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Abstract 
The Idaho Department of Water Resources (IDWR) updated the Wood River Valley (WRV) Aquifer 

Model. The WRV aquifer extends from north of Ketchum, Idaho to Picabo, Idaho in the southeast and 

Stanton Crossing, Idaho in the southwest.  

Models are calibrated by adjusting parameters to reduce the difference between model outputs and 

field observations. These discrepancies are contained in an “objective function”; defined as the 

weighted sum of squared differences between field observations and modeled values. Generally, the 

topology of an objective function for a groundwater model does not have a global low. Rather it 

contains a valley of nearly equal objective function values, and generally the parameter distributions 

that calibrate the model lie within the valley. Thus, the model calibration is not unique. The user of the 

model should have an understanding of how a prediction can differ while moving amongst the suite of 

parameters that calibrate the model. A convenient way to investigate the variability of a model 

prediction is with a linear uncertainty analysis as proposed by Doherty and others (2010). 

In all five test cases evaluated in this analysis, calibration of the WRV Aquifer Model reduced the 95% 

Confidence Interval (CI) for the prediction. The fact that calibration improves the predictive power of the 

model implies that the calibration dataset helped limit the more important parameters involved in 

evaluating the example scenarios. Predictive uncertainty for future versions of the WRV model can be 

further reduced by increasing the number of water-level observations. The increase in the number of 

water-level observations should be focused south of Bellevue because that is where the predictive 

uncertainties are highest.  Reducing the noise in the reach gain calibration targets for Silver Creek and 

Willow Creek will also help reduce predictive uncertainty, perhaps by filtering or manually removing 

data during runoff. 
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Introduction 
This report documents an uncertainty analysis conducted with Wood River Valley (WRV) Aquifer Model 

Version 1.1 (Wylie and others, 2019). Figure 1 shows the location of the WRV within Idaho. WRV1.1 is an 

update to WRV1.0 (Fisher and others, 2016). WRV1.1 includes data collected between 1/1/2011 and 

12/31/2014 along with the WRV1.0 calibration period of 1/1/1998 through 12/31/2010. Including the 

time span between 1/1/2011 and 12/31/2014 incorporates more groundwater level and streamflow 

data than were collected in the WRV than in any other four year span in the calibration period. 

Some important modifications in WRV1.1 include changes to the way the Big Wood River is represented 

between Glendale Road and Wood River Ranch (Figure 1). In WRV1.0, when the water rights accounting 

indicated that the Big Wood River was dry below the diversion for the Bypass Canal near Glendale Road, 

the Big Wood River between Glendale Road and Wood River Ranch was assumed dry until the following 

November. Analysis of Landsat images indicated that this was not always a valid assumption. Thus, for 

WRV1.1 Landsat images were used to determine when the Big Wood River resumed flow between 

Glendale Road and Wood River Ranch. Moreover, when there is flow between Glendale Road and Wood 

River Ranch, the stage, or depth of water in the river, is more constant than the width of the river. In 

WRV1.1 this was accounted for by providing different riverbed conductance terms depending on the 

flow in the Big Wood River. 

Typically, a model is developed because decisions are being contemplated and policy makers wish to 

evaluate the consequences of the decisions. The value of a model-based analysis is not only in its ability 

to help evaluate outcomes, but also in its ability to provide an examination of uncertainty surrounding 

the outcomes and the types of additional data that will minimize the uncertainties.  

Methodology 
Models are calibrated by adjusting parameters to reduce the difference between model output and field 

observations. With PEST (Doherty, 2005), these discrepancies are contained in an “objective function”; 

which is defined as the weighted sum-of-squared differences between field observations and modeled 

values. With groundwater models, the topology of the objective function typically contains a minimum 

that forms a region of nearly equal objective function values rather than having a minimum at a single 

point. The parameter distributions describing the region typically calibrate the model nearly as well; 

therefore, the model calibration is not unique. Policy makers should have an understanding of how the 

non-uniqueness in parameters impacts model predictions. Thus, an effort should be made to explore   
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Figure 1. Extent of the Wood River Valley Aquifer Model. 
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how predictions can differ within this region. A convenient way to investigate the variability in a model’s 

prediction is with a linear uncertainty analysis, as proposed by Doherty and others (2010). 

Conducting a linear predictive uncertainty analysis with PEST involves the following steps: 

1. Identify the prediction(s) and the steps necessary to analyze the prediction(s). 

2. Prepare the model files necessary to run the prediction(s). 

3. Make a copy of the PEST control file that contains all of the field observations, as well as all of 

the adjustable parameters set at their calibrated values with their bounds set to logical limits.  

4. Replace the word ‘regularization’ with the word ‘estimation’ on the third line of the PEST control 

file. 

5. Increase the number of observations by the number of prediction(s). 

6. Increase the number of observation groups by one (1) because PEST will now be required to 

monitor each prediction.  

7. Add ‘predict’ to the list of observation groups. 

8. Increase the number of instruction files by the number of prediction(s). 

9. Change NOPTMAX on line 9 to -1 or -2. A value of -1 or -2 tells PEST to calculate the Jacobian 

matrix. 

10. Add an observation representing each prediction to the observation section and set the weight 

to zero. 

11. Change the model command line to reflect the name of the batch file used to run the model and 

prediction(s). 

12. Add the name of the new instruction file(s) and the output file(s) that need to be read to the 

PEST control file. 

During a linear predictive uncertainty analysis, PEST will: A) change each of the adjustable parameters 

sequentially, B) assemble the input files for the WRV model, C) run the WRV model, D) compare model 

output with field observations, and E) build a Jacobian matrix containing information on how changes in 

each adjustable parameter impact the modeled match for every field observation, including all 

predictions.  

Once the Jacobian matrix is constructed, it can be used to infer the topology of the objective function. In 

the WRV01 uncertainty analysis Wylie (2016) explored three different types of analysis at five different 

locations. Wylie and others (2019) concluded that because of the annual variability in the length of the 
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Big Wood River in hydraulic communication with the aquifer below Glendale Road, a steady state 

version of the WRV1.1 should not be developed. Therefore, this analysis explores only transient analyses 

at the five example locations shown in Figure 2. Each analysis involves injecting water into the aquifer at 

a single model cell for 10 months and then determining how much water is recovered in a nearby river 

reach. Thus, each example analysis involves running the model twice. The model is run once to establish 

a baseline with that particular parameter distribution, and a second time incorporating the example 

scenario with the same parameter distribution and then differencing the results. 

Results  

Table 1 summarizes the results of the analysis at the five example locations, presenting the results in 

terms of the 95% CI, assuming the uncertainty distribution is normal. Table 1 shows the 95% CI for the 

percentage of injected water recovered in the target reach after 10 months of injection. For instance, at 

the Example 1 site shown in Figure 2, if an analytical solution were used to make the calculation, the 

analysis could be off by ±51% (the “Uncalibrated” column in Table 1). If WRV1.1 was used, the analysis 

could be off by ±22% (the “Calibrated” column in Table 1). If WRV1.0 was used, the analysis could be off 

by ±25% (the “WRV1.0” column in Table 1). In all cases, calibration reduces the 95% CI and in all cases 

WRV1.1 has a lower, or about the same predictive uncertainty as WRV1.0. The fact that calibration 

improves the predictive power of the model implies that the calibration dataset contains information 

that can be used to lower predictive uncertainty. The fact that WRV1.1 has a lower, in most cases, 

predictive uncertainty than WRV1.0 shows that the data gathered between 1/1/2011 and 12/31/2014 is 

the type that will reduce predictive uncertainty for these analyses.  

Table 1. Uncalibrated, calibrated, and WRV1.0 95% confidence intervals for the 5 example analyses.  

Analysis Target Reach Uncalibrated Calibrated WRV1.0 

Example 1 Silver Creek Abv Sportsman's Access 51% 22% 25% 

Example 2 Silver Creek Abv Sportsman's Access 46% 22% 26% 

Example 3 Wood R Hailey - Stanton Crossing 30% 15% 21% 

Example 4 Wood R Hailey - Stanton Crossing 21% 11% 11% 

Example 5 Wood R nr Ketchum - Hailey 7.6% 0.54% 4.7% 
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Example 1 

The Example 1 location is adjacent to the Big Wood River along the western edge of the Bellevue 

triangle. The stress was introduced in layer three below the clay layer or aquitard and the gains were 

observed in Silver Creek upstream from the Sportsman’s Access gage (Figure 2). The exact extent of the 

aquitard is unknown and is adjustable during model calibration (Wylie and others, 2019). The 95% CI for 

Example 1 decreased from ±51% of the recovered volume to ±22% of the recovered volume with model 

calibration, over a 50% reduction in predictive uncertainty (Table 1). This reduction in the CI indicates 

that the calibration dataset provides information that the model is able to effectively use to limit the key 

parameters used in this analysis. 

Figure 3a illustrates the increase in the standard deviations for predictive uncertainty if a particular 

observation group was removed from the calibration data set. The observation groups consist of 

Observation Wells, Driller Wells, Big Wood River gains between the north edge of the model and Hailey 

(Ketchum-Hailey), Big Wood River gains between Hailey and Stanton Crossing (Hailey-Stanton Crossing), 

Willow Creek gains (Willow Cr), Big Wood River gains between Heart Rock Ranch and Stanton Crossing 

(Heart Rock R-Stanton Xing), Silver Creek gains below Sportsman Access (Silver Blw), Silver Creek gains 

above Sportsman Access (Silver Abv), August 2012 seepage study (Aug Seepage), October 2012 seepage 

study (Oct Seepage), March 2013 seepage study (Mar Seepage), subsurface discharges from the model 

(Out Flow), and calibration targets intended to keep the water table below land surface in the tributary 

canyons lacking observation wells (Trib L). The various observation groups are described in more detail 

by Wylie and others (2019). The height of the bars in Figure 3a represents the increase in the standard 

deviation for the analysis at this particular location if that observation group were removed. The 

observation wells, Willow Creek gains, and Silver Creek gains above the Sportsman’s Access gage are 

most critical for constraining the uncertainty at the Example 1 site.  

The graph in Figure 3b shows the reduction in predictive uncertainty obtained through model 

calibration. The parameter groups are drain conductance (Drain Cond), layer 1 hydraulic conductivity (L1 

K), layer 2 hydraulic conductivity (L2 K), layer 3 hydraulic conductivity (L3 K), vertical conductance (Vert 

Cond), layer 1 specific yield (L1 S), layer 2 storage (L2 S), layer 3 storage (L3 S), riverbed conductance (Riv 

Cond), irrigation entity efficiency (Irr Eff), underflow from tributary streams east of the Big Wood River 

(E Trib), underflow from tributary streams west of the Big Wood River (W Trib), and parameters that 

shape tributary underflow (U_Flw). The graph in Figure 3b shows that calibration reduces predictive 
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uncertainty primarily by constraining, or limiting, layer one and layer two hydraulic conductivity, 

riverbed conductance, and layer 2 storage coefficient.   

The above analysis suggests increasing the number of observation wells and reducing the noise in the 

reach-gain observations for Silver Creek and Willow Creek will reduce the predictive uncertainty for 

analysis similar to Example 1.  
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Figure 3. Contributions to predictive uncertainty standard deviation for Example 1. 
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monitored in Silver Creek above Sportsman’s Access gage (Figure2). The 95% CI for the Example 2 

analysis decreased from ±46% of the recovered volume for the uncalibrated analysis to ±22% of the 

recovered volume with model calibration (Table 1). This indicates that the calibration data contain 

relevant observations. Figure 4a shows that the most important types of calibration data for the 

Example 2 analysis are water-levels collected in observation wells, the gains in Silver Creek above the 

Sportsman’s Access gage, and the gains in Willow Creek.  

The graph in Figure 4b shows that calibration reduces predictive uncertainty primarily by constraining 

riverbed conductance, layer one and layer two hydraulic conductivity, and layer two storage coefficient.  

The above analysis suggests increasing the number of water-level observations and reducing the noise in 

the reach-gain measurements for Silver Creek and Willow Creek will further reduce the predictive 

uncertainty for predictions similar to Example 2. 
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Figure 4. Contributions to predictive uncertainty standard deviation for Example 2. 
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Example 3 

The Example 3 location is south of Bellevue where the aquifer material is expected to be sand and gravel 

with no aquitard (Figure 2). The stress was introduced in layer three and the river gains were monitored 

in the Hailey to Stanton Crossing reach of the Big Wood River. The 95% CI for the Example 3 analysis 

decreased from ±30% of the recovered volume for the uncalibrated analysis to ±15% of the recovered 

volume with model calibration (Table 1). This indicates that the calibration data provides information 

that limits parameter uncertainty. Figure 5a shows that the three main types of data that reduce 

predictive uncertainty for the Example 3 analysis are water-levels collected in observation wells, the 

gains in Silver Creek above the Sportsman’s Access gage, and the gains in Willow Creek.   

The graph in Figure 5b shows that calibration reduces predictive uncertainty primarily by constraining 

riverbed conductance, layer one hydraulic conductivity, and layer two storage coefficient.  

The above analysis suggests increasing the number of observation wells and reducing the noise in the 

reach-gain observations for Silver Creek and Willow Creek will reduce the predictive uncertainty for 

predictions similar to Example 3. 
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Figure 5. Contributions to predictive uncertainty standard deviation for Example 3. 
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Example 4 

The Example 4 location is east of Hailey where the aquifer material is expected to be sand and gravel 

with no aquitard. The stress was introduced in layer one and the river gains were monitored in the 

Hailey to Stanton Crossing reach of the Big Wood River (Figure 2). The 95% CI for the Example 4 analysis 

decreased from ±21% of the recovered volume for the uncalibrated analysis to ±11% of the recovered 

volume with model calibration (Table 1). This indicates that the calibration data provides information 

that reduces predictive uncertainty. Figure 6a shows that the three most important types of data for the 

Example 4 analysis are water-levels collected in observation wells, the gains in Silver Creek above the 

Sportsman’s Access gage, and the gains in Willow Creek.   

The graph in Figure 6b shows that calibration reduces predictive uncertainty primarily by constraining 

riverbed conductance and hydraulic conductivity in layer one.  

The above analysis suggests increasing the number of observation wells and reducing the noise in the 

reach-gain observations for Silver Creek and Willow Creek will reduce the predictive uncertainty for 

predictions similar to Example 4. 
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Figure 6. Contributions to predictive uncertainty standard deviation for Example 4. 
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Example 5 

The Example 5 location is south of Ketchum where the aquifer material is expected to be sand and 

gravel. The stress was introduced in layer one and the river gains were monitored in the Near Ketchum 

to Hailey reach of the Big Wood River (Figure 2). The 95% CI for the Example 5 analysis decreased from 

±7.6% of the recovered volume for the uncalibrated analysis to ±0.54% of the recovered volume with 

model calibration (Table 1). The low uncalibrated predictive uncertainty indicates that the analysis is 

relatively straight forward, and the reduction in predictive uncertainty with calibration indicates that the 

calibration data are relevant with respect to this prediction. Figure 7a shows that the primary types of 

data that reduce the predictive uncertainty for the Example 5 analysis are water-levels collected in 

observation wells, the gains in Willow Creek, gains in the Ketchum-Hailey reach of the Big Wood River, 

and the gains from the August, October, and March seepage runs.   

The graph in Figure 7b shows that calibration reduces predictive uncertainty primarily by constraining 

layer one hydraulic conductivity and riverbed conductance.  

It is unrealistic to expect to reduce the predictive uncertainty relative to the Example 5 analysis. 
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Figure 7. Contributions to predictive uncertainty standard deviation for Example 5. 
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Conclusions 
The five scenarios evaluated in this analysis encompassed a variety of the hydrogeologic conditions 

found within the WRV Aquifer Model, including situations involving the confined aquifer, the basalt 

aquifer, the unconfined aquifer, and a location near the transition between the two major river reaches 

in the Big Wood River. The stresses were applied at the same locations and using the same procedure as 

for the WRV1.0 transient uncertainty analysis (Wylie, 2016). Because all five analyses showed that the 

WRV1.1 Model reduced predictive uncertainty when compared to an analytical solution (uncalibrated 

analysis) and reduced predictive uncertainty or, in the case of Example 4, held it about the same when 

compared to the WRV1.0 Model, and the example locations included a variety of hydrogeologic 

conditions, the WRV1.1 Model is considered the best available science.  

 All scenarios indicated that water-levels collected in observation wells were key. These are the data that 

inform the model how the aquifer is responding to seasonal changes in water supply, changes in 

agricultural practices over time, and population shifts. In order to reduce the predictive uncertainty in 

future versions of the WRV Aquifer Model, more observation-well data need to be collected at regular 

intervals in a manner that will document how the aquifer responds to these impacts. Because the 

Example locations with the greatest predictive uncertainty are south of Bellevue, the increase in the 

number of wells should be focused south of Bellevue.  

All scenarios indicated that reach gain calculations in Silver Creek and Willow Creek are important in 

reducing predictive uncertainty. Perhaps filtering Silver Creek and Willow Creek calibration targets with 

a Butterworth filter (Doherty, 2008) would improve the calibration targets. Perhaps both filtered and 

unfiltered reach gain calibration targets should be considered. Another approach might be to reduce the 

weights on the gains during spring flows since they may be impacted by overland flow, ungagged 

tributary stream contributions, and gage error.  
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