca method gave better results than the Na/K method. It is generally believed that the Na-K-Ca geochemical thermometer will give better results for calcium-rich environments provided calcium carbonate has not been deposited after the water has left the aquifer. Where calcium carbonate has been deposited, the Na-K-Ca geochemical thermometer may give anomalously high aquifer temperatures. Fournier and Truesdell (1973) caution against using the Na-K-Ca geochemical thermometer in acid waters that are low in chloride.

ANALYSES OF DATA

The chemical analyses of thermal spring and well waters sampled for this investigation are given in table 2. The aquifer temperatures estimated by the silica method were obtained by applying the silica concentration in table 2 to the plot of silica concentration versus temperature curves from Fournier and Truesdell (1970, fig. 1, curve A, p. 530). These calculated values of temperature are given in table 3.

Likewise, values of Na, K, and Ca concentrations from table 2 were used to calculate aquifer temperatures and these values are also given in table 3. Values of the various atomic ratios calculated for each sampled spring or well are given in the remainder of table 3. The estimated aquifer temperatures that are given in table 3 are also shown in figure 5.

Most thermal waters in Idaho are low in dissolved solids with concentrations in sampled waters ranging from 14 to 13,700 mg/l. Thermal waters in the southeastern part of Idaho are higher in dissolved solids than thermal waters in other parts of the State. Waters which are high in dissolved solids generally give high Na-K-Ca temperatures relative to silica temperatures (table 3) whereas waters low in dissolved solids give high silica temperatures relative to low Na-K-Ca temperatures.

Measured temperatures of sampled waters ranged from 12°C in northern Fremont County to 93.0°C in Cassia and Lemhi Counties and averaged 50°C for all sampled springs and wells. Examination of the temperature data collected does not reveal any correlation of temperature with location, rock type, or structure.

SUMMARY OF FINDINGS

- 1. A total of 124 thermal springs and wells was visited and described in Idaho in 1972. At each site, water samples were collected and analyzed, and the geology briefly examined.
- 2. Of the 124 springs and wells visited, 16 were in the Basin and Range

TABLE 2

.

CHEMICAL ANALYSES OF THERMAL WATERS FROM SELECTED SPRINGS AND WELLS IN IDAHO (Chemical constituents in milligrams per liter)

Analyses by: U. S. Geological Sur

					-			-	A	Analyses by: U.	.' n.s.		Geolagical Survey	-	-			F				-	-	-	-
Spring or Well Identification Number	keported Meild Depth Baild Weild Safrue (feet)	Date Collection Date	Discharge Discharge	Temperature (9C)	61112 (IS)	(a) (a) (a)	mricongaM (gM)	muiboZ (sK)	Potassium (X)	Bicarbonate (HCO ₃)	Carbonate (CO ₃)	stadazoda (pOZ)	(P) (P) (P)	Chloride (13) Fluoride	(F) Mitrate	(50N) Dávíossiu	sbilo2 (Celsincted) Dissolved	sbilo? (for per act)	Radia Sector Non- CatCO3 H H Non- CatCO3 H H H Non- CatCO3 H H H H H H H H H H H H H H H H H H H	Specific	eonetoubno0	(field) Alkalinity	as CaCO ₃ Percent Sodium	muibo2 Sodium Ristion SolissR	Area No.
											ADA (COUNTY													
5N 1E 35acal 4N 2E 29acd1 3N 2E 12cdd1	1,195 400	5-31-72 5-31-72 5-31-72	22	40.0 47.0 75.0	33 46 78	4 4 3 2 5 3	0.3	49 55 75	277 274 274 274 274 277 277 277 277 277	112 145 141	4 10 7	21 21 22	0.03	4.9 11 4.4 10 9.3 24		0.05 .06 .08	193 0 225 299	.26 .31	11 14 9	000	285 7 311 7 386 7	.5 94 .1 122 .3 122	989 95	7.4 7.1 13	4 H
											ADAMS	COUNTY													
White Licks Hot Springs 16N 2E 33bcc1S		6-29-72	30	65.0	110	39	ŗ,	420	17	71	0	660	.05 150	ŝ	8	.07 1,	1,440 1	1.96	66	40 2,030	30 7	6 58	88	18	1
Zim's Resort Hot Springs 20N 1E 26ddb1S		6-29-72	1	65.0	64	12	.1	190	3.6	47	6) 6)	330 .	.03 32		2.3	01	666	16.	30	0	940 8	ى. 42	1 92	15	
Krigbaum Hot Springs 19N 2E 22ccalS		6-29-72	40	43.0	73	5.3	2.	140	5.5	81	6	. 06I	.03 26		2.8	.05	490	.67	14	•	668 8.	8. 18	6	16	
Starkey Hot Springs 18N 1W 34dbb1S		6-27-72	130	\$6.0	56	4.5	0	86	1.6	60	6 1	150	.03 14	_	فر	05	369	.50	12	0	502 8.	.6	94	12	
55 34E 26dab1	582	7-27-72	15	40.5	20	70	25	150	21	478	BANNOCK 0	BANNOCK COUNTY 0 95 0	87		3.2	.02	706	-96	280	0 1,170		7.7 392	52	сч Сч	6
Lava Hot Springs 95 38E 21dda1S		8-15-72	'	44.5	32	120	32	170	39	542	0	110	.04 190		Ľ.	.38	962 1	1.31	430	0 1,580		.6 445		5	۵+ ۵
Downata Hot Springs 12S 37E 12cdclS		5-17-72	a490	43.0	29	43	15	20	9.1	214	0	18 0	20		4	ú	262	.36	170	0	413 6	6.7 176	19		۲.
										BE	BEAR LAKE	COUNTY													
Bear Lake Hot Springs 15S 44E 13cca1S		5- 9-72	,	47.5	35	210	55	180	61	256	8 0	\$00	-01 79		7.1	.56 1,	1,560 2	2.12	750 5-	540 2,040	40 6.	.6 210	32	5	م
										- •	BLAINE COUNTY	COUNTY													
1S 17E 23aab1	260	6-21-72	15	70.5	100	22	1.3	330	19	766	0		.04 83	5 13		.06 1,	1,010 1	1.37	60	0 1,500		6.4 628	89	19	ц
Guyer Hot Springs 4N 17E 15aac1S		7-11-72	a1,000	70.5	86	2.9	0	84	2.1	15	25	72 .	.02 11	l 16		,06	324	.44	7	0	421 8	8.0 83	56	14	
Clarendon Hot Springs 3N 17E 27dcb1S		7-11-72	100	47.0	80	2.2		81	1.7	53	30	68	.01 11	15		,06	503	.41	9	0	400 8	.2 74	96	15	
Hailey Hot Springs 2N 18E 18dbb1S		7-11-72	70	59.0	85	7	0	68	1.5	88	0	. 51	.02 10) 12		.07	273	.37	מו	0	337 8.	.7 72	36	13	
Condie Hot Springs 1S 21E 14dd1S		8-72	346	52.0	28	56	11	63	17	360	0	28	.01 14		1.7	.05	396	.54	190	0	653 7	.3 295	40	2	
1S 22E 1dalS		8- 8-72	a20	44.0	26	60	12	48	8.9	294	0	63	.03	6.5 2	M	.03	371	ь.	200	0	591 7.	.3 241	33	1.	ŝ
											BOISE	COUNTY													

o

23

94

83 8.1

377

۵

9

.42

306

.02

17

7.2

.03

52

21 85

2.9

67 7

2.2

100

363 85.0

8-18-72

Bonreville Hot Springs 10N 10E 31c15

(Cont'd.)
TABLE 2

Terrent in the sector of	Sample Toit201100	Dáte Dáte Dáte	(uda)	Temperature (oC)	soili2 (i2) (Alcium	ດີເປັດການ (ເລິງ) ຫາຍເຊັ່ນເຫຼົ່າ	(_B N) Sodium	(aN)	(X) Bicarbonate	(HCO3)	(50 ₃) Sulfate (504)	(b) bystyste	ebitold (13)	abitouli (1)	Nitrale (50N)	Dissolved Sbilds (Calculated)	Dissolved Solids (rons per ac-ft)	as Catbonate	ດີ -rov ນີ້ອງຣກດປານວ	sifiseq8 esnetsubnoD	[k] (field)	Alkalinity as CaCO3 Percont	muibo2 muibo2 noi3qio2dA	Ratio tio	.ok sərA Ə.şil
1 1	8- 4-72 20 80.0		30.0	1				4	s.	щ.	D LINA	ont'd.) 0.02	34	13	0.04	464	0.63	11	D	600	8.1	131	ł	17	<u>۲</u>
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0	7-14-72 a250 65.0		55.0			6.1	.1 66				45	.02	ы	15	.06	245	.33	ι. Λ	0	322	7.8	73		13	
Important Important	6-8-72 a2 40.0 8-18-72 70 55.0		40.0 55.0				г.	1			42 38	07			.04	216 237	. 29	υœ	00	317 336		71 83		11	
3 3 4 3 3 8 3 9 3 9 3 9 3 9 3 9 3	8-10-72 a70 25.0	25	25.0							BONNE 00 0		YTNUC	1,900	1.7		4,650		,500		, 950	6.3	984		12	80
	8- 9-72 12 41.0 8- 9-72 - 5 ^{35.0}		41.0 35.0					21	P.		77TE COU 170 56	LN	22	к. 8. 8.	.12	599 398	-81 -18	280 260	19	898 648	6.3	264 258	34 20	9.T 8.	
9 1.8 0 6 1.4 51 23 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 16 16 16 </td <td>6-20-72 193 66.0</td> <td></td> <td>56,0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>P*1</td> <td>MAS COU</td> <td></td> <td>5.1</td> <td>ار م</td> <td>.07</td> <td>215</td> <td>. 29</td> <td>4</td> <td>0</td> <td>252</td> <td>8.0</td> <td>103</td> <td></td> <td>13</td> <td>υ</td>	6-20-72 193 66.0		56,0							P*1	MAS COU		5.1	ار م	.07	215	. 29	4	0	252	8.0	103		13	υ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-10-72 466 81.0		0.18								35	.02	'n	15	.07	277	.38	Ω.	0	328	7.3	88		14	
	6-21-72 als 53.5		53.5								48	.02	25	19	.06	302	.41	ъ	D	441	8.2	92		17	
	6-20-72 15 31.0 6-20-72 4 35.0	31 35	31.0				ч.				ۍ ۲.	ю, с т			.03	116 308	.16	00 00	00	150 413		69 177		11	
	6-20-72 31 70.0		0.07			3,6					13	-	15	14	.08	337	.46	10	٥	471		185		14	
660 260 94 240 2,500 0 980 .05 40 1.9 .04 3,530 4.8 2,700 6.8 2,050 6 8.2 .00 1.1 .1 640 170 12 23 2,290 0 800 .07 4.9 .5 .03 5,120 4.24 3,090 110 3,990 6.18 2,180 1 .1 533 4 50 12 2,1<00	6- 9-72 a ⁷ 00 51.0		51.0			s.s				-		UNTY 04	11	4.1	.13	384	.52	ø	Q	589		229		19	
	8-15-72 _a 1,300 42.0	42	42.0							-		CNT	40	1.9	.04	3,530				,590		050	ę	ø	¢
Cassia value Cassia country 90 53 .4 560 22 55 6 0 1,720 2.34 130 89 5,050 7.4 45 88 21 97 100 3.5 15 0 610 000 5.7 .54 1,770 230 6,090 7.7 103 97 27 10 3.5 10 3.5 0 1.5 1.1 20 1.2 30 6,090 7.7 103 97 27	8-15-72 - 31.0		31.0										4.9	ŝ	.03	3,120				056';	6.3 1,	880	1	1.	
2.7 0 87 2.2 43 29 22 .05 53 8 .04 295 .4 7 0 421 9.6 84 95 37 9.3 70 3.1 169 0 33 .03 80 2.9 .56 365 .5 130 0 606 7.4 139 53 1 1 2.9 .56 365 .5 130 0 606 7.4 139 53 1 1 12 216 .56 365 .5 130 0 606 7.4 139 53 1 <	5-18-72 58 93.0 5-18-72 58 93.0 7-26-72 2,090 60.0 7-26-72 2,090 60.0		93.0 90.0 13.0		90 5: 97 13(47 14			9.35 55		-	SSIA COI 57 59 15	0.01 0.01 0.01	900 1,900 7	5.7 14 1,3	.54 .57 .01	1,720 3,360 210	2.34 4.57 .29	130 330 23 39		, 050 , 090 574 282	4778	45 30 118		22 10 10	10 10
44 37 9.3 70 3.1 169 0 33 .03 80 2.9 .56 365 .5 130 0 606 7.4 139 53 53 17 18 19 9.9 2.9 209 0 62 .02 5.3 1 .12 274 .37 210 42 457 7.0 171 9	10-26-72 a10 47.0		47.0								22	.03	53	œ	.04	295	4.	2	0	421	9.6	84		15	
CLARK COUNTY 	7-25-72 100 38.0		38.0				ro.						80		.56	365	ŝ	130	0	606	7.4	139	53	2.7	
	8-28-72 1,920 29.0		29.0					19	o,		LARK COI		5.3	****	.12	274	.37	210	42	457		171	6	M	

	.oV serA 0 .yi4				11								12								13	15	2
	smiloð Absorption Atatio		0.7		5.1	1.3	61	5	ņ	11	8,0		27	16	9.6	11	20	23	22 24 25		12	16	63
	amibo2 amibo2	-	16		71	30	96	66	10	95	87		94	96	94	96	98	98	96 96 96		04	8, 7	5 4 2
	Alkalinity as CaCO ₃		147		192	185	86	454	148	12	06		654	89	81	94	144	117	364 135 121 235		403	430	573
	Hq (bləff)		6.3		6.7	7,3	8.5	7.0	7.8	8.8	8.0		7.7	8.5	8.6	9.2	5.8	00 17	2 6 7 7 8 7 8		5.5	1 L	7.0
	Specific Сондеталес		691		651	625	413	1,070	364	295	437		1,340	295	268	232	382	243	703 387 367 590		5,160	1,890	16,400
	o o atsnodrse		140		0	38	0	٥	26	o	0		0	0	0	0	0	o	0000		0	0	0
	as caco z aco z ac		280		72	220	4	170	170	Q	21		27	10	Ŷ	4	শ্ব		0000		320	92	470
(1.	bitasolved sbifos f-or act		0.64		.58	.54	.44	.87	.29	.29	.49		1.17	.36	m.	.27	.4	.54	.67 .58 .52		2.58	1.51	13.4
	bisolved solids (balaulated)		471		425	398	520	640	215	211	362		859	267	223	200	297	248	491 283 265 365		006'I	1,110	9,830
	Nitrate (NO3)		0.02		.06	٦.	,06	.06	.25	.05	.03		.04	.02	.02	.04	90.	.07	80. 200 200 200		.07	1.5	. 81
	ebirouf4 (T)		Q,		8.4	1.1	15	1.8	'n	14	8.7		2.2	10	10	3,1	17	2	3 16 13 13		1,1	10	12
	(CI) Chloride		95		26	শ	12	57	4	Ω.	r,		59	2.9	2.4	2.6	4.5	2.7	10 5.2 6.1 29		630	520	5,400
	(p) Phosphate	(Cont'd.)	0.03		.02	10.	.02	.02	.03	10.	.02	~ 1	.04	.03	.03	.03	.04	+0.	.05 .03 .03	۲	,04	.05	.06 5,
	Sulfate (408)		190	COUNTY	94	130	\$4	26	35	31	110	COUNTY	6.5	31	ţ0	17	14	10	14 12 2, 4 2, 5 2, 5	N COUNTY	260	15	50
	Carbonate (CO ₃)	X COUNTY	0	CUSTER	o	0	0	0	o	28	0	ELMORE	0	51	40	មា	SO	33	0 1610 8	FRANKLIN	0	0	0
	Bicarbonate (HCO3)	CLARK	179		234	226	119	554	181	30	110		797	Ŵ	17	45	74	96	447 81 115 270	ца I	161	524	699
	Potassium (X)		15		13	7.6	2.4	15	1.5	ئ	4.S		11	1.8	1.2	ч	8,	1.7	⊳ ∿ 8.6.6.		110	24	660
	(ຮN) (ຂN)		27		100	45	85	170	¢	60	83		320	67	57	50	87	54	160 82 79 130		490	360	3,100
	muicengaM (gM)		16		5,5	21	0	11	20	г <u>.</u>	ι.		-	7	5,	÷	0	0	2 0 .2		24	7.1	16 3
	muisin) (n))		87		21	55	1.5	49	37	2.2	5 1.		1.9	I.1	2.2	1.5	1.5	4	2.5		68	25	160
	sitis (is)		34		43	23	91	38	18	υ. N	86		58	100	72	69	86	100	8 8 8 9 9 12 13 0		55	80	80 1
	Temperature (°C)		650.0		51.0	40.0	76.0	41.0	b28.5	41.0	50.0		34.0	76.0	65.0	56.0	68.0	b55,0	38.0 62.0 32.0 37.5		76.0	44.5	77.0
	Dîscharge (gpm)		_a 250		a25	SO	444	20	170	110	185		61	349	a ³⁰⁰	,	a700		5 1 8		350	ı	a 900
	sample Coljection siste		8-25-72		7-12-72	7-12-72	7-12-72	7-12-72	7-13-72	7-12-72	7-11-72		7- 5-72	8-17-72	8-17-72	8-29-72	8-14-72	7- 5-72	6- 6-72 8-29-72 6-19-72 6-22-72		5-10-72	5-11-72	5 9-72
	Reported Well Depth Surface (feet)					3,000							1,320				600		1,900 1,003 1,300 1,535			40	
	Spring or Well Identification		Lidy Hot Springs 9N 33E 2bbclS		8N 17E 32bcalS	14N 19E 34daal	Sunbeam Hot Springs 11N 15E 19clS	Sullivan Hot Springs 11N 17E 27bdd1S	Barney Hot Springs 11N 25E 23cab1S	Stanley Hot Springs 10N 15E Scab1S	Slate Greek Hot Springs 10N 16£ 30alS		5S 8E 34bdc1	Neinmeyer Hot Springs SN 7E 24b1S	Dutch Frank's Spring 5N 9E 7DIS	Paradise Hot Springs 3N 10E 33bd1S	35 8E 36cdal	Latty Hot Springs 3S 10E 31ddb1S	45 8E 36bbal 45 9E 8ab1 55 10E 7acd1 55 10E 32bdb1		Maple Grove Hot Springs 13S 41E 7aca1S	14S 39E 36ada1	Wayland Hot Springs 155 39E 8bdclS

ABLE 2	(Cont'd.)	
	Ц	

Spring or Mell Identification Numbor	Reported Well Depth 8eiow Land Surface (feet)	Sample Colicction Date	(uda) Discharge	Temperature (9C)	(12) (15)	ແມ່ງວໄຊມີ (ຄິນ)	muiseangaM (ไมช)	muiboS (BN)	बार्गरश्वा09 (४)	Bicarbonate (HCO ₃) Carbonate	(CO ₃) Sulfate	(f) Pharte (f)	Chloride (Cl)	Pluoride (F)	Nitrate (NO ₃)	Dissolved Solids (beteulated)	Dissolved Solids (tions per ac-ft)	ze zobo en en en en en en en en en en en en en	мол-пои « остропате	ວ ilioeqë ອວກຄາວບ່ອດບົ	Hq (field)	Alkalinity as CaCO3	tasztoł muibo2 muibo2	noijtozdA oijea	Area No. Fig. 6
15S 39E 17bcd1	22	5-10-72	25	82.0	130 2	250	23 4,300		\$80	FRANKLIN COUNTY 733 0 54	COUNTY 54	2	ont'd.) 0.08 7,700	۲.	1.6	13,700	18.6	720	120 2	22,200	8. .⁄	601	84	70	13
Ashton Warm Springs 9N 42E 23dab15		8-28-72	a.2	41.0	110	1.1	ť.	36	1.6	FR 92 0	EMONT	COUNTY 4.7.05	2.9	2.2	.24	205	.28	64	o	166	9.6	75	94	8	14
Big Springs 14N 44E 34bbb1S		8-28-72	92,000	12.0	47	5.6	.6	14	ы	46 0		3.2 .03	2.5	5.1	.05	102	.14	16	0	102	6.4	38	60	1.5	
Lily Pad Lake 10N 45E 35abc1S		8-30-72	ſ	b17.5	.1	2.6	4.	s.		11 0		2.2 .03	1.1	τ.	.44	14	.02	60	٥	19	7.2	თ	10	1.	
7N 41E 35cdd1	350	8- 9-72	I	36.0	75	28	6.3	78	8.6	240 0	14) 14	.02	24	4, 2	- 79	380	.52	96	٥	538	6.7	197	61	5. 2	
Roystone Hot Springs		; ;	\$	1		Ţ		ş	7 1		SIEW		(Ť	c	ł	c T	2	<	002	t T	2 1	ā	:	L T
7N IE 9cdc15		8- 4-72	0.7 r	45.0	94	0.7 15	2.4	66 101	5.3	0 69I	57	.02	30	2 8 8	.67	297	.54	47		529	6. <i>i</i>	139	1.08	14 6.3	2
										81	GOODING COUNTY	VTVI0													
4S 13E 28ab1	160	6-21-72	r	$_{b}^{47.0}$	92	9.8	1.2	100	5.9	278 0	19	.05	8.2	12	.49	373	.51	30	0	497	7.0	207	85	7.9	
White Arrow Hot Springs 4S 13E 3OadblS		5-26-72	826	65.0	26	1.2	0	16	1.6	141 22	15	.03	6.6	12	.11	316	.43	м	o	407	7,5	152	88	23	
5S 12E Jaaal	692	6-19-72	ı	43.0	62	1,6	Ţ.	06	8.	83 42	19	.03	8.4	19	.17	284	.39	4	Q	413	8.6	138	97	19	
Weir Creek Hot											LIDAHO COUNTY	XLNU													
Springs 36N 11E 13b1S		8-23-72	a40	47.5	49	3.3	0	29	.5	21 22	15	.03	2.1	2.2	.03	134	.18	80	0	148	8°.5	54	88	4,4	
Jerry Johnson Hot Springs 36N 13E 18alS		8-23-72	a300	48.0	49	2.7	.2	37	4.	24 25	25	.04	1.9	1.6	.03	155	.21	90	0	186	8.7	61	16	5.9	
Red River Hot Springs 26N 10E 3d1S		8-21-72	35	55.0	76	2.7	0	81	1.6	36 36	44	.01	4.4	23	.04	286	39	ي	0	380	8.6	68	95	14	
Riggins Hot Springs 24N 2E 14dac15		8- 1-72	a ⁵⁰	42.0	72	6.2		160	3.4	11 25	300	.02	80	2.1	.02	582	.79	16	0	812	8.6	51	95	17	
Burgdorf Hot Springs 22N 4E IbdclS		8- 1-72	162	45.0	73	2.3	Ø	49	ŝ	19 41	18	.02	м	4	.03	199	.27	۵	o	312	8,1	84	40	6.8	
										JEFI	JEFFERSON COUNTY	VINTY .													
Heise Hot Springs 4N 40E 25dcb1S		7-27-72	a60	b49.0	30	450	82 1,500		190 1	1,100 0	740	. 04	2,400	5.1	μ.	5,940	8.08	1,500	560	8,840	6.7	902	66	17	92
										. 1	THWAT CUT	COUNTY -													
Big Creck Hot Springs 23N 18E 22clS		7-13-72	a.75	93.0	150	ير. م	,2	220	14	488 0	53	.05	29	15	.07	727	66	ф.	0	1,010	7.5	400	94	26	16
Salmon Hot Springs 20N 22E 3abd1S		8-24-72	145	45.0	33	23	I	190	28	565 0	34	, 04	50	a, 1,	,03	649	88	100	0	1,060	6.3	463	75	8.2	17

																		-Et)	Hard	lness						
Spring or Well Identification Number	Reported Mell Depth Below Land Surface (fect)	Sample Collection Dute	Discharge (gpm)	Temperature (°C)	Silica (Si)	Calcium (Ca)	Mugnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO3)	Carbonate (CO3)	Sulfate (SO4)	Phosphatc (P)	Chloride (C1)	Fluoride (P)	Nitrate (NO3)	Dissolved Solids (Calculated)	Dissolved Solids (tons per ac-	as CaCO 3	Non- carbonate	Specific Conductance	pH (field)	Alkalinity as CaCO ₃	Percent Sodium	Sodíum Absorption Ratio	Area No. Fig. 6
										LEM	I COU	NTY (Co	ont'd.)				<u></u>	.					<u> </u>			
Sharkey Hot Springs 20N 24E 34ccc1S		8-24-72	8	b ^{52.0}	91	7.3	0,6	270	17	470	0	160	0.02	51	12	0.08	840	1.14	21	0	1,270	7.4	386	93	26	17
16N 21E 18adc15		8-24-72	a ²⁰	46.0	37	11	1.4	160	11	339	Ð	66	.04	26	7	,06	486	.66	33	0	757	7.4	278	88	12	18
											MADIS	ON COUN	1 TY													
Green Canyon Hot Springs SN 43E 6bcalS		8- 9-72	-	- 44 0	25	140	32	7.0	7.6	167	0	170							480	740				_		
SN 45E UDCa15		6- 5-72		Ъ44.0	25	140	52	3.9	3.6	167	-	330 DA COUN	.01 JTV	1.7	1.6	.13	621	, 84	480	340	846	6.8	137	2	.1	
14S 36E 27cda1S		5-16-72	44	25.0	19	240	79	1,200	210	958	0	25		2,100	.4	.95	4,350	5.92	920	140	7,590	6.5	786	69	17	19
Pleasantview Warm Springs 15S 35E 3aab1S		5-16-72	3,810	25.0	21	110	33	280	29	331	0	110	0	470	.7	1.5	1,220	1.66	410	140	2,190	6.8	271	58	6	19
Woodruff Hot Springs		/-	-,							501			ŭ	.,.	.,	1.5	1,220	1.00	-110	140	2,150	0.0	214	30	U	19
16S 36E 10bbc1S		5-11-72	-	27,0	29	130	45	910	87	454	0	58	.03	1,600	.6	1.4	3,090	4.2	510	140	5,370	7.3	372	76	18	19
12S 34E 36bcb1S		5-17-72	189	24.0	33	56	19	15	4.3	226	0	18	0	35	. 3	.73	295	.40	220	33	479	6.7	185	13	.4	
4\$ 2E 32bcc1	2,704	6- 6-72	30	42.0	94	4.1	.7	150	8.8	390	0 OWYHEI	E COUNT		15	7.7	.05	479	.65	13	ń	689	8.2	320	93	18	20
55 3E 26bcb1 65 3E 2ccc1 65 5E 10ddd1 65 5E 29dcc1	3,000 1,940 1,667 1,560	6-12-72 6-12-72 6-14-72 6-14-72	a ²⁸⁰ 489 4 3	84.5 55.0 38.5	110 92 70 100	1.8 1.3 2.5 6.8	0 0 .1 0	90 90	1.5 3.9 4.5 7	74 149 165 140	38 29 21 0	74 25 24 56	.02 .02 .04 .07	14 17 15 15	30 17 28 15	.05 .05 .12 .03	416 369 366 361	.57 .05 .50 .49	4 3 6 17	0 0 0	522 506 549 459	7.6 8.1 8.6 8.0	124 171 170 115	98 97 96 89	24 28 22 9.7	20 20 20 20 20
6S 6E 12ccd1 7S 5E 7abb1	990 1,625	6-15-72 6-14-72		37.0 39.0	100 81	10 6.3	.5 .1	170 50	14 7.2	460 96	0 1	3.6 18	.06	18 8.3	5.6 9.7	.06 .33	548 230	.75 .31	27 16	0	833 278	7.3 8.1	377 80	89 81	14 5.4	20 20
Indian Bathtub Hot Springs 85 6E 3bddl\$		7- 3-72	458	39.0	76	5.9	. 4	54	7.3	124	2	15	.04	8	8.8	, 79	242	.33	16	0	287	8.2	105	82	5.8	20
Murphy Hot Springs 165 9E 24bb15		\$-23-72	a70	51.0	83	.6	0	50	2.0	67	1	4.7	.1	2.3	3.6	.64	163	,22	2	0	137	7.1	57	94	11	21
1N 4W 12dbb1 1S 2W 7ccb1 4S 1E S4bad1 5S 1E 24ad1 5S 2E 1bbc1	640 1,700 2,960 3,120 1,800	6-13-72 6- 5-72 6- 6-72 7-24-72 6- 7-72	410 169 - 1,060 30	35.5 45.5 75.0 66.0 49.5	40 32 83 82 68	2.2 1.9 1.1 1.2 1.5	0 0 .2 .1 0		.3 1.2 .7 .8 .6		0 12 33 31 54	8.6 45 40 45 20	.01 .01 .03 .23 .02	28 19 12 13 11	7.9 11 12 14 5.8	.04 .04 .05 .04 .04	302 334 333 339 277	.41 .45 .45 .46 .38	5 4 3 4	0 0 0 0	483 545 454 459 394	7.2 8.7 7.9 7.9 8.2	176 173 144 138 139	98 98 98 98 98	20 24 23 24 20	
7S 6E 9badl	910	6-15-72	153	50.0	93	1.6	0	99	2.8	72	40	27	,06	9.7	22	.05	331	.45	4	0	446	8.2	126	97	22	
Indian Hot Springs 12S 7E 33clS		6- 2-72	1,730	69.0	75	1.5	0	75	.6	67	30	24	.04	8.4	14	.06	262	. 36	4	0	360	8,D	105	97	17	
											POWE	R COUN	TΥ													
Indian Springs 85 31E 18dablS		7-27-72	1,540	32.0	20	76	19	110	10	254	0	19	. 02	220	.7	.13	600	.82	270	60	1,100	7.5	208	46	2.9	
IOS 30E 13cdc1S		7-27-72	418	38.0	22	92	33	62	14	160	0	23	.02	250	. 8	.02	576	.78	370	230	1,110	7.6	131	26	1.4	
										-	FWIN F	ALLS CO	OUNTY													
Miracle Hot Springs 8S 14E 31acb1S		5-24-72	a320	S4,0	93	2.2	0	120	1.5	63	54	29	.03	35	20	. 50	388	. 53	5	0	\$60	9.0	142	97	22	

	.oN serA 0 .giT							22										
 	muibo2 noistrosdA oissN	×	8.	1,6	1	s.		18	14	I4	13	21	14		12 6.4 16 7.2	13 12		
	шитроS рифотод	80	58	37	36	6 t		96	67	96	97	57	95		91 96 87 87	06 56		
	Vlkalinity as CaCO ₃	135	67	218	78	133		86	89	68	87	101	106		155 185 107 162 68	53 188		
	llq (bisit)	с К	6.6	7.6	7.6	6.4		8.5	9`8	7.7	9.2	7.7	8°,8		888808 ⊬€0889	7,8 8.5		
	sificeq2 soustsubne0	479	266	469	198	281		451	279	326	275	511	331		509 538 698 1,480 406	1,000 375		
Hardness	Хоп- Сатроизte		00	0	o	ø		٥	0	0	0	0	D		00000	00		
Hard	აა გეეგე	M	83	140	53	110		ν	4	ហ	4	4	v		7 7 25 23 23	43		
(13-0	bevTossiQ sbilo2 req smot)	0.48	.28	.38	.24	.24		.49	.29	35	.26	.47	.37		.36 .43 .83 .47	.91		
(bevlozzi() sbilo2 bilo3(b)	351	209	280	176	180		362	210	258	194	348	270		266 318 612 1,030 314	667 294		
	Nitrate Nitrate	0.54	1	.02	.63	.42		.05	Ö	.03	60.	.05	.04		04 07 30 30 30	.04 04		
	Fluoride (F)	IS	N]	1,9	÷.	м.		24	2,6	17	3.8	11	13		1 2,4,7 8,9,6,7	1.9		
	Chloride (1)	(. 27	15	DÓ	ø	3.8		17	16	10	15	49	12		150 150 150 150	140 3.2		
	(Phosphate Phosphate	(Cont'd.) 0.03	.04	10.	.26	.03	X	02	.02	.02	.04	.02	.02	YTY	0.00	.09 .03		
	Sulfate (504)	~ 1	12	18	0.5	15	YTUUDO '	43	16	17	17	46	12	WASHINGTON COUNTY	15 14 150 270 110	200 14		
ļ	Carbonate (CO ₃)	ALLS C	0	0	0	0	VALLEY	0	45	30	22	26	24	ASHING.	16 0 19 1 1 1 1	20 20		
	Blearbonate (HCO ₃)	TWIN FALLS 88 38	118	266	95	162		120	17	40	62	70	81	18	157 225 92 198 81	24 188		
ļ	(K) Potassium	1.5	8.6	11	6	4.5		м	9	1.5	4.	1.9	1.7		6.8 5.1 19 1.9	5.8		
	muibo2 (EN)	100	17	43	16	13		94	60	70	58	100	11		73 73 160 300 80	200 86		
	ແມ່ເຂດແຊຍ ເພີ່ອໄຊ	o	3.9	14	7	6.8		Ľ	Γ.	0	0	0	ľ,		0 8 .7 .8	.2		
	ແມ່ເວໂຍວ (ຣວ)	1.1	27	34	18	30		1.8	1.3	~	1.6	1.7	1.9		2.6 8.7 27.7 8	17 3.5		charge.
	ылііся (51)	67	63	19	67	23		120	60	87	45	78	94		70 84 170 55	72 73		of di
	Temperature (°C)	0.62	33.0	36.0	38.0	45.5		87.0	b34.0	59,0	42.5	70.5	85,0		25.5 28.0 70.0 87.0 50.0	70.0 28.0		ıt point
	ograficeiO (mqg)	60	1,930	30	543	385		a ⁵⁰⁰	798	a20	ı	a70	165		- 1/3 10 58	431		∍r than a
	Sample Collection Stc	5-24-72	5-25-72	7-25-72	7-25-72	5-23-72		8- 2-72	8- 2-72	8- 2-72	8- 3-72	8- 3-72	8- 3-72		6-28-72 6-28-72 6-28-72 6-30-72 6-27-72	6-28-72 6-28-72		bably lowe
	Reported Well Dcpth Below Land Surface (feet)	210	620		775						50				925 963 400	1,350	ted.	ture is pro
	Spring or Well Identification Number	8S 14E 33cbal	11S 19E 33ddd1	Nat-Poo-Paw Warn Springs 12S 17E 51bablS	12S 18E 1bbal	Magic Hot Springs 16S 17E 31ac1S		Vulcan Hot Springs 14N 6E 11bdalS	Hot Creek Springs 15N 3E 13bbclS	Molly's Hot Springs ISN 6E 14acc1S	14N 3E 36abdl	Cabarton Hot Springs 13N 4E 31cablS	Boiling Springs 12N 5E 22bbclS		14N SW 3ddc1 13N 3W 8ccc1 11N 6W 10cca1 11N 3W 7bdb1S 14N 3W 19cbd1S	14N 2W 6bbalS 13N 4W 15bacl	a Discharge estimated.	b Measured temperature is probably lower than at point of discharge

,

TABLE 3 ESTIMATED AQUIFER TEMPERATURES AND ATOMIC RATIOS OF SELECTED CHEMICAL CONSTITUENTS

		Water	Aquifer	Temperatures from				Atomic	Ratios			
Spring or Well Identification Number	Discharge (gpm)	Temperature at Surface (^O C)	Geochemica (roun aSilica bSG	Geochemical Thermometers ^{oC} (rounded to 5 ^o C) ilica _b Sodium-Potassium-Calcium	Sodium Potassium (Na/K)	Calcium Bicarbonate (Ca/HCO5)	<u>Magnesium</u> Calcium (Mg/Ca)	Sodium Calcium (Na/Ca)		Chloride Fluoride (Cl/F)	V <u>Calcium</u> Sodium V(Ca/Na)	Arca Number Fig. 6
					ADA	ADA COUNTY						
SN IE 35acal 4N 2E 29acd1 3N 2E 12cdd1	01 1 1	40.0 47.0 75.0	85 95 125	2 8 8 2 0 8 0 0	26.0 39 98,1	0.058 .047 .022	0.11	19.9 21.3 65.4	0.075 .051 .11	0.239 .236 .208	0.154 .14 .068	
					ADAMS	ADAMS COUNTY						
White Licks Hot Springs 16N 2E 33bcc1S	30	65.0	145	145	42	. 836	.013	18.8	3.64	9.13	. 054	-
Zim's Resort Hot Springs 20N 1E 26ddb1S	ı	65.0	115	52	8.68	285.	.014	27.6	.981	7.46	.066	
Krigbaum Hot Springs 19N 2E 22ccalS	40	43.0	120	56	72.1	1.	.062	46	.496	4 86.	90	
Starkey Hot Springs 18N 1¥ 34dbb1S	130	56.0	011	70	4.16	.114		53.3	. 364	8.34	60.	
					BANNOCK	COUNTY						
5S 34E 26dab1	15	40.5	65	185	12.1	.223	.589	3.74	.315	14.6	.203	7
Lava Hot Springs 95 38£ 21ddalS	I	44.5	80	210	7.41	.337	.439	2.47	. 603	145	234	14
Downata Hot Springs 12S 37E 12cdc1S	c490	43.0	80	60	3.74	.306	.575	118.	.161	26.8	1.19	
					BEAR LAKE	KE COUNTY						
Bear Lake Hot Springs 15S 44E 13cca1S	ī	47.5	85	230	S, D2	1.25	.432	1,49	.531	5.96	.292	4
					BLAINE	BLAINE COUNTY						
1S 17E 23aab1	15	70,5	13\$	160	29.5	.044	460,	26,1	.186	3.42	.052	υ
Guyer Hot Springs 4N 17E 15aac1S	c1,000	70.5	130	06	68	.087	ł	50.5	. 248	. 368	.074	
Clarendon Hot Springs 3N 17E 27dcb1S	100	47.0	125	85	81	.115	.075	64,2	318	.393	.066	
Hailey Hot Springs 2N 18E 18dbb1S	70	d ⁵⁹ .0	130	85	77.1	. 035	I	59.3	. 196	744.	.076	
Condie Hot Springs IS 21E 14ddIS	346	52.0	80	06	 Q	.237	.324	96.1	067	14.6	131	
1S 22E 1dalS	c20	44,0	75	65	9.17	.311	.33	1.39	.033	1.51	.586	

29

TABLE 3	(Cont'd.)
---------	-----------

		Water	Aquifer T	emperatures from					ç Ratios			1
Spring or Well		Temperature	Geochemica	1 Thermometers ^o C	Sodium	Calcium	Magnesium	Sodium	Chloride	Chloride	√ <u>Calcium</u>	Area
Identification Number	Discharge (gpm)	at Surface (°C)	(roun aSilica bSo	ded to 5 ⁰ C) dium-Potassium-Calcium	Potassium (Na/K)	Bicarbonate (Ca/HCO ₃)	Calcium (Mg/Ca)	Calcium (Na/Ca)	Bicarbonate plus Carbonate (C1/HCO3 + CO3)	Fluoride (C1/F)	Sodium √(Ca/Na)	Number Fig. 6
					BOIS	E COUNTY						
Bonneville Hot												
Springs 10N 10E 31c1S	363	85.0	135	140	39,3	0,058	0.075	53,1	0.156	0.227	0.08	6
9N 3E 25bac1S	20	80.0	150	140	46.1	.043	-	50.4	.366	1.4	.059	7
Kirkham Hot Springs												
9N 8E 32cac1S	c ²⁵⁰	65.0	115	80	86.3	.063	.087	60.6	.077	.107	.076	
8N 5E 1beb15 8N 5E 10bdd15	ç2 70	40.0 55.0	100 110	65 75	125 105	.043	.069	47.9 62.4	.102 .137	.882 ,214	.085 .074	
					BONNEY	VILLE COUNTY						
1N 43E 9cbb1S	c70	25.0	35	190	15.6	.558	.36	4,36	2,72	599	.069	8
					BUT	TE COUNTY						
3N 25E 32cddl 3N 27E 9abbl	12	41.0 d35.0	105 85	90 55	5.83 6.85	.35	.534	1.7 .844	,112	3.52 14.7	.434 .937	
		ŭ			CAM	AS COUNTY						
Wardrop Hot												
Springs IN 13E 32abb1S	193	66.0	120	155	30,6	.042	-	67.2	.099	.667	.08	5
Worswick Hot Springs												
3N 14Ê 28ca15	466	81.0	135	95	61.8	.054	-	66,8	.108	.179	.071	
Elk Creek Hot Springs												
1N 15E 14ada1S	c ¹⁵	53.5	115	80	106	.043	-	65.9	.442	.705	.063	
15 12E 31cbc1 15 13E 27ccb1	15 4	31.0 35.0	85 120	50 70	181 120	.029	.052	93 50.1	.063 .096	1,41 .585	.088 .071	
Barron's Hot												
Springs 1S 13E 34bcc1S	31	70.0	125	90	67.3	.024	.046	47.9	.114	.574	.07	
					CAN	ON COUNTY						
2N 2W 34abcl	e ⁷⁰⁰	51.0	85	55	234	.019	.047	54.8	.068	1.44	.062	
					CARI	BOU COUNTY						
6S 41E 19baalS	c ^{1,300}	42.0	70	370	.666	.402	.649	.248	.028	11.3	.993	9
Soda Springs 95 41E 12add1S	-	31.0	80	35	.887	.425	.438	,033	.004	5,25	7.66	
					CAS	SIA COUNTY						
15S 25E 23bbc1	58	93.0	135	145	43.3	1.47	.012	18.4	28.2	84.6	.047	10
15S 25E 23ddc1 11S 25E l1ccal	60 2,090	490.0 60.0	135 110	140 90	53.4 48	5.5 .10	.005	14,8 23,4	90.8 .757	72.7 2.11	.038	10
145 21E 34bdc1	2,030 c ⁵⁰	43.0	95	95	7.79	,148	.129	5.48	.084	2,89	. 309	
Oakley Warm Spring												
145 22E 27dcb15	c10	47.0	115	90	67.3	.096	-	56.2	1,26	3.55	.069	

		Water		Cemperatures from		······································			<u>c Ratios</u>			1
Spring or Well		Temperature		al Thermometers ^o C	Sodium	Calcium	Magnesium	Sodium	Chloride	Chloride	√ <u>Calcium</u>	Area
dentification	Discharge	at Surface		ided to 5°C)	Potassium	Bicarbonate	Calcium	Calcium	Bicarbonate plus Carbonate	Fluoride	Sodium	Numbe
Number	(gpm)	(°C)	aSilica bSe	odium-Potassium-Calcium	(Na/K)	(Ca/HCO3)	(Mg/Ca)	{Na/Ca}	(C1/HCO ₃ + CO ₃)	(C1/F)	V(Ca/Na)	Fig.
					CASSIA CO	UNTY (Cont'd.)						
5\$ 24E 22ddb1	100	38.0	95	45	38.4	0.333	0.414	3.3	0.815	14.8	0.316	
					CL	ARK COUNTY						
Varm Springs 1N 32E 25aac1S	1,920	29.0	60	25	5.81	. 393	.58	.32	.044	2,84	2.7	
idy Hot Springs N 33E 2bbc1S	c250	d\$0.0	85	65	3.06	.74	. 303	.541	.077	.714	1.25	
	C -11	<u>u</u>				TER COUNTY				1131		
3N 17E 32bca1S L4N 19E 34daal	c ²⁵ 50	$51.0 \\ 40.0$	90 70	185 60	$13.1 \\ 10.1$.137 .371	.432 .629	8.3 1.43	.191 .03	1.66 1.95	.166 .598	11
Sunbeam Hot Sprin		76. 0		170	<i>(</i> 0 0	010				150		
11N 15E 19c1S	444	76.0	135	130	60.2	.019	-	98.8	.174	.429	. 052	
Sullivan Hot Spri 11N 17E 27bdd1S	ngs 70	41.0	85	100	19,3	.135	, 37	6.05	.177	17	.15	
Barney Hot Spring 11N 25E 23cab1S	5 170	d28.5	60	15	10.2	.311	.891	,424	.038	4.29	2.45	
tanley Hot Sprin	øs.											
ON 13E 3cab1S	110	41.0	105	45	204	.112	.075	47.5	.147	.191	. 09	
late Creek Hot Springs												
ON 16E 30alS	185	50.0	130	90	31.4	.112	.02	17.9	.11	.431	.125	
					EL	ORE COUNTY						
S 8E 34bdc1	2	34.0	110	145	49.5	.017	.181	61.3	,127	14.4	.034	12
einmeyer Hot												
Springs 5N 7E 24b1S	349	76.0	135	125	63.3	. 335	.15	106	.088	.155	.057	
Outch Frank's												
Spring SN 9E 7b1S	c300	65.0	120	70	80.8	.197	,15	45.2	.072	.129	,094	
aradise Hot												
Springs N 10E 33bd1S	_	56.0	115	75	85	.051	.11	58.1	.056	.449	.089	
35 8E 36cdal	c700	68.0	130	70	185	.031		101	.062	.142	.051	
atty Hot Springs.	•											
S 10E 31ddb1S	-	d55.0	135	135	54	.007	-	235	.038	.207	.043	
S 8E 36bbal	8	38.0	130	125	73.5	.011	.103	87,2	,038	1.79	.041	
S 9E 8ab1	-	62.0	130	80	174	.017	-	159	.045	.107	.042	
S 10E 7acd1 S 10E 32bdb1	54	32.0 37.5	90 95	65 70	149 246	.033	.132	55.1 90.7	.08 .179	.163 1,2	.073	
										1,1	.044	
aple Grove Hot					FRAN	KLIN COUNTY						
Springs 35 41E 7aca1S	350	76.0	105	235	7.58	.276		0.6	2 21	7.67		• -
							. 444	9.6	2.21	307	.07	13
4S 39E 36ada1	-	44.5	125	170	25,5	.073	.468	25.1	1.05	17.1	.05	13

 (Cont'd.)
TABLE 3

Spring or Well Identification Number	Discharge (gpm)	Water Temperature at Surface (OC)	Aquifer Tc Geochemical (round a ^S ilica b ^S Od	Aquifer Temperatures from Geochemical Thromometers ⁹ C (rounded to 5 ⁹ C) _a Silica bSodium-Potassium-Calcium	<u>Fotium</u> Potassium (Na/K)	Calcium Bicarbonate (Ca/HCO3)	Magnesium Calcium (Mg/Ca)	Atomic Sodium Calcium (Na/Ca)	Ratios Chloride Bicarbonate plus Carbonate (Cl/HCO ₂ + CO ₇)	Chloride Fluoride (CI/F)	VCalcium Sodium V[Ca/Na)	Area Number Fig. 6
					FRANKLIN C	COUNTY (Cont'd.)				-		
Wayland Hot Springs 15S 39E 8bdc1S	0060	77.0	125	270	66.7	0.348	0.165	32. 22	tr. M PR	241	0.015	2 [
15S 39E 17bcd1	25	82,0	155	270	8.31	519	.152	30.	18.1	589	. 013	1
					FREMONT	COL						2
Ashton Warm Springs 9N 42E 23dablS	c.2	41.0	145	06	58.3	.018	.15	57.1	.054	,706	,106	14
Big Springs 14N 44E 34bbb1S	92,000	12.0	95	65	7.94	.185	.177	4.36	.094	.432	614	
Lily Pad Lake 10N 45E 35abc1S	ı	d17.0	ų	20	,85	.36	.254	. 335	.172	5.89	11.7	
7N 41E 35cdd1	ı	36.0	120	85	15.4	.178	.371	4.86	.172	2.38	.246	
Rovstane Hot					CEE	GEM COUNTY						
Springs 7N 1E &ddalS	c.20	d55.0	.150	150	35.3	110.	.114	32.1	.571	2.08	.067	15
7N 1E 9cdc1S	ı	45.0	135	85	31.8	.135	.264	11.5	.305	2.01	.142	
					6001	GOODING COUNTY						
4S 13E 28ab1	·	d47.0	135	100	28,8	.054	.202	17.8	.051	.366	.114	
White Arrow Hot Springs 4S 13E 30adb1S	826	65.0	135	115	96.7	.015	,	132	.07	.295	.044	
55 12E Jaaal	ı	43.0	115	70	191	.029	,105	98,1	.115	.237	.051	
					IDAF	IDAHO COUNTY						
Weir Creek Hot Springs 36N 11E 13b1S	c40	47.S	100	ល	98.6	, 239	I	15.3	580,	.512	222	
Jerry Johnson Hot Springs 36N 13E 18a15	c300	48、D	100	35	157	.171	.122	23.9	. 066	.636	.161	
Red River Hot Springs 28N 10E 3d1S	35	55.0	120	80	86.1	.114		52.3	£101.	.103	.074	
Riggins Hot Springs 24N 2E 14dac1S	c50	0,24	120	95	80	.858	.027	4	.378	2.04	220	
Burgdorf Hot Slríngs 22N 41. IbdeIS	162	45.0	120	55	104	.184	ł	37,1	.085	804	112	
					JEFFER	JEFFERSON COUNTY		-				
Heise Hot Springs 4N 40E 25dcb1S	c60	d.9.0	80	205	15.4	.623	5.	5.81	3.75	415	150.	00

Suring or Nall		Water	Aquifer	Aquifer Temperatures from Coochamical Thermoson Of				E red B	0			-
	Discharge (gpm)	at Surface (°C)	aSilica _b Sc	bodium-Potassium-Calcium	Potassium (Na/K)	Carbonate (Ca/HCO ₅)	Calcium (Mg/Ca)	Calcium (Na/Ca)	Bicarbonate plus Carbonate (C1/HCO3 + CO3)	Elucride (C1/F)	VCalcium Sodium V(Ca/Na)	Area Number Fig. 6
					TEMPH	I COUNTY						
-	c75	93.0	160	175	26.7	0.017	0.062	72.4	0.102	3.04	0.038	16
	145	45,0	80	205	11.5	.062	.788	14.4	.152	14.9	. 092	17
	ŵ	d52.0	135	175	27	, 024	.135	64.5	.187	2.28	.036	17
-	c20	46.0	85	165	24.7	.049	.21	25.3	.132	1.99	.075	18
	,	_đ 44.0	02	ى س	MADISON 1.84	ON COUNTY	.377	.049	.018	.569	T T	
					ONEIDA	3[
	44	25.0	65	230	9.72	.381	.542	8,72	.377	2,810	.047	19
	3,810	25,0	65	175	16.4	.506	,494	44	2.44	360	.136	51
		27.0	80	061	17.8	.436	.57	12.2	6.06	1,430	.046	19
	189	24.0	85	35	5.93	.377	.559	467	.267	62.5	1.81	
					TEHANO	SE COUNTY						
5	50 280 489 3	42.0 84.5 38.5 34.0 34.0	135 145 135 135 135	165 90 150 145 165	29 102 59.2 45.4 22.4	.016 .037 .013 .023	.281 - - -	63.8 87.2 83.7 23.6	.066 .214 .159 .184	1.04 .25 .536 .536 .536	,049 ,054 .046 .048	20000 20000 20000
	1 1	37.0 39.0	135 125	175 190	20.6 11.8	.033	.082	29.6 13.8	.067 .147	1.72 .459	.068	20
-v'	458	0.95	120	185	12.6	.072	.112	91	.109	.487	.163	20
U.	c70	51.0	125	160	25.5	.014		87.2	. 058	.342	,094	21
~	410 169 - 1,060 30	35.5 45.5 75.0 66.0 49.5	85 80 1255 1155	40 85 80 65	624 170 213 213 213	.016 .015 .016 .017		87.2 110 155 145 101	.225 164 164 164	1.9 .926 .536 .498 1.02	.049 .042 .039 .04	
-4	153	50.0	135	130	60.1	.034	I	108	.148	.236	.046	
1.	1730	69,0	120	6.0	213	.034	1	87.2	.148	. 322	.059	

TABLE 3 (Cont'd.)

		Water		emperatures from					c Ratios			I
Spring or Well Identification Number	Discharge (gpm)	Temperature at Surface (°C)	(roun	l Thermometers ^O C dod to 5 ^O C) dium-Potassium-Calcium	<u>Sodium</u> Potassium {Na/K]	Calcium Bicarbonate (Ca/HCO3)	Magnesium Calcium (Mg/Ca)	<u>Sodium</u> Calcium (Na/Ca)	Chloride Bicarbonate plus Carbonate (C1/HCO3 + CO3)	Chloride Fluoride (C1/F)	V <u>Calcium</u> Sodium V(Ca/Na)	Area Number Fig. 6
			•		POWE	R COUNTY						
Indian Springs 85 31E 18dab1S	1,540	32.0	65	70	18.7	0.456	0.412	2.52	1,49	168.0	0.288	
10S 30E 13cdc1S	418	38.0	70	70	7.53	.875	.591	1.17	2.69	167	.\$62	
					TWIN F.	ALLS COUNTY						
Miracle Hot Springs												
8S 14E 31acb1S	c ³⁵⁰	54.0	135	85	136	.053	-	95.1	.511	.938	,045	
8S 14E 33cbal 11S 19E 33ddd1	60 1,930	59.0 33.0	135 115	110 70	113 3.36	.019 .348	. 238	158 1.1	.367 .219	,965 26,8	.038 1.11	
Nat-Poo-Paw Warm Springs	70	<i></i>	65	80	6.65	.195	.679	2.2	.052	2.26	.492	
125 17E 31bab1S	30	36.0								7.14		
12S 18E 1bba1	543	38.0	115	65	4.54	.288	.183	1.55	.145	7.14	.963	
Magic Hot Springs 165 17E 31ac1S	385	45.5	70	45	4.91	.282	. 489	, 755	.04	6,79	1.53	
					VALL	EY COUNTY						
Vulcan Hot Spring 14N 6E 11bda1S	s c ⁵⁰⁰	87.0	150	135	53,3	.023	.092	91	. 244	. 38	.052	22
Hot Creek Springs 15N 3E 13bbc1S	798	d ³⁴ .0	110	60	170	.116	.127	80.5	.439	3.3	.069	
Molly's Hot Springs 15N 6E 14acc1S	c ²⁰	59.0	130	85	79.4	.063	-	61	,219	.315	.073	
14N 3E 36abd1	-	42.5	95	45	247	.039	-	63.2	,306	2.12	.079	
Cabarton Hot Springs												
13N 4E 31cab1S	¢ ⁷⁰	70.5	125	100	89.5	.037	-	103.0	.874	2.39	.047	
Boiling Springs 12N 5E 22bbc1S	165	85.0	135	90	71	.036	.087	65,1	.196	.495	.07	
					WASHI	NGTON COUNTY						
14N 3W 3ddcl 15N 3W 8ccc1 11N 6W 10cca1 11N 3W 7bdb1S 14N 3W 19cbd15	- 1/3 10 58	25.5 28.0 70.0 87.0 50.0	115 130 170 170 105	180 240 140 165 65	18.3 5.4 53.4 26.9 71.6	.025 .059 .045 .208 .15	.127 .152 .043 .165	48.9 14.6 103 19.4 17.4	.038 .024 .85 1.65 .315	2.04 2.37 6.41 35.1 10	.08 .147 .037 .063 .128	1 1 23 23
14N 2W 6bbalS 13N 4W 13bac1	431	70.0 28.0	120 120	80 50	89.5 209	1.08	.01 ,094	20.5 42.8	5.43 .026	39.5 2.45	.075 .079	

TABLE 3 (Cont'd.)

a Using curve A (equilibrium with quartz) Fournier and Truesdell, 1970.

b Fournier and Truesdell, 1973.

_C Discharge estimated.

 $_{\rm d}$ Measured temperature is probably lower than temperature at point of discharge.

physiographic province (Fenneman, 1931) of southeastern Idaho, 5 were in the Middle Rocky Mountain physiographic province of eastern Idaho, 24 were in the eastern Snake River Plain, and 37 in the western Snake River Plain of the Columbia Plateau physiographic province of south-central and southwestern Idaho and 42 were in the Northern Rocky Mountain phsiographic province of central Idaho. No thermal waters were found north of the Lochsa River in northern Idaho.

3. The kinds and age of rocks supplying water to the springs and wells inventoried are summarized below:

Sedimentary and metamo Precambrian and Paleozoic	,	Granitic rocks of Cretaceous and Mio age	cene
Springs	12	Springs	19
Wells	1	Wells	0
Total	13	Total	19
Silicic volcanic and associtary rocks of Paleocene to		Basalt of Miocene and Pliocene age	
age		Springs	1
		Wells	4
Springs	12	Total	5
Wells	31		
Total	43	Surficial deposits of Pleistocene Holocene age	and
Basalt of Pliocene to Holoc	ene age		
		Springs	30
Springs	2	Wells	6
Wells	2	Total	36
Total	4		

Rock type and age

- 4. Twenty-eight of the springs and wells visited occurred on or near known fault zones, while a greater number are thought to be related to faulting.
- 5. The quality of the spring and well waters sampled was, except in a few instances, remarkably good. Dissolved-solids concentrations ranged from 14 to 13,700 mg/l and averaged 812 mg/l. In the southeastern part of the State, where waters were much more heavily mineralized, dissolved-solids concentrations are as much as 13,700 mg/l and average 3,510 mg/l.
- Measured temperatures of the water at the springs and wells ranged from 12^o to 93^oC and averaged 50^oC. No areal pattern for the distribution of measured temperatures was found.
- 7. Estimated aquifer temperatures for the waters sampled ranged from 5° to 370°C as estimated by the sodium-potassium-calcium geochemical thermometer and from less than 35° to 170°C as estimated by the silica geochemical thermometer. Estimated temperatures, using both thermometers, showed agreement within

25°C for 42 of the 124 sampled sites. Estimated aquifer temperatures in excess of 140°C were found at 42 of the sites sampled. Generally, for waters high in dissolved solids, the Na-K-Ca geochemical thermometer indicated higher aquifer temperatures than did the silica geochemical thermometer, whereas for waters low in dissolved solids, the silica geochemical thermometer indicated highest temperatures.

- 8. Deposition of minerals from thermal waters included gypsum, halite, and various carbonates and silicates.
- 9. Although it was thought that thermal water would be found in or near the Yellowstone KGRA in Idaho, an intensive search of this area failed to reveal the existence of any true thermal waters.
- 10. Within the Frazier KGRA in southern Idaho, surface temperatures of 93° and 90°C (measured temperature of 90°C is probably lower than temperature at point of discharge) were found at two wells. Estimated aquifer temperatures for water from these two wells are calculated to range from 135° to 145°C. Dissolved-solids concentrations were 1,720 and 3,360 mg/l and the minerals being deposited were chiefly halite and calcite.

FUTURE STUDIES

Selection of areas in which further work will be concentrated in Idaho by the U.S. Geological Survey and the Idaho Department of Water Administration will be based on the data reported herein and on the following considerations:

- Of the 124 springs and wells inventoried, estimated aquifer temperatures of 140°C or higher are indicated for 42 of the springs and wells listed in table 3. Figure 6 gives the location of the 23 areas in which these springs and wells were found. Two areas shown in figure 6 were selected on the basis of geologic considerations only.
- 2. Geophysical surveys (gravity and aeromagnetometer) that include most of the areas noted above are available. These surveys, made by the U. S. Geological Survey, will be studied and interpreted as an aid to narrowing down the number of areas to be first studied.
- **3.** Evaluation of the known geology in terms of the structure, lithology and age of the rocks, and the geologic history of the 25 areas shown in figure 6.
- 4. Areas found to have such things as existing geophysical surveys, detailed geologic maps, available additional hot springs and wells from which water samples can be obtained for analysis, topography suitable for making additional geophysical surveys and for heat studies, and ready accessibility to men and equipment will be in priority over other areas equally promising.

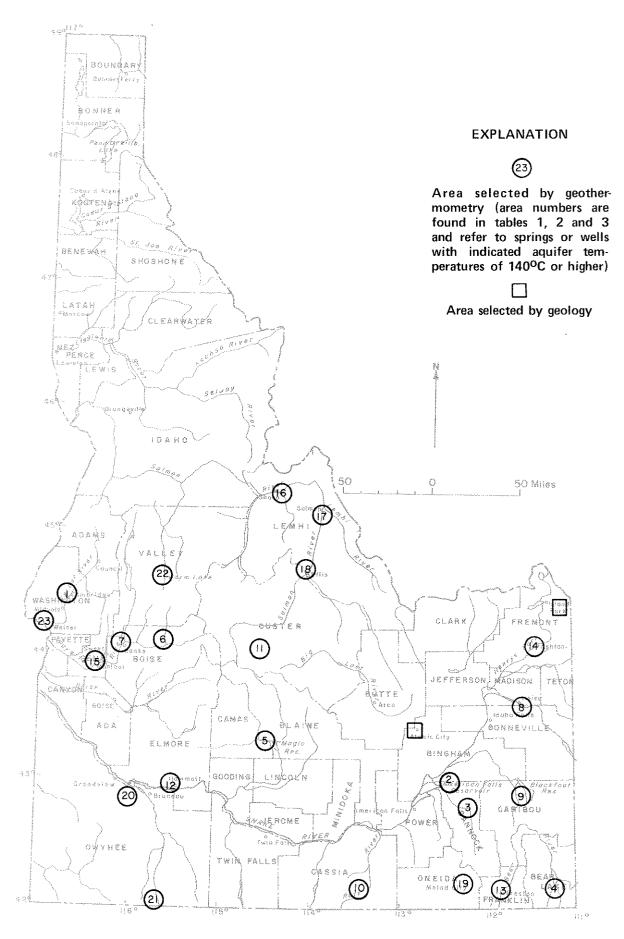


FIGURE 6. Areas selected for future study.

The data collected in the areas selected for immediate study will be aimed toward delineation of the surface area encompassed by the geothermal anomaly, and a preliminary description of the hydrology of the area. Methods used to help delineate the surface expression of the apparent anomaly in an area and the hydrology of the area will include, where possible:

- 1. Calculation of aquifer temperatures by geochemical thermometers using water samples collected from springs and wells.
- 2. Analysis of data obtained from heat studies. These heat studies will consist of a series of temperature measurements made at one-meter depths over the suspected area of the anomaly.
- 3. Geophysical surveys (gravity and aeromagnetometer) and other surveys as needed.
- 4. Examination and analysis of topographic, climatologic, hydrologic, and geologic maps and well logs to provide such things as information on ways and means of recharge to and discharge from the anomaly, the permeability of rocks in the recharge area, and at depth, and the subsurface structure.
- 5. Analyses of water samples collected in and around the area for oxygen and hydrogen isotopes. These isotopes are used to indicate the age of ground water and thereby lead to further understanding of the movement of water in the subsurface.

SELECTED REFERENCES

Anderson, A. L., 1931, Geology and mineral resources of eastern Cassia County, Idaho: Idaho Bur. Mines and Geology Bull. 14, 169 p.

______1947, Geology and ore deposits of Boise Basin, Idaho: U. S. Geol. Survey Bull. 944-C, p. 119-319.

1957, Geology and mineral resources of the Baker quadrangle, Lemhi County, Idaho: Idaho Bur. Mines and Geology, Pamph. 112, 71 p.

- Armstrong, F. C., 1969, Geologic map of the Soda Springs quadrangle, southeastern Idaho: U. S. Geol. Survey Misc. Geol. Inv. Map I-557, 2 sheets.
- Barnes, H. L., ed., 1967, Geochemistry of hydrothermal ore deposits: New York; Holt, Rinehart, and Winston, Inc., 670 p.
- Blackwell, D. D., 1969, Heatflow determinations in the northwestern United States: Jour. Geophys. Research, v. 74, no. 4, p. 992-1007.
- Bodvarsson, G., 1970, Evaluation of geothermal prospects and the objectives of geothermal exploration: Geoexploration, 8, 7.
- Burnham, W. L., Harder, A. H., and Dion, N. P., 1969, Availability of ground water for large-scale use in the Malad Valley-Bear River areas of southeastern Idaho - an initial assessment: U. S. Geol. Survey Open-File Report, 40 p.
- Chasteen, A. J., 1972, Geothermal energy growth spurred on by powerful motives: Mining Engineering, v. 24, no. 10, p. 100.
- Choate, Raoul, 1962, Geology and ore deposits of the Stanley area: Idaho Bur. Mines and Geology Pamph. 126, 122 p.
- Crosthwaite, E. G., 1957, Ground-water possibilities south of the Snake River between Twin Falls and Pocatello, Idaho: U. S. Geol. Survey Water-Supply Paper 1460-C, p. 99-145.

_____ 1969_a Water resources of the Goose Creek-Rock Creek area, Idaho, Utah, and Nevada: Idaho Dept. of Reclamation Water Information Bull. 8, 73 p.

1969_b Water resources of the Salmon Falls Creek Basin, Idaho-Nevada: U. S. Geol. Survey Water-Supply Paper 1879-D, 33 p.

- Dion, N. P., 1969, Hydrologic reconnaissance of the Bear River Basin in southeastern Idaho: Idaho Dept. of Reclamation Water Information Bull. 13, 66 p.
- Dion, N. P., and Griffith, M. L., 1967, A ground-water monitoring network for southwestern Idaho: Idaho Dept. of Reclamation Water Information Bull. 2, 16 p.

- Ellis, A. J., 1970, Quantitative interpretation of chemical characteristics of hydrothermal system, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1 Geothermics, Spec. Issue 2, p. 516-528.
- Fenneman, N. M., 1931, Physiography of Western United States: New York, McGraw-Hill Book Co., 534 p.
- Forrester, J. D., 1956 Geology and mineral resources of the Salmon quadrangle, Lemhi County, Idaho: Idaho Bur. Mines and Geology Pamph. 106, 102 p.
- Fournier, R. O., and Rowe, J. J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet steam wells: Am. Journ. Sci., v. 264, p. 685-695.
- Fournier, R. O., and Truesdell, A. H., 1970, Chemical indicators of subsurface temperature applied to hot waters of Yellowstone National Park, Wyo., U. S. A., in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Energy, Pisa, 1970, v. 2, Part 1 Geothermics, Spec. Issue 2, p. 529-535.
- ______ 1973, An empirical Na-K-Ca geothermometer for natural waters: Geochim. et. Cosmochim. Acta. (in press).
- Godwin, L. H., Haigler, L. B., Rioux, R. L., White, D. E., Muffler, L. J. P., and Wayland, R.
 G., 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U. S. Geol. Survey Circ. 647, 17 p.
- Greenberg, S. A., and Price, E. W., 1957, The solubility of silica in solutions of electrolytes: J. Phys. Chem. 61, p. 1539-1541.
- Grose, L. T., 1971, Geothermal energy: geology, exploration, and developments; Part 1: Colorado School Mines Research Inst. Min. Industries Bull., v. 14, no. 6, 14 p.
- Hamilton, Warren, 1965, Geology and petrogenesis of the Island Park Caldera of rhyolite and basalt, eastern Idaho, in Shorter Contributions to General Geology, 1964: U. S. Geol. Survey Prof. Paper 504-C, p. CI-C37.
 - _____ 1969, Reconnaissance geologic map of the Riggins quadrangle, west-central Idaho: U. S. Geol. Survey Misc. Inv. Map I-579, 1 sheet.
- Healy, J., 1970, Pre-investigation geological appraisal of geothermal fields, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1 Geothermics, Spec. Issue 2, p. 571-577.
- Holland, H. D., 1965, Some applications of thermochemical data to problems of ore deposits, II. Mineral assemblages and the composition of ore-forming fluids: Econ.

Geology v. 60, p. 1101-1166.

- Jobin, D. A., and Schroeder, M. L., 1964, Geology of the Conant Valley quadrangle, Bonneville County, Idaho: U. S. Geol. Survey Mineral Inv. Field Studies Map MF-277, 1 sheet.
- Kirkham, V. R. D., 1924, Geology and oil possibilities of Bingham, Bonneville, and Caribou Counties, Idaho: Idaho Bur. Mines and Geology Bull. 8, 108 p.
- Littleton, R. T., and Crosthwaite, E. G., 1957, Ground-water geology of the Bruneau-Grandview area, Owyhee County, Idaho: U. S. Geol. Survey Water-Supply Paper 1460-D, p. 147-198.
- Livingston, D. C., and Laney, F. B., 1920, The copper deposits of the Seven Devils and adjacent districts including Heath, Hornet Creek, Hoodoo, and Deer Creek: Idaho Bur. Mines and Geology Pamph. 1, 105 p.
- Mahon, W. A. J., 1970, Chemistry in the exploration and exploitation of hydrothermal systems, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 2 Geothermics, Spec. Issue 2.
- Malde, H. E., Powers, H. A., and Marshall, C. H., 1963, Reconnaissance geologic map of west-central Snake River Plain, Idaho: U. S. Geol. Survey Misc. Geol. Inv. Map I-373, 1 sheet.
- Malde, H. E. and Powers, H. A., 1972, Geologic map of the Glenns Ferry-Hagerman area, west-central Snake River Plain, Idaho: U. S. Geol. Survey Misc. Geol. Inv. Map I-696, 2 sheets.
- Mansfield, G. R., 1927, Geography, geology, and mineral resources of part of southeastern Idaho: U. S. Geol. Survey Prof. Paper 152, 453 p.
- Meinzer, O. E., 1924, Origin of the thermal springs of Nevada, Utah, and southern Idaho: Jour. Geology, v. 32, no. 4, p. 295-303.
- Nace, R. L., and others, 1961, Water resources of the Raft River Basin, Idaho-Utah: U. S. Geol. Survey Water-Supply Paper 1582, 138 p.
- Newcomb, R. C., 1970, Tectonic structure of the main part of the basalt of the Columbia River Group, Washington, Oregon, and Idaho: U. S. Geol. Survey Misc. Geol. Inv. Map I-587, 1 sheet.
- Norvitch, R. F., and Larson, A. L., 1970, A reconnaissance of the water resources in the Portneuf River Basin, Idaho: Idaho Dept. of Reclamation Water Information Bull. 16, 58 p.

Piper, A. M., 1923, Geology and water resources of the Goose Creek Basin, Cassia County, Idaho: Idaho Bur. Mines and Geology Bull. 6, 78 p.

_____ 1924, Possibilities of petroleum in Power and Oneida Counties, Idaho: Idaho Bur. Mines and Geology Pamph. 12, 24 p.

Ralston, D. R., and Chapman, S. L., 1968, Ground-water resources of the Mountain Home area, Elmore County, Idaho: Idaho Dept. of Reclamation Water Information Bull. 4, 63 p.

_____ 1969, Ground-water resources of northern Owyhee County, Idaho: Idaho Dept. of Reclamation Water Information Bull. 14, 85 p.

- Ross, C. P., 1937, Geology and ore deposits of the Bayhorse region, Custer County, Idaho: U. S. Geol. Survey Bull. 877, 161 p.
- _____ 1963, Geology along U. S. Highway 93 in Idaho: Idaho Bur. Mines and Geology Pamph. 130, 98 p.
- Ross, C. P., and Forrester, J. D., 1947, Geologic map of the State of Idaho: U. S. Geol. Survey and Idaho Bur. Mines and Geology, 1 map.
- Ross, S. H., 1971, Geothermal Potential of Idaho: Idaho Bur. Mines and Geology Pamph. 150, 72 p.
- Savage, C. N., 1958, Geology and mineral resources of Ada and Canyon Counties: Idaho Bur. Mines and Geology County Report 3, 94 p.
- Siever, R., 1962, Silica solubility, 0^o-200^oC, and diagenesis of siliceous sediments: Jour. Geol. v. 70, p. 127-150.
- Smith., R. O., 1959, Ground-water resources of the middle Big Wood River-Silver Creek area, Blaine County, Idaho: U. S. Geol. Survey Water-Supply Paper 1478, 64 p.
- Stearns, H. T., Bryan, L. L., and Crandall, Lynn, 1939, Geology and water resources of Mud Lake Region, Idaho, including the Island Park area: U. S. Geol. Survey Water-Supply Paper 818, 125 p.
- Stearns, H. T., Crandall, Lynn, and Steward, W. G., 1938, Geology and ground-water resources of the Snake River Plain in southeastern Idaho: U. S. Gcol. Survey Water-Supply Paper 774, 268 p.
- Stearns, N. D., Stearns, H. T., and Waring, G. A., 1937, Thermal springs in the United States: U. S. Geol. Survey Water-Supply Paper 679-B, p. 59-206.

- Umpleby, J. B., 1913, Ore deposits in the Sawtooth quadrangle, Blaine and Custer Counties, Idaho, in Contributions to Economic Geology: U. S. Geol. Survey Bull. 580, p. 221-249.
- Umpleby, J. B., Westgate, L. G., and Ross, C. P., 1930, Geology and ore deposits of the Wood River region, Idaho: U. S. Geol. Survey Bull. 814, 250 p.
- Walker, E. H., and Sisco, H. G., 1964, Ground-water in the Midvale and Council areas, Upper Weiser River Basin, Idaho: U. S. Geol. Survey Water-Supply Paper 1779-Q, 26 p.
- Walton, W. C., 1962, Ground-water resources of Camas Prairie, Camas and Elmore Counties, Idaho: U. S. Geol. Survey Water-Supply Paper 1609, 57 p.
- Waring, G. H., (revised by R. R. Blankenship and Ray Bentall), 1965, Thermal springs of the United States and other countries of the world a summary: U. S. Geol. Survey Prof. Paper 492, 383 p.
- White, D. E., 1970, Geochemistry applied to the discovery, evaluation, and exploitation of geothermal energy resources, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Energy, Pisa, 1970, v. 1, Part 2 Geothermics, Spec. Issue 2.
- White, D. E., Muffler, L. J. P., and Truesdell, A. H., 1971, Vapor-dominated hydrothermal systems compared with hot-water systems: Econ. Geol., v. 66, no. 1, p. 75-97.

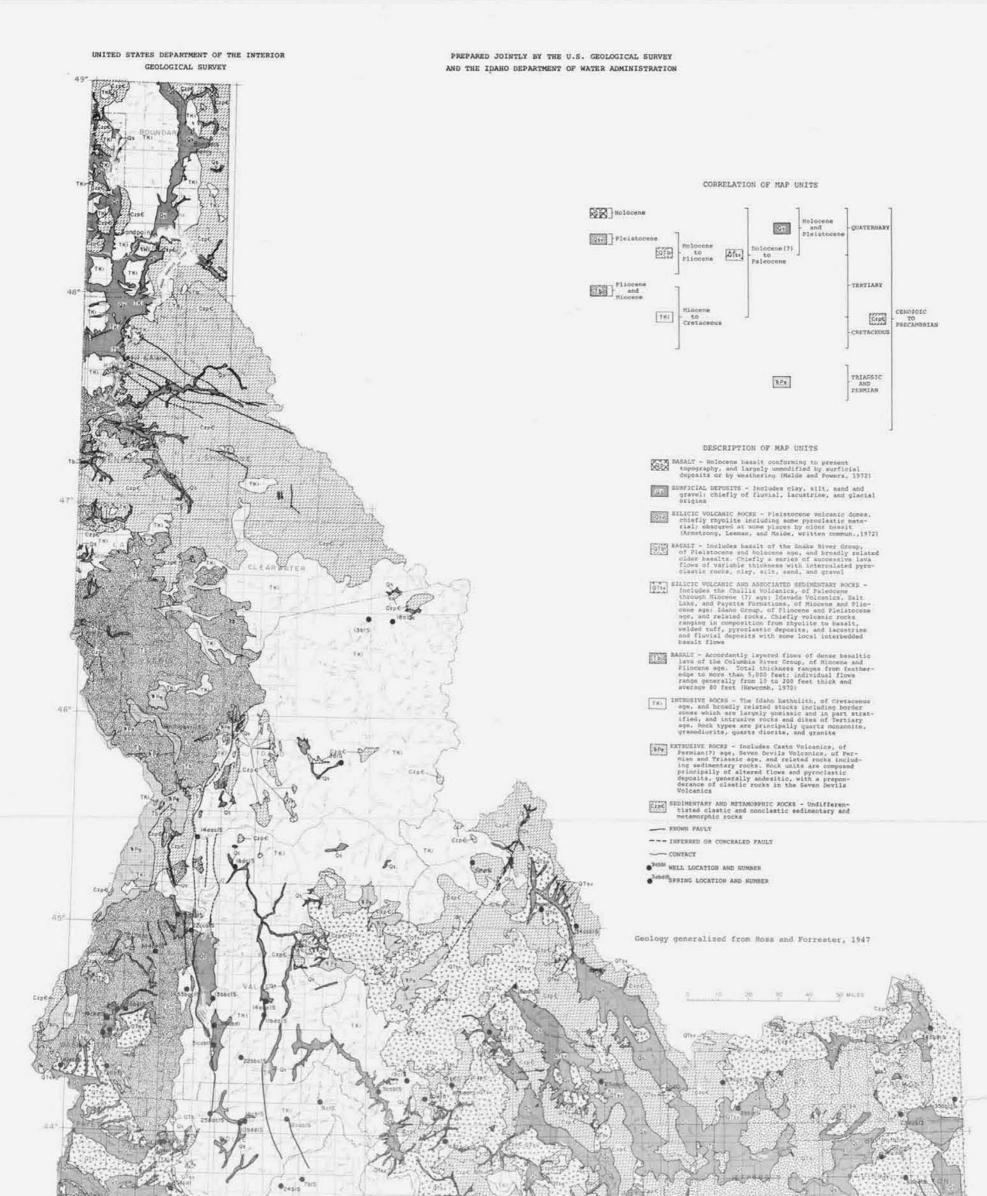
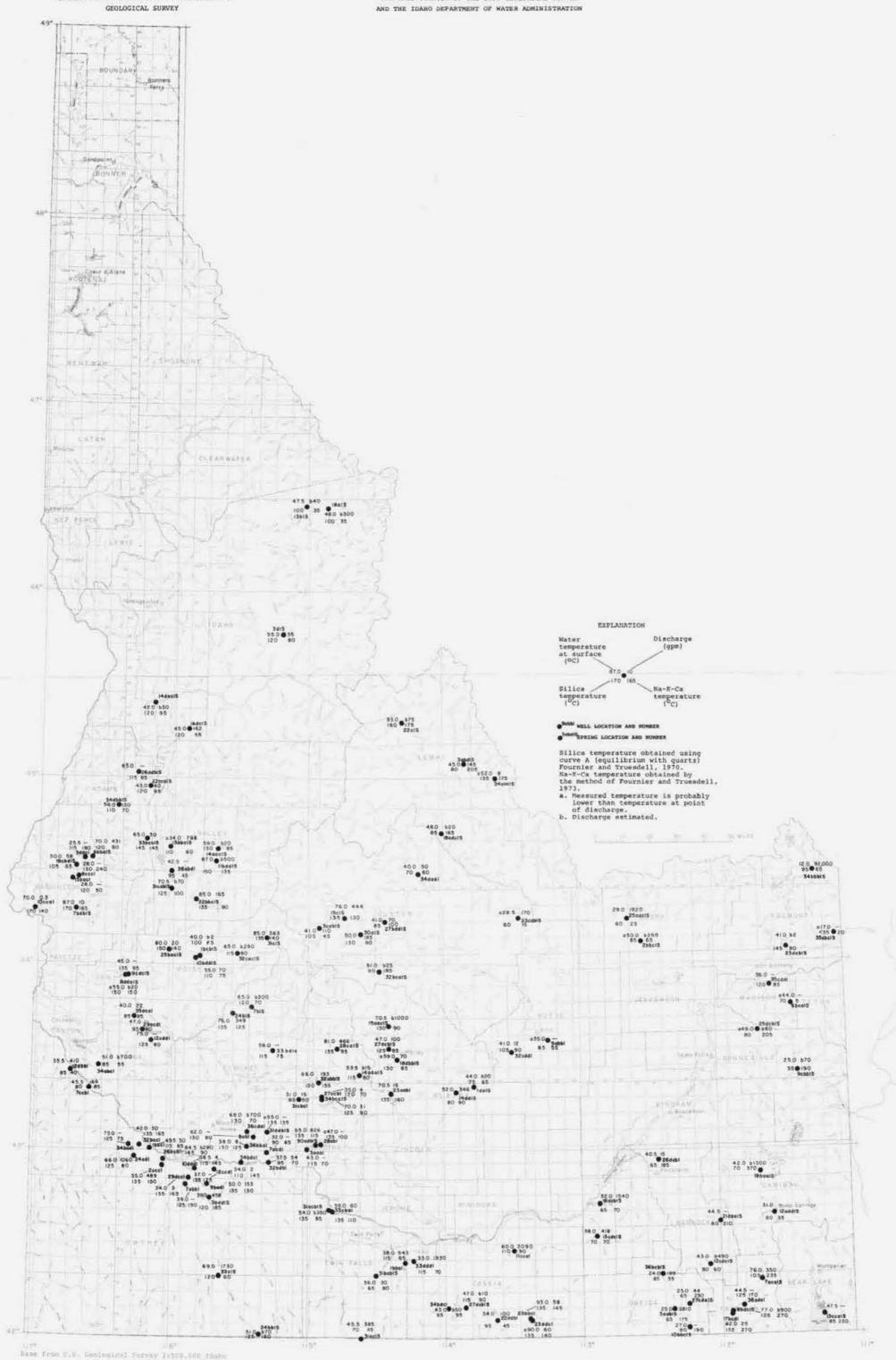



FIGURE 4.--Generalized geology of Idaho and locations of sampled springs and wells.

UNITED STATES DEPARTMENT OF THE INTERIOR

PREPARED JOINTLY BY THE U.S. GEOLOGICAL SURVEY

FIGURE 5.--Estimated aquifer temperatures for sampled springs and wells.