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Abstract 
The Idaho Department of Water Resources (IDWR) and the U.S. Geological Survey developed a 

groundwater model of the Wood River Valley (WRV) aquifer system. The WRV aquifer extends from 

north of Ketchum, Idaho to Picabo, Idaho in the southeast and Stanton Crossing, Idaho in the southwest.  

Models are calibrated by adjusting parameters to reduce the difference between model outputs and 

field observations. These discrepancies are contained in an “objective function”; defined as the 

weighted sum of squared differences between field observations and modeled values. Generally, the 

topology of an objective function for a groundwater model does not have a global low. Rather it 

contains a valley of nearly equal objective function values, and generally the parameter distributions 

describing the valley calibrate the model. Thus, the model calibration is not unique. The user of the 

model should have an understanding of how a prediction can differ along this valley in the objective 

function. An effective way to investigate the variability of a model prediction is with a linear uncertainty 

analysis as proposed by Doherty and others (2010). 

In all cases, calibration of the WRV Aquifer Model reduced the standard deviation describing the 

predictive uncertainty for all the analyses conducted in this study. The fact that calibration improves the 

predictive power of the model implies that calibration was well posed and the model isn’t being asked 

to predict something that it has no pertinent information to base the prediction on. Predictive 

uncertainty for future versions of the WRV model can be further reduced by collecting more water-

levels in wells and quantifying the summer gains in the near Ketchum to Hailey reach of the Wood River. 
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Introduction 
The Idaho Department of Water Resources (IDWR) and the U.S. Geological Survey recently developed a 

groundwater model of the Wood River Valley (WRV) aquifer. The WRV aquifer extends from north of 

Ketchum, Idaho to Picabo, Idaho in the southeast and Stanton Crossing, Idaho in the southwest (Figure 

1). The WRV aquifer system consists of a single unconfined aquifer with an underlying confined aquifer 

in the southern end of the valley (Figure 2). Flow in the WRV aquifer is simulated using the computer 

program MODFLOW-USG (Panday and others, 2013). The transient flow model simulates groundwater 

flow between January 1995 and December 2010. The calibration period extends from January 1998 

through December 2010.  The model was calibrated using the parameter-estimation program PEST 

(Doherty, 2005). Details of the model are provided in Fisher and others (2016). 

An understanding of a model’s predictive uncertainty is essential when a model is one of the sources of 

information relied upon when making administrative decisions. Various procedures have been used to 

evaluate a model’s predictive uncertainty ranging from a simple sensitivity analysis to a complex Monte 

Carlo analysis (Doherty and others, 2010). The IDWR chose to conduct a moderately complex linear 

analysis as outlined by Doherty and others (2010) to evaluate predictive uncertainty. The linear analysis 

also allows for a data worth evaluation, which can be used to refine plans for gathering additional data. 

The linear analysis assumes that the observation weights reflect measurement uncertainty. The 

observation weights used in the WRV aquifer model generally reflect measurement uncertainty, with 

the exception of the weights on some water-level observations. Out of 3,477 water-level observations 

utilized in model calibration, 2,027 were collected by The Nature Conservancy (TNC) using transducers 

installed in 10 wells during the last year of the calibration period. Thus, about 60% of the water-level 

observations were collected from 10 wells during 1/13 of the calibration period. To allow for equitable 

utilization of the other 40% of the water-level observations representing a more complete range of the 

calibration period, the weights on TNC water-level observations were reduced and do not reflect their 

measurement uncertainty.  

The linear analysis also assumes that predictive uncertainty is normally distributed. A normal 

distribution follows a bell shaped curve, with equal areas above and below the mean. There are reasons 

to assume that predictive uncertainty is not normally distributed for all of the predictions that the WRV 

Aquifer Model will be asked to perform. For instance, it is possible that the predicted impact of pumping 

a well on a particular river reach could be close to zero. Because predictive uncertainty of the impact is 

assumed to be normally distributed, the computed 95% confidence interval (CI) of the impact could 
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include values less than zero, which is impossible. In spite of these shortcomings, the linear analysis 

provides a convenient means of evaluating predictive uncertainty and the more uncertain predictions 

will have larger predictive uncertainty standard deviations and consequently larger predicted 95% CI. 

Methodology 
Models are calibrated by adjusting parameters to reduce the difference between model output and field 

observations. With PEST (Doherty, 2005), these discrepancies are contained in an “objective function”; 

defined as the weighted sum-of-squared differences between field observations and modeled values. 

With groundwater models, the topology of the objective function typically contains a minimum that 

forms a valley of nearly equal objective function values rather than having a minimum at a single point. 

The parameter distributions describing the valley typically calibrate the model equally as well; therefore, 

the model calibration is not unique. Users of the WRV model should have an understanding of how a 

prediction can differ along this valley. A convenient way to investigate the variability in a model’s 

prediction is with a linear uncertainty analysis, as proposed by Doherty and others (2010). 

Conducting a linear predictive uncertainty analysis with PEST involves the following steps: 

1. Identify the prediction(s) and the steps necessary to analyze the prediction(s). 

2. Prepare the model files necessary to run the prediction(s). 

3. Make a copy of the PEST control file that contains all of the field observations, as well as all of 

the adjustable parameters set at their calibrated values with their bounds set to logical limits.  

4. Replace the word ‘regularization’ with the word ‘estimation’ on the third line of the PEST control 

file. 

5. Increase the number of observations by the number of prediction(s). 

6. Increase the number of observation groups by one (1) because PEST will now be required to 

monitor each prediction.  

7. Add ‘predict’ to the list of observation groups. 

8. Increase the number of instruction files by the number of prediction(s). 

9. Change NOPTMAX on line 9 to -1 or -2. A value of -1 or -2 tells PEST to calculate the Jacobian 

matrix. 

10. Add an observation representing each prediction to the observation section and set the weight 

to zero. 

11. Change the model command line to reflect the name of the batch file used to run the model and 

prediction(s). 
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12. Add the name of the new instruction file(s) and the output file(s) that need to be read to the 

PEST control file. 

During a linear predictive uncertainty analysis, PEST will: A) change each of the adjustable parameters 

sequentially, B) assemble the input files for the WRV model, C) run the WRV model, D) compare model 

output with field observations, and E) build a Jacobian matrix containing information on how changes in 

each adjustable parameter impact the modeled match for every field observation, including all 

predictions.  

Once the Jacobian matrix is constructed, it can be used to predict the topology of the objective function. 

This includes projecting how the selected predictions change within the set of parameter values yielding 

an acceptable calibration. 

Three different types of analysis were conducted as part of this study: 1) a single cell steady state 

analysis where stress was applied in one model cell at steady state, 2) a more regional analysis where 

stress was applied in a block of cells, five cells on a side, and 3) a transient analysis where stress was 

applied continuously at one cell and the impact was observed after 10 months. All analyses involved 

injecting water at the five example locations shown in Figure 2 and analyzing the percentage of the 

impact exiting the model in a nearby reach of a river or stream. Water was injected into layer 3 for 

Examples 1 through 3 and layer 1 for Examples 4 and 5. 

Results  

Table 1 summarizes the results of these analyses, presenting the results in terms of the standard 

deviation of the percentage of the impact exiting the model through the target river or stream reach, 

assuming the uncertainty distribution is normal. In all cases, calibration reduces the standard deviation 

for the predictive uncertainty. The fact that calibration improves the predictive power of the model 

implies that calibration was well posed and the model isn’t being asked to predict something that it has 

no pertinent information to base the prediction on. In some cases we may wish that the calibrated 

standard deviations were smaller, such as the transient cases for Examples 1 and 2. These standard 

deviations may be high because there aren’t enough water-levels collected at regular intervals in model 

layer 3. If so, this can only be remedied by gathering more data and then recalibrating the model. 
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Table 1. Uncalibrated and calibrated standard deviations for the 15 different analyses. 

 

Table 2 provides more details for the scenarios presented above. The column labeled “Prediction 1 cell” 

in Table 2 shows the percentage of the impact introduced at the Example Site exiting the model via the 

target reach. For instance, Example 1 in Table 2 indicates that the WRV Aquifer Model predicts that 

about 58% of the impact injected at the model cell in layer three at the Example 1 site will exit the 

model in Silver Creek. The column labeled “CI 95 1 cell” contains the estimated double sided 95% CI, 

approximated as ± two standard deviations. Staying with Example 1, the prediction is 58% ± 8%. The 

“Prediction 5x5 cell” column shows the percentage of the impact introduced in a block of cells, five cells 

on a side, centered on the respective example location. The “CI 95 5x5 cells” column contains the double 

sided 95% CI for the 5x5 analyses. The column labeled “Prediction Transient” shows the percentage of 

the impact introduced at the Example Site exiting the model via the target reach within 10 months. The 

“CI 95 Transient” column contains the calculated double sided 95% CI for the prediction. Note that  both 

the steady state analyses for Example 1 show a prediction of about 58% ±8% of the steady state  impact 

leaves the model in Silver Creek while the transient prediction is about 55% ±25%.  The uncertainty in 

the transient and steady state predictions overlap, thus, the possibility that the transient prediction at 

10 months could be the same as the steady state prediction cannot be dismissed. 

Table 2. Linear uncertainty analysis conducted with WRV Aquifer Model. Prediction represents percentage of impact 
introduced at the example site that was realized at the target reach. 

  

 

Analysis Target Reach
Uncalibrated 

1 Cell

Calibrated 

1 Cell

Uncalibrated 

5x5 Cell

Calibrated 

5x5 Cell

Uncalibrated 

Transient

Calibrated 

Transient

Example 1 Silver Creek 107.66% 3.98% 108.28% 4.23% 168.27% 12.59%

Example 2 Silver Creek 65.81% 5.09% 69.13% 4.77% 95.54% 12.85%

Example 3 Wood R Hai-StanX 71.63% 2.77% 79.56% 6.60% 86.45% 6.17%

Example 4 Wood R Hai-StanX 278.79% 4.39% 277.56% 4.47% 53.03% 5.04%

Example 5 Wood R Nr Ket-Hai 14.31% 3.52% 15.28% 2.39% 31.17% 2.37%

Analysis Target Reach Prediction 

1 cell

CI 95        

1 cell

Prediction 

5x5 cell

CI 95     

5x5 cell

Prediction 

Transient

CI 95 

Transient

Example 1 Silver Creek 58.15% 7.96% 58.15% 8.45% 54.95% 25.17%

Example 2 Silver Creek 97.23% 10.18% 97.19% 9.53% 97.16% 25.71%

Example 3 Wood R Hai-StanX 86.65% 5.54% 86.64% 13.20% 76.53% 12.34%

Example 4 Wood R Hai-StanX 60.99% 8.78% 60.99% 8.95% 8.10% 10.08%

Example 5 Wood R Nr Ket-Hai 99.99% 7.04% 99.99% 4.78% 97.50% 4.74%



 

7 
 

Example 1 

The Example 1 location is adjacent to the Wood River with the stress introduced in layer three below the 

aquitard (Figure 3 inset). The 95% CI for Example 1 increased from ±7.96% when the stress was 

introduced at a single cell to ±8.45% when the stress was introduced in a 5x5 block of cells (Table 2). This 

change in the CI is assumed to be within the confidence limits of the analysis and negligible. 

Table 2 shows that the 95% CI for the transient analysis is larger than either of the steady state analyses 

for Example 1. This fact is emphasized visually in Figure 3. Figure 3 illustrates the increase in the 

standard deviation of predictive uncertainty if a particular observation group was removed as a 

calibration target1. The observation groups consist of observation wells (Obs Wells), geolocated wells 

(Geo Wells), driller located wells (Drl Wells), Sun Valley Wells, Nature Conservancy Wells, Wood River 

gains between the north edge of the model and Hailey2 (nr Ketchum-Hailey), Wood River gains between 

Hailey and Stanton Crossing (Hailey-Stanton X), Willow Creek gains (Willow Cr), Silver Creek gains below 

Sportsman Access (Silver Blw), Silver Creek gains above Sportsman Access (Silver Abv), subreach gains 

(Subreach), and subsurface discharges from the model (outflow). The various observation groups are 

described in more detail by Fisher and others (2016). The height of the bars in both Figure 3a and 3b 

represents the increase in the standard deviation of predictive uncertainty if that observation group 

were removed. In both steady state analyses, the observation wells, the geolocated wells and the 

Willow Creek gains are the most critical data (Figure 3a), while in the transient analysis, the observation 

wells and the Willow Creek gains and gains in the near Ketchum to Hailey reach of the Wood River are 

the most critical (Figure 3b). Collecting more water-level observations in layers one, two, and three 

would likely lower the predictive uncertainty at this location. Collecting sufficient data to calculate the 

summer reach gains in the near Ketchum to Hailey reach of the Wood River would likely also lower the 

predictive uncertainty.  

Example 2 

The aquifer system at the Example 2 location is modeled as basalt in layers two and three with no 

aquitard in between and the stress is introduced in layer three (Figure 4 inset). In the steady state 

analyses the 95% CI decreased from about ±10.18% for the single cell scenario to about ±9.53% for the 

5x5 block of cells (Table 2), which is assumed to be within the confidence limits of the analysis. Figure 4a 

                                                           
1 Standard deviations are not additive. The square of the standard deviations (i.e. the variance) is additive. 
2 These gains lack summer time observations because tributary inflow is assumed to exist for at least part of the 
summer, but was not measured. 
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is a bar chart showing the predicted impact on the uncertainty standard deviation for the two steady 

state analyses if one of the observation groups was removed. Figure 4b adds the transient analysis 

results. Note that for both of the steady state analyses the observation wells, Willow Creek gains and 

geolocated wells appear to be especially important calibration targets. The observation wells and the 

near Ketchum to Hailey and Willow Creek reach gains are the more important observations for the 

transient analysis. It appears that more water-level data and summer reach gains for the near Ketchum 

to Hailey reach gains will reduce predictive uncertainty. The water-level data are used to inform the 

model how the aquifer responds seasonally and from year to year to cyclic and long-term changes in 

water use. 

Example 3 

The Example 3 location is south of Bellevue where the aquifer material is expected to be sand and gravel 

with no aquitard (Figure 5 inset) with the stress introduced in layer three. The 95% CI increases from 

about ±5.54% for the single cell scenario to about ±13.2% for the 5x5 block of cells, a significant increase 

(Table 2). Figure 5a is a bar chart showing the impact on the predictive uncertainty standard deviation 

for the two steady state analyses if one of the observation groups was removed. The most critical 

observation groups are the observation wells and Willow Creek for the single cell analysis and the 

observation wells and the Nature Conservancy Wells for the 5x5 cell steady state analysis. Figure 5b 

includes the results from the transient analysis where the most critical observation groups are the 

observation wells, the near Ketchum to Hailey gains and the Willow Creek gains.  

A unique characteristic with the Example 3 site is that it is adjacent to a transition between hydraulically 

connected and perched stretches of the Wood River. Down river from the Example 3 site, the Wood 

River is perched to a point near the Example 1 site (Figure 2). The water table drops off quickly south of 

the Example 3 site as shown by the closely spaced contour lines in Figure 2.  Injecting water in the 5x5 

block of cells at the Example 3 site impacts the stretch of hydraulically connected river more than 

injecting in a single cell, and perhaps the uncertainty in the length of hydraulically connected river cells 

results in the jump from a ±5.54% CI for the 1 Cell analysis to the ±13.2% CI for the 5x5 cell analysis. 

Example 4 

The Example 4 location is south of Hailey where the aquifer material is expected to be sand and gravel 

with no aquitard and the stress is introduced in layer one (Figure 6 inset). The 95% CI for the single cell 

analysis is ±8.78% and ±8.95% for the 5x5 cell analysis (Table 2), which is assumed to be a negligible 
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difference. Figure 6a is a bar chart showing the impact on the predictive-uncertainty standard deviation 

if one of the observation groups were removed for the steady state analyses. The observation wells, 

geolocated wells and the gains in the near Ketchum-to-Hailey gains are the most critical observation 

groups. For the transient analysis (Figure 6b), after the water-level data from the observation wells, the 

Willow Creek and the near Ketchum-to-Hailey gains are the most critical. It is interesting that the Willow 

Creek gains are more important than the near Ketchum-to-Hailey gains. Perhaps this is because the near 

Ketchum-to-Hailey gains are missing data during the summer months leading to a decreased impact on 

the transient analysis. 

Example 5 

The Example 5 location is south of Ketchum (Figure 7 inset) where the aquifer material is expected to be 

sand and gravel with no aquitard and the stress is introduced in layer one. The steady state analysis for 

this scenario is simple, with nearly 100% of the stress introduced at the Example 5 site exiting the model 

in the Ketchum-to-Hailey reach (Figure 2). The steady state 95% CI for the single cell analysis is ±7.04% 

and the 95% CI for the 5x5 block of cells is ±4.74% (Table 2). The difference between the single cell CI 

and the CI for the 5x5 block of cells is meaningful, indicating that if the stress is imposed in a larger 

footprint the predictive uncertainty is smaller. The transient analysis is more complex and asks how 

much of the impact will exit the model via the near Ketchum-Hailey reach after 10 months. The transient 

analysis for this scenario benefits from model calibration more than the steady state analysis (Table 1). 

Figure 7a is a bar chart showing the impact on the predictive uncertainty standard deviation if one of the 

observation groups were removed. Predictably the critical groups are the Sun Valley Wells, the 

observation wells and the near Ketchum to Hailey gains. Surprisingly, in the transient analysis, the 

primary observation groups are the Sun Valley Wells, the Observation wells, and Willow Creek. Perhaps 

the near Ketchum-to-Hailey gains are not as important as expected for the transient analysis because of 

the missing data during the summer months. 

Conclusions 
All scenarios showed that model calibration reduced predictive uncertainty when compared to an 

analytical solution (Table 1), demonstrating that data used in the calibration process were relevant to 

the scenarios evaluated in this study. The five example analysis included a variety of the hydrogeologic 

conditions found within the WRV Aquifer Model, including situations involving the confined aquifer, the 

basalt aquifer, the unconfined aquifer, and a location near the transition point between the two major 

river reaches (Figure 2). Because all five analyses showed that the WRV Aquifer Model was an 
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improvement over an analytical solution and the example locations included a variety of the hydrologic 

conditions, the WRV Aquifer Model is an improvement over an analytical solution.  

 All scenarios indicated that water-levels collected in wells were key observations. These are the data 

that inform the model how the aquifer is responding to seasonal changes, changes in agricultural 

practices, and population shifts. In order to reduce the predictive uncertainty in future calibrations of 

the WRV Aquifer Model, more observation-well data need to be collected at regular intervals in a 

manner that will document how the aquifer responds to these impacts.  

The near Ketchum-to Hailey gains are missing summer data and the summer data will likely reduce the 

predictive uncertainty in the transient analyses. Data should be gathered that could be used to fill this 

gap. 
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