

WRV MTAC

APRIL 8,2025 AT CSI COMMUNITY CAMPUS

ALEX MOODY

Outline

- **1.** Demo of WRVpy python pre-processor and datasets
- 2. Calibration Check Up (warts and all)
- **3.** Precipitation Distribution
- 4. Revisiting discretization and river boundary conditions

WRVGWFM WRVpy Preprocessor

Live Demo

USGS Python for Hydrologists Website: <u>https://doi-usgs.github.io/python-for-hydrology/latest/index.html</u>

- General python introduction, including installation, getting started, and up to using python to create and run MODFLOW models

Calibration Update

PEST setup

- PEST++ GLM
- Adjustable Parameters: 629
- Non-zero observations: 9,776
- Removed separate tributary and basalt pilot point zones
- Soil moisture scalar

Parameter Category	Parameter Name	count
	Hk1 constant	1
	Hk1 pilot point	160
	Hk2 constant	1
	Hk2 pilot point	99
	Hk3 constant	1
	Hk3 pilot point	40
Aquifer Properties	Vertical HK	1
	S1 constant	1
	S1 pilot point	73
	S2 constant	1
	S2 pilot point	38
	S3 constant	1
	S3 pilot point	38
Conductance	Riverbed	25
Conductance	Drain	5
	GW efficiency	74
	SW efficiency	53
	Canal Seepage	19
Water Balance	West Tribs	13
	East Tribs	11
	SMR factor	1
	Underflow	2

Hydraulic Conductivity

Hydraulic Conductivity

- Upper bound on conductivity has clipped off the few extremely high conductivity cells
- Lower end of clay conductivity is higher than in 1.1
- Basalts (layer 3) within higher range of literature values

Specific Storage

Average by layer

- 1:0.16
- 2:0.000013
- 3: 0.000005

Tributary Underflow

- Reduction = 5.32
- Moving average window: 24 days
- Initial volumes set to WRV 1.1 values.
 - PEST factor bounds = 0.01 to 10

Efficiencies for pumping estimates

Observation Targets

Objective Function Phi Beginning of Run: 35,163 End of Run: 5,475

Group	Name	non-zero weight	zero weight
	gaihaisb	53	0
	gaihaisb-td	52	0
	gaihaistc	250	0
	gaihaistc-td	249	0
	gaihrrstan	103	0
	gaikethai	254	0
	gaikethai-td	253	0
Coinc	gain-season	0	128
Gains	gaisbstc	53	0
	gaisbstc-td	52	0
	gaisilvabv	327	0
	gaisilvabv-td	323	0
	gaisilvblw	324	0
	gaiwillow	257	0
	gaiwillow-td	256	0
	seeprun	50	0
Heads	geowell	254	0
	obswell	3443	0
	obswell-synop	198	0
	obswell-td	3018	0
Misc	outflow	2	0
	pumpvol	0	6
	tribl	5	0

Objective Function Weights

Un(re)calibrated run

- First run with new recharge data and observation wells highlighted heads below aquifer in trib canyons
- **Confined** representation allows MODFLOW to solve flow equations
- Increase weights on tributary canyon synoptic

Head Targets

obs

0.14

src

100

mod11

mod12

Riverbed Conductance

Near Ketchum to Hailey, Big Wood

Hailey to South Broadford, Big Wood

South Broadford to Stanton Crossing, Big Wood

Heart Rock Ranch to Stanton Crossing, Big Wood

Hailey to Stanton Crossing, Big Wood

Willow Creek

Silver Creek above Sportsman's

Drains (Model Outflow)

Annual Water Budget

Pumping Predictions

- GLM can provide forecast uncertainty estimates while calibrating (mean, standard deviations of prediction)
- Tracking annual pumping after 2016 as compared to total pumping from WMIS, city records, and watermaster
- ~ 64% less total pumping in model (estimated and recorded)

Precipitation Distribution

Winter Precip Distribution

- Currently use a fixed approximation to redistribute winter snowfall into available precipitation.
- Easy to implement but does not allow for variable melt.
- Peak precip always occurs in the same month

Precip Zone	Nov	Dec	Jan	Feb	Mar	Apr
Ketchum	25%	25%	25%	25%	25%	75% Nov + 75% Dec + 75% Jan + 75% Feb + 75% Mar + 100% Apr
Hailey	75%	25%	25%	50%	25% Nov + 75% Dec + 75% Jan + 50% Feb + 100% Mar	100%
Picabo	75%	25%	25%	75%	25% Nov + 75% Dec + 75% Jan + 25% Feb + 100% Mar	100%

Variable SWE Accumulation and Melt Method

- Propose using Daymet snow water equivalent to determine snow accumulation and melt rates
- Calculate monthly liquid
 % of water year total
 precip
- Captures interannual variability in snowmelt

Average Monthly Winter Precip Distribution

Prominent precip peaks smoothed over several months

Monthly Winter Precip Distribution

Discretization

Revisiting alluvium and basalt thickness and extent

Layering Rules

<u>Bedrock Surface:</u> Pre-Quaternary bedrock surface (Land surface – alluvium thickness)

* Bottom of basalt assumed to be 52 m below land surface

Top of aquitard is above alluvium bottom and is within clay extent

Clay surface (Moreland, 1977): 30 m below surface, 5 m thick.

Minimum cell thickness: 1 m

Minimum Vertical overlap: 2 m

Layer 1 bottom: Max of land aquitard depth or bedrock depth

Layer 2 bottom: Max of Layer 1 bottom minus aquitard thickness or bedrock depth

Layer 3 bottom: Top of bedrock surface

Alluvium Extent

 Alluvium extent modified north of near Sportsman's Access gage to include lands

Basalt Extent

- Extended basalt into new model extent in SW based on well logs
- Basalt depth below 2nd layer increased from 52 meters to 68 meters based on thicker sequences in well logs

Model thickness

- Some groundwater PODs
 pump from below bottom of
 1.1 grid
- Previously adjusted to pump from layer 3

Model thickness

- Fix known errors of confined wells pumping from upper aquifer.
 - Timmerman
 - Add data to extended boundary
- Kriged alluvium thickness
 - Sampled Bartolino, 2012

 alluvium thickness to preserve
 hand contouring (some wells
 corrected for location)
 - Added new wells not included in Bartolino 2012
 - Kriged Bellevue triangle separately

Alluvium Thickness

River Boundary

- LIDAR collected April to July 2015 by Oregon Lidar Consortium
- 1 m horizontal DEM resolution
- Purpose: Refine extent of RIV boundary extent and river bottom with new dataset

- Flow accumulation with multiple flow directions used on resampled 10m DEM to estimate stream path
- Big Wood River cells
 - Currently 1,067
 - With new LIDAR: 1,556
- Increase in RIV cells would primarily occur in dry bed