Running the WRV model from the Command Prompt

	in ini rights reactivet	
U:\Users\jsukow>		

Files needed to run the model and extract results

- Download MODFLOW-USG V1.2.00
 <u>https://idwr.idaho.gov/WaterInformation/Projects/woodriver/</u> or MODFLOW-USG V1.3.00 <u>http://water.usgs.gov/ogw/mfusg/#downloads</u>
- Edit Path Variable to include location of mfusg.exe, or copy mfusg.exe to local directory
- Download calibrated WRV model files
 <u>https://pubs.er.usgs.gov/publication/sir20165080</u> Or,
 <u>https://idwr.idaho.gov/WaterInformation/Projects/woodriver/</u>, copy to local directory
- Download groundwater utilities http://www.pesthomepage.org/Downloads.php
- Edit Path Variable to include location of groundwater utilities, or copy selected utilities to local directory
- Add IDWR post-processing files to local directory
 <u>https://idwr.idaho.gov/WaterInformation/Projects/woodriver/</u>

Navigate to local directory and run MODFLOW

Í	Administrator: Command Prompt - mfusg					×
	Microsoft Windows [Version Copyright (c) 2009 Microsof	6.1.76 t Corp	01] oration. All	rights	reserved.	ſ
	C:\Users\jsukow>f:					
	F:\>cd F:\WRV\Training\Base	line				=
	F:\WRV\Training\Baseline>mf	usg				
	U.S. GEOLOGICAL SURVEY	MODULA Vers	MODFLOW-USG R FINITE-DIFFE ion 1.2.00 03/	RENCE 21/201	GROUNDWATER FLOW MODEL 4	
	Enter the name of the NAM	E FILE	:			
	Using NAME file: wrv_mfusg	1.nam	(dd bb:mm:ss);	20167	09/22 16-68-09	
		yyy/ mm		20107	03722 14.40.03	
l	Solving: Stress period:	1	lime step:	1	Groundwater Flow Eqn.	
	Solving: Stress period:	á	Time step:	1	Groundwater Flow Eqn.	
I	Solving: Stress period:	4	Time step:	ī	Groundwater Flow Egn.	
	Solving: Stress period:	5	Time step:	1	Groundwater Flow Eqn.	
	Solving: Stress period:	6	Time step:	1	Groundwater Flow Eqn.	
I	Solving: Stress period:		lime step:	1	Groundwater Flow Eqn.	
I	Solving: Stress period:	0	Time step:	1	Groundwater Flow Eqn.	
I	Soluing: Stress period:	10	Time step.	1	Groundwater Flow Eqn.	
	Solving: Stress period:	11	Time step:	1	Groundwater Flow Eqn.	
I	Solving: Stress period:	12	Time step:	ī	Groundwater Flow Eqn.	
I	Solving: Stress period:	13	Time step:	1	Groundwater Flow Eqn.	
I	Solving: Stress period:	14	Time step:	1	Groundwater Flow Eqn.	
I	Solving: Stress period:	15	lime step:	1	Groundwater Flow Eqn.	
I	Solving: Stress period:	16	lime step:	1	Groundwater Flow Eqn.	
I	Solving: Stress period:	18	Time step:	1	Groundwater Flow Eqn.	
I	Soluing: Stress period:	19	Time step.	1	Groundwater Flow Eqn.	
I	Solving: Stress period:	20	Time step:	1	Groundwater Flow Eqn.	
	Solving: Stress period:	21	Time step:	ī	Groundwater Flow Eqn.	
	Solving: Stress period:	22	Time step:	1	Groundwater Flow Eqn.	
	Solving: Stress period:	23	Time step:	1	Groundwater Flow Eqn.	

Check for normal termination of MODFLOW and inspect water balance

PI

¢	Administrato	r: Command Pro	mpt							
Γ	Solvina:	Stress	period:	146	Time	step:	1	Groundwater	Flow	Ean.
	Solvina:	Stress	period:	147	Time	step:	ī	Groundwater	Flow	Fan.
	Soluing	Stress	neriod	168	Time	sten	1	Groundwater	Flow	Ean
	Soluing	Stross	period.	149	Timo	stop.	1	Groundwater	Flow	Ean
	Soluing:	Stross	period.	150	Timo	stop.	1	Groundwater	Elow	Eqn.
	Soluing.	etmoor	period.	151	Time	step.	1	Choundwater	Elow	Eqn.
	Solving.	otress	periou.	151	Time	step.	4	Groundwater	FIUW F1	Equi.
	Solving:	Stress	period:	152	11me	step:	4	Groundwater	FIOW	Eqn.
	Solving:	Stress	period:	103	liwe	step:	1	Groundwater	FIOW	Eqn.
	Solving:	Stress	period:	124	liwe	step:	Ţ	Groundwater	FIOW	Eqn.
	Solving:	Stress	period:	122	lime	step:	Ţ	Groundwater	Flow	Eqn.
	Solving:	Stress	period:	156	lime	step:	1	Groundwater	Flow	Eqn.
	Solving:	Stress	period:	157	lime	step:	1	Groundwater	Flow	Eqn.
	Solving:	Stress	period:	158	lime	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	159	Time	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	160	Time	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	161	Time	step:	1	Groundwater	Flow	Ean.
	Solving:	Stress	period:	162	Time	step:	1	Groundwater	Flow	Ean.
	Solvina:	Stress	neriod:	163	Time	sten:	1	Groundwater	Flow	Ean
	Soluing	Stress	neriod	164	Time	sten	ī	Groundwater	Flow	Ean
	Soluing	Stress	period.	165	Timo	ston.	1	Groundwater	Flow	Ean
	Soluing:	Stross	period:	166	Timo	stop.	1	Groundwater	Flow	Eqn.
	Soluing:	Stross	period.	167	Timo	stop.	1	Groundwater	Flow	Eqn.
	Soluing.	etmoor	period.	160	Time	step.	1	Choundwater	Elow	Eqn.
	Solving.	otress et	periou.	160	Time	step.	4	Croundwater	F10W	Equi.
	Solving:	Stress	period:	109	11me	step:	4	Groundwater	FIOW	Eqn.
	Solving:	Stress	period:	170	liwe	step:	1	Groundwater	FIOW	Eqn.
	Solving:	Stress	period:	1/1	liwe	step:	Ţ	Groundwater	Flow	Egn.
	Solving:	Stress	period:	1/2	lime	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	1/3	lime	step:	1	Groundwater	Flow	Eqn.
	Solving:	Stress	period:	1/4	lime	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	175	Time	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	176	Time	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	177	Time	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	178	Time	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	179	Time	step:	1	Groundwater	Flow	Ean.
	Solvina:	Stress	period:	180	Time	sten:	1	Groundwater	Flow	Ean.
	Soluing	Stress	neriod	181	Time	sten	î	Groundwater	Flow	Ean
	Soluing	Stress	period	182	Timo	ston.	1	Groundwater	Flow	Ean
	Soluing	Stress	period.	183	Timo	ston.	1	Groundwater	Flow	Ean
	Soluing:	Stross	period:	184	Timo	stop.	1	Groundwater	Flow	Eqn.
	Soluing.	Stress	period.	104	Time	step.	1	Groundwater	Elow	Eqn.
	Solving.	etress	periou.	100	Time	step.	1	Croundwater	F10W	Equi.
	Solving:	Stress	period:	107	11me	step:	4	Groundwater	FIOW	Eqn.
	Solving:	Stress	period:	107	liwe	step:	1	Groundwater	FIOW	Eqn.
	Solving:	Stress	period:	188	liwe	step:	Ţ	Groundwater	Flow	Eqn.
	Solving:	Stress	period:	189	lime	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	190	lime	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	191	lime	step:	1	Groundwater	Flow	Eqn.
	Solving:	Stress	period:	192	Time	step:	1	Groundwater	Flow	Egn.
	Solving:	Stress	period:	193	Time	step:	1	Groundwater	Flow	Egn.
	Run end	date and	time (v	vvv/mm/dd	hh:m	1:55):	2016/09/2	2 15:09:39		
	Elapsed	run time:	21 Min	utes, 30.4	37 Se	econds				
	Normal	terminati	ion of s	imulation						

F:\WRV\Training\Baseline>

OLUMETRIC	BUDGET	FOR	ENTIRE	MODEL	AT	END (OF	TIME	STEP	1	IN	STRESS	PERIOD	

7

CUMULATIVE VOLUMES	L**3	RATES FOR THIS TIME STEP	L**3/T
IN:		IN:	
STORAGE = CONSTANT HEAD = WELLS = DRAINS = RIVER LEAKAGE =	14770897.4782 0.0000 97810297.5781 0.0000 115997779.1250	STORAGE = CONSTANT HEAD = WELLS = DRAINS = RIVER LEAKAGE =	7868.2132 0.0000 881476.6250 0.0000 647305.9375
TOTAL IN = OUT:	228578974.1813	TOTAL IN = OUT:	1536650.7757
STORAGE = CONSTANT HEAD = WELLS = DRAINS = RIVER LEAKAGE =	38581014.5758 0.0000 21885749.0967 5838730.0923 162289946.0625	STORAGE = CONSTANT HEAD = WELLS = DRAINS = RIVER LEAKAGE =	388653.6808 0.0000 177686.7500 34713.0143 935711.2500
TOTAL OUT = IN - OUT =	228595439.8274 -16465.6465	TOTAL OUT = IN - OUT =	1536764.6951 -113.9194
ERCENT DISCREPANCY =	-0.01	PERCENT DISCREPANCY =	-0.01

	TIME S	SUMMARY	AT END O	F TIME STEP	1 1	N STRESS	PERIOD 7
		SE	CONDS	MINUTES	HOURS	DAYS	YEARS
			F03005.00	43300	720.00	20.000	
TIME	STEP LEP	WGTH Z.	59200E+06	43200.	/20.00	30.000	8.21355E-02
STRESS	PERIOD 1	ГІМЕ 2.	59200E+06	43200.	720.00	30.000	8.21355E-02
	TOTAL 1	TIME 1.	56384E+07	2.60640E+05	4344.0	181.00	0.49555

MODFLOW output

- wrv_mfusg.lst
 - Text file
 - Inspect water balance
 - Troubleshoot failed model runs
- wrv_mfusg.bud
 - Cell-by-cell flow, discharge to river and drain boundaries
 - Unformatted file
- wrv_mfusg.hds
 - Cell-by-cell head
 - Unformatted file

🔐 F:\W	VRV\Train	ing\Baselin	e\MODFLO	Wresults\wn	/_mfusg	- • •
File E	dit Sea	rch View	Encoding	Language	Settings	Macro Run
Plugins	s Windo	w ?				Х
				C D	c # 🎭	🔹 😪 🖪
	mfusg.bud					
1	SORINI		ISOHINUT	NUTANUTA		DRATNS+S A
2	ò; NUT	NUMNUM	. 1 200 N	UNOÝ: NU		fîponNu
3	ÀNUAN	NUMAN NUMA	EOTINU	Y' "%NOO	NUMNUMQá	SECTINUM
4	ENUE		XINULINU	/ucENU		XINULANULA
5	BERNU	UANUM ò+	ÅNUANU	E?WIBDI	NULINULE	ÄNUANUK
6	NURIN	V * kENU	MINIUME?*	VTINULINU	PIÄNU	NUIE?än
7	ÅNUTO		ULINUL	-DINULINU	E?{3NUE	NULIÓO'EN
8	ãÄNU	NULE? 50	H>NUCNI	DO °Ù ISS CN	ULINULE?,	? NUL NUL á
9	LNUL	NULĨÚÂĂ	ULNULN	IL @ 5MNUL	NULZÇ'ÂN	ULINULINUL
10	"ÄNUT	NULCOXN	UL NUL 1 o	FFÅNULN	UL @ @ £ Ž NU	ľnuľ á°ðä
11	÷BNU	NULCOSO		ETX0 STX	CNULINUL	OSTI ; NULLI
12	CNUL	NUL001 N	UL NUL ° !	öBINUL NU	LCCg"NUL	NULMeÀBN
13	DNUL	NULCOCAN	- NUL NU	Î % ÄC NUL	NUL COEM-	NUL NUL >l
14	ÁNUL	NULCCÔÎN	UL NUL rÀ	NUL NUL C	@õÎ nulnu	EENO,~BN
15	DNUL	NULCEÊÛN	UL NUL m2	ÚC NUL NU	D @GËÛ NUL	NUL m2ÚCN
16	1ÚC NO	ENUL COU	ÔNULNUI	ñ/u@ NUL (NUL€@VôN	ULNULe^Ÿ(
17	SOHIN	JL ESC SYN	DC4ANU	LNUL€0%		
18	SOHIN	JEYP DC2Á	NULNUL	EC * VTISOR	NULETBÅ	ANUL NUL
19	SOSO	NUL 6R!Á	NULNUL	E (65 ST SOF	NUL:1	
20	ÁNUL	NUL€@6SI	SOHNUL	Hè×ÀNULN	UI€@7SIS	OHNUL âF
21	ÝCINUT	NUL€@fR	SSOHNU	NACKÝCN	ULNUL€()g	RSSOHINUI
22	<v@100< th=""><th>II NUIE€()-</th><th>- SOH NUI</th><th>)</th><th></th><th></th></v@100<>	II NUIE€()-	- SOH NUI)		
23	<v@ th="" 🔟<=""><th>s9∋tunt</th><th>SOHNUI</th><th>TCv@NUL</th><th>NUL€@À.S</th><th>DHNUL ICV(</th></v@>	s9∋tunt	SOHNUI	TCv@NUL	NUL€@À.S	DHNUL ICV(
24	r‡@100	INUI €()Ä	5 SOH NUI	Uy, C NUL	NUL€@î6S	OH NULL 4 D
25	(NUL)	WII €@q: S	OH NUL ! É	: C NUL NU	D€@š; <mark>SOH</mark>	nulenqåå
26	(NUL)	NULE@Æ <s< th=""><th>OHNULSÉ</th><th>qC NUL NU</th><th>D€@ñ=<mark>SOH</mark></th><th>NULŽK-0N</th></s<>	OHNULSÉ	qC NUL NU	D€@ñ= <mark>SOH</mark>	NULŽK-0N
27	w@NU	NUL€@1[SOHNUL	DC2w@NU	LNUL€@\\	SOHNUL "Ÿ 🖕
ا				4		
Ln : 15	Col : 16	Sel : 0 0	Macintos	n A	NSI	INS

Extract stream-aquifer flux from MODFLOW budget file

- Bud2smp.exe utility available from John Doherty, author of PEST
- BigRch.inf integer array specifies location of river reaches
- B2s_BigRch.in specifies reach names and other bud2smp input data

Extract stream-aquifer flux from MODFLOW budget file

- 0 × Administrator: Command Prompt F:\WRV\Training\Baseline>bud2smp<b2s BigRch.in Program BUD2SMP writes a bore sample file of MODFLOW-generated inflows/outflows within user-specified zones. Note: This program reads a MODFLOW or MT3D unformatted file. Sometimes there are problems in reading files of this type due to incompatibilities between different FORTRAN compiliers. If there are any such problems please contact johndoherty@ozemail.com.au and I will send you an alternative copy of this program. Enter name of grid specification file: - grid specifications read from file w rv.asf How many layers in model? Enter name of MODFLOW unformatted budget output file: Is this a MODFLOW88 or M ODFLOW96 budget file [8/9]? Enter maximum number of output times: Enter text to identify MODFLOW flow type: Enter simulation starting date [mm/dd/yyyy]: Enter simulation starting time [h h:mm:ss]: Enter time units employed by model [y/d/h/m/s]: Enter name of integer array file for layer 1: - integer array read from file biarch.inf Enter name of integer array file for layer 2: - integer array read from file biarch.inf Enter name of integer array file for layer 3: - integer array read from file bigrch.inf A total of 5 different non-zero zones were identified in integer arrays. An identifier must now be provided for each zone to appear in the bore sample output file:-Enter identifier for flows in zone 1 (10 characters or less): Enter identi fier for flows in zone 2 (10 characters or less): Enter identifier for flows in zone 4 (10 characters or less): Enter identifier for flows in zone 3 (10 c haracters or less): Enter identifier for flows in zone 5 (10 characters or le ss): Enter name for bore sample output file: Enter flow rate factor: Assign flows to beginning, middle or finish of time step? [b/m/f]: Enter name for run record file: data for 193 model output arrays written to file ModRchGain.smp see file BigReach.rec for a record of arrays found in file wrv mfusg.bud F:\WRV\Training\Baseline>

Bud2smp output for stream-aquifer flux

ModRchGain.s	mp - Notepad			
File Edit Form	nat View Help			
File Edit Form NKET_HAI NKET NKET NKET NKET NKET NKET NKET NKET NKET NKET NKET NKET	View Help 01/01/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1995 10/16/1995 10/16/1995 11/16/1995 11/16/1995 01/16/1995 01/16/1995 01/16/1995 01/16/1996 01/16/1996 01/16/1996 01/16/1996 01/16/1996 01/16/1996 01/16/1996 01/16/1996 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1997 01/16/1998 <tr< td=""><td>00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:</td><td>-70089.96 -70089.96 -97447.59 -81797.04 -79804.81 -79315.04 -63475.22 -68609.54 -103805.5 -108185.1 -86324.01 -98855.60 -105178.2 -98254.05 -105178.2 -98224.05 -84667.95 -84667.95 -84667.95 -84278.36 -84667.95 -132729.3 -76324.11 -996136.59 -111150.5 -96840.35 -101991.5 -101991.5 -101991.5 -101991.5 -30233.36 -92429.06 -354027.57 -10148.7 -102203.0 -102970.1 -112826.75 -102826.75 -108236.75 -108236.75 -108236.75 -10203.0 -107293.6 -107293.6 -107293.6 -107293.6 -107293.6 -1022614.2 -1130597.0 -102261.9 -98596.94 -102261.9 -102261.9 -102261.9 -102261.9 -102261.9 -102261.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -10305.5 -106749.4 -15039.8 -106749.4 -15039.8 -10305.5 -106749.4 -15039.8 -10305.5 -106749.4 -15039.8 -10395.5 -106749.4 -15039.8 -10395.5 -106749.4 -15039.8 -10395.5 -106749.4 -113919.7 -110068.5 -106749.4 -113919.7 -113919.7 -110068.5 -106749.4 -113919.7 -</td><td>1</td></tr<>	00:00:00 12:00:00 00:00:00 12:00:00 00:00:00 12:00:	-70089.96 -70089.96 -97447.59 -81797.04 -79804.81 -79315.04 -63475.22 -68609.54 -103805.5 -108185.1 -86324.01 -98855.60 -105178.2 -98254.05 -105178.2 -98224.05 -84667.95 -84667.95 -84667.95 -84278.36 -84667.95 -132729.3 -76324.11 -996136.59 -111150.5 -96840.35 -101991.5 -101991.5 -101991.5 -101991.5 -30233.36 -92429.06 -354027.57 -10148.7 -102203.0 -102970.1 -112826.75 -102826.75 -108236.75 -108236.75 -108236.75 -10203.0 -107293.6 -107293.6 -107293.6 -107293.6 -107293.6 -1022614.2 -1130597.0 -102261.9 -98596.94 -102261.9 -102261.9 -102261.9 -102261.9 -102261.9 -102261.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -102581.9 -10305.5 -106749.4 -15039.8 -106749.4 -15039.8 -10305.5 -106749.4 -15039.8 -10305.5 -106749.4 -15039.8 -10395.5 -106749.4 -15039.8 -10395.5 -106749.4 -15039.8 -10395.5 -106749.4 -113919.7 -110068.5 -106749.4 -113919.7 -113919.7 -110068.5 -106749.4 -113919.7 -	1
4				

- Text file
- Flux units are cubic meters per day
- Negative values represent aquifer discharge to stream (gaining stream)
- Positive values represent aquifer recharge from stream (losing stream)
- Units and sign are often converted for presentation of results

Stream-aquifer flux results

Extract groundwater flux across outlet boundaries from MODFLOW budget file

- Bud2smp.exe utility available from John Doherty, author of PEST
- DrainRch.inf integer array specifies location of drain reaches
- B2s_Drain.in specifies reach names and other bud2smp input data

Extract groundwater flux across outlet boundaries from MODFLOW budget file

- 0 X Administrator: Command Prompt F:\WRV\Training\Baseline>bud2smp<b2s Drain.in Program BUD2SMP writes a bore sample file of MODFLOW-generated inflows/outflows within user-specified zones. Note: This program reads a MODFLOW or MT3D unformatted file. Sometimes there are problems in reading files of this type due to incompatibilities between different FORTRAN compiliers. If there are any such problems please contact johndoherty@ozemail.com.au and I will send you an alternative copy of this program. Enter name of grid specification file: - grid specifications read from file w rv.gsf How many layers in model? Enter name of MODFLOW unformatted budget output file: Is this a MODFLOW88 or M ODFLOW96 budget file [8/9]? Enter maximum number of output times: Enter text to identify MODFLOW flow type: Enter simulation starting date [mm/dd/yyyy]: Enter simulation starting time [h h:mm:ss]: Enter time units employed by model [y/d/h/m/s]: Enter name of integer array file for layer 1: - integer array read from file DrainRch.inf Enter name of integer array file for layer 2: - integer array read from file DrainRch inf Enter name of integer array file for layer 3: - integer array read from file DrainRch inf A total of 2 different non-zero zones were identified in integer arrays. An identifier must now be provided for each zone to appear in the bore sample output file:-Enter identifier for flows in zone 2 (10 characters or less): Enter identi fier for flows in zone 1 (10 characters or less): Enter name for bore sample output file: Enter flow rate factor: Assign flows to beginning, middle or finish of time step? [b/m/f]: Enter name for run record file: - data for 193 model output arrays written to file ModDrain.smp - see file Drain.rec for a record of arrays found in file wrv_mfusg.bud F:\WRV\Training\Baseline>

Bud2smp output for flux across outlet boundaries

ModDrain.smp	- Notepad			- • *
File Edit Form	nat View Help			
STANTONOUT	01/01/1995	00:00:00	-904.8718	*
STANTONOUT	02/15/1995	00:00:00	-1028,980	
STANTONOUT	03/16/1995	12:00:00	-1334.169	
STANTONOUT	04/16/1995	00:00:00	-981.9053	
STANTONOUT	05/16/1995	12:00:00	-1062.619	=
STANTONOUT	07/16/1995	12:00:00	-857.3888	-
STANTONOUT	08/16/1995	12:00:00	-780.0023	
STANTONOUT	09/16/1995	00:00:00	-866.0071	
STANTONOUT	10/16/1995	12:00:00	-84/.9852	
STANTONOUT	12/16/1995	12:00:00	-1032.010	
STANTONOUT	01/16/1996	12:00:00	-1034.588	
STANTONOUT	02/15/1996	12:00:00	-1047.972	
STANTONOUT	03/16/1996	12:00:00	-1289.905	
STANTONOUT	05/16/1996	12:00:00	-997.3380	
STANTONOUT	06/16/1996	00:00:00	-719.8565	
STANTONOUT	07/16/1996	12:00:00	-696.9274	
STANTONOUT	08/16/1996	12:00:00	-695.5020	
STANTONOUT	10/16/1996	12:00:00	-872,6243	
STANTONOUT	11/16/1996	00:00:00	-1082.054	
STANTONOUT	12/16/1996	12:00:00	-1069.140	
STANTONOUT	01/16/199/	12:00:00	-1064.9/6	
STANTONOUT	03/16/1997	12:00:00	-1389.049	
STANTONOUT	04/16/1997	00:00:00	-1043.429	
STANTONOUT	05/16/1997	12:00:00	-931.2615	
STANTONOUT	06/16/199/	12:00:00	-934.4954	
STANTONOUT	08/16/1997	12:00:00	-792.2224	
STANTONOUT	09/16/1997	00:00:00	-877.8726	
STANTONOUT	10/16/1997	12:00:00	-966.8388	
STANTONOUT	12/16/199/	12:00:00	-1030.911	
STANTONOUT	01/16/1998	12:00:00	-1038.749	
STANTONOUT	02/15/1998	00:00:00	-1079.641	
STANTONOUT	03/16/1998	12:00:00	-1241.939	
STANTONOUT	04/16/1998	12:00:00	-1023.642	
STANTONOUT	06/16/1998	00:00:00	-1120.775	
STANTONOUT	07/16/1998	12:00:00	-934.5439	
STANTONOUT	08/16/1998	12:00:00	-812.8129	
STANTONOUT	09/16/1998	12:00:00	-926.2814	
STANTONOUT	11/16/1998	00:00:00	-1082.754	
STANTONOUT	12/16/1998	12:00:00	-1035.965	
STANTONOUT	01/16/1999	12:00:00	-1047.491	
STANTONOUT	02/15/1999	12:00:00	-1128.464	
STANTONOUT	04/16/1999	00:00:00	-1037.605	
STANTONOUT	05/16/1999	12:00:00	-1041.139	
STANTONOUT	06/16/1999	00:00:00	-998.7883	
STANTONOUT	08/16/1999	12:00:00	-780, 9279	
STANTONOUT	09/16/1999	00:00:00	-813.7114	
STANTONOUT	10/16/1999	12:00:00	-914.1893	
STANTONOUT	11/16/1999	00:00:00	-991.2870	
STANTONOUT	01/16/2000	12:00:00	-1034,239	
STANTONOUT	02/15/2000	12:00:00	-1105.653	
STANTONOUT	03/16/2000	12:00:00	-1205.944	-
4				

Text file

- Flux units are cubic meters per day
- Negative values represent subsurface outflow from the Wood River Valley aquifer
- No positive values (MODFLOW drains only allow simulation of discharge from the aquifer)
- Units and sign are often converted for presentation of results

Extract aquifer heads at selected locations from MODFLOW heads file

- mod2smp.exe utility available from John Doherty, author of PEST
- Other utilities are available for extracting heads, download groundwater utilities program descriptions from PEST website for more information

Extract aquifer heads at selected locations from MODFLOW heads file

📃 Exampl	e.wcf - Not	epad				-
File Edit	Format	View	Help			-
Green1 Red1 Red2 Purple1 Purple2 Purple3 Blue1 Blue2 Blue3	2470259 2480499 2480499 2480499 2479740 2479740 2479740 2479740 2493170 2493170	9.0132 1.0084 1.0084 1.0084 0.6621 0.6621 0.6621 3.6825 8.6825	2 1386451.69 1358757.09 1358757.09 1358757.09 1350980.78 1350980.78 1350980.78 1350980.78 1345796.56 1345796.56	73 1 7 1 7 2 7 3 07 1 07 2 07 3 98 1 98 2 98 3		•
*					۴	

- "Bore coordinate file"

 a.k.a. "Well coordinate file" specifies x, y
 coordinates of location (must be in meters and IDTM83 projection) and model layer
- Bore or well name is limited to 10 characters or less

Extract aquifer heads at selected locations from MODFLOW heads file

- O X

Administrator: Command Prompt

F:\WRV\Training\Baseline>mod2smp<m2s_example.in

Program MOD2SMP writes a bore sample file of model-generated heads over time, interpolated to the sites of user-supplied bores.

Note: This program reads a MODFLOW or MT3D unformatted file. Sometimes there are problems in reading files of this type due to incompatibilities between different FORTRAN compiliers. If there are any such problems please contact johndoherty@ozemail.com.au and I will send you an alternative copy of this program.

Enter name of grid specification file: – grid specifications read from file w^E rv.gsf

Enter name of bore coordinates file: - 10 bores and coordinates read from bor e_coordinates file example.wcf

Enter name of bore listing file: - 10 bores read from bore listing file examp le.wcf

Enter name of unformatted model-generated file: Is this a MODFLOW or MT3D file ? [f/t]: How many different output times are represented in this file? Enter blanking threshold value for arrays in this file: Enter time units used by mode 1 (yr/day/hr/min/sec) [y/d/h/m/s]:

Enter simulation starting date [mm/dd/yyyy]: Enter simulation starting time [h h:mm:ss]:

Enter name for bore sample output file: Working

- 579 arrays, covering 193 different model output times, read from file wrv_mfusg.hds
- bore sample file examplehds.smp written ok.

F:\WRV\Training\Baseline>_

mod2smp output for aquifer heads

example	hds.smp - Notepad			
File Edit	Format View Help			
GREEN1	01/01/1995	00:00:00	1762.683	*
GREEN1	02/01/1995	00:00:00	1762.430	E
GREEN1	04/01/1995	00:00:00	1762.125	
GREEN1	05/01/1995	00:00:00	1763.525	
GREEN1	06/01/1995	00:00:00	1/63.4/1	
GREEN1	08/01/1995	00:00:00	1763.792	
GREEN1	09/01/1995	00:00:00	1763.497	
GREEN1	10/01/1995	00:00:00	1762 606	
GREEN1	12/01/1995	00:00:00	1762.358	
GREEN1	01/01/1996	00:00:00	1762.260	
GREENI GREENI	03/01/1996	00:00:00	1762.067	
GREEN1	04/01/1996	00:00:00	1761.984	
GREEN1	05/01/1996	00:00:00	1763.145	
GREENI GREENI	07/01/1996	00:00:00	1763.471	
GREEN1	08/01/1996	00:00:00	1763.499	
GREEN1	09/01/1996	00:00:00	1763.346	
GREEN1	11/01/1996	00:00:00	1762.908	
GREEN1	12/01/1996	00:00:00	1762.606	
GREEN1	01/01/1997	00:00:00	1762.534	
GREEN1	03/01/1997	00:00:00	1762.212	
GREEN1	04/01/1997	00:00:00	1762.066	
GREENI GREENI	05/01/1997	00:00:00	1763.260	
GREEN1	07/01/1997	00:00:00	1763.837	
GREEN1	08/01/1997	00:00:00	1763.763	
GREEN1	10/01/1997	00:00:00	1763.359	
GREEN1	11/01/1997	00:00:00	1763.157	
GREEN1	12/01/1997	00:00:00	1762.787	
GREEN1	02/01/1998	00:00:00	1762.296	
GREEN1	03/01/1998	00:00:00	1762.229	
GREEN1	04/01/1998	00:00:00	1763.088	
GREEN1	06/01/1998	00:00:00	1763.815	
GREEN1	07/01/1998	00:00:00	1764.469	
GREENI GREENI	08/01/1998	00:00:00	1763.643	
GREEN1	10/01/1998	00:00:00	1763.633	
GREEN1	11/01/1998	00:00:00	1763.080	
GREEN1	01/01/1998	00:00:00	1762.474	
GREEN1	02/01/1999	00:00:00	1762.359	
GREEN1	03/01/1999	00:00:00	1762.391	
GREEN1	05/01/1999	00:00:00	1763.460	
GREEN1	06/01/1999	00:00:00	1763.403	
GREEN1	07/01/1999	00:00:00	1763.486	
GREEN1	09/01/1999	00:00:00	1763.219	
GREEN1	10/01/1999	00:00:00	1762.925	
GREENI	12/01/1999	00:00:00	1762.302	
GREEN1	01/01/2000	00:00:00	1762.158	
GREEN1	02/01/2000	00:00:00	1762.129	
GREEN1	04/01/2000	00:00:00	1762.009	
•				

Text file

- Head units are meters above mean sea level
- Heads are interpolated from model cell center to userspecified location in well coordinate file
- Heads correspond to model layer specified by user in well coordinate file

Aquifer heads at selected locations

Scenarios

- Calibrated model can be used as a baseline for running "what if" scenarios
- If aquifer recharge or withdrawals had been different, how would fluxes and aquifer head change?
- Model simulations can be used to predict
 - Changes in aquifer discharge to Big Wood River, Willow Creek, Silver Creek
 - Changes in aquifer discharge to ESPA
 - Changes in aquifer head
 - Regional-scale model best used for regional-scale predictions

Principle of superposition

- In a linear model, the net effect of multiple applied stresses equals the sum of the effects of each individual applied stress.
- The principle of superposition may be applied to model simulations if the model is linear, or sufficiently close to linear.
- Seasonal changes in the number of perched river cells in the Hailey to Stanton Crossing reach of the Big Wood River cause non-linearity in the WRV model.
- Application of the principle of superposition to the WRV model is not recommended.

Running scenarios with the fully populated WRV model

- A "baseline" simulation is generated by running the WRV model with the historic water budget from model calibration (we've already completed this step)
- 2. Stresses are added to the historic water budget and the WRV model is run again with the revised *.wel file
- 3. Results from the scenario simulation and the baseline simulation are differenced to find the predicted change in flux or head

Overview of example scenario 1

- 20 cfs diverted for recharge for one month
- 60% (12 cfs) modeled as conveyance loss
- 40% (8 cfs) modeled as seepage at recharge site
- Build *.wel file manually
- Run simulation and postprocess results from Command Prompt

Overview of example scenario 2

- Voluntary idle a section of irrigated land (~600 acres) during 1995-2010
- Modify several input files used to calculate aquifer recharge and withdrawals
- Use R script to calculate aquifer recharge and withdrawals and build *.wel file
- Run simulation and postprocess results using R

Example scenario 2 input file revisions

- Irrigated lands shapefiles change status of parcel to "non-irrigated"
- ET rasters, reduce ET within parcel to equal monthly precipitation during irrigation season
- Remove associated pumping wells from input files
 - pod.gw.csv
 - pod.wells
 - comb.sw.irr.csv files
- Files that don't need to be changed for this scenario, but might for similar scenarios
 - Div.sw.csv we are assuming surface water associated with the parcel is now delivered to other junior users within the same canal service area
 - Div.gw.csv if there had been <u>measured</u> groundwater diversions associated with the parcel, those would need to be deleted

BREAK

Example scenario 1

- 20 cfs diverted for recharge for one month
- 60% (12 cfs) modeled as conveyance loss
- 40% (8 cfs) modeled as seepage at recharge site
- Build *.wel file manually
- Run simulation and postprocess results from Command Prompt

Modify *.wel file

- Identify model cells for applied stress
 - 106 conveyance cells
 - 9 recharge site cells
 - recharge applied to layer 1
- 12 cfs/106 cells = 276.98 cmd/cell
- 8 cfs/9 cells = 2,174.81 cmd/cell
- Save as space delimited text file (*.prn)

Modify *.wel file

- Open baseline wrv_mfusg.wel file in Notepad++
- Paste stress for recharge scenario into selected stress period(s)
- Add to well count for each stress period (25568 + 115 = 25683)

2 F:\WRV*	Trainir	ng\Cr	ndPrn	npt\Scena	io1\wrv_m	ifusg.w	el - No	tepad	d++ (Admi	nistrator]				x
File Edit	Searc	h۱	liew	Encoding	Languag	je Se	ttings	Mag	ro Run	Plugins	Win	dow ?		Х
6 🗗 🗄	•	6	6	4	D P	C	# ¹ 8	0	8 3 1	3 🗟	n	F -	<u> </u>	6
😑 wrv_mfusg	g.wel [×												
3419693	1	438	126	365.15	9722979	907 4	1							*
3419694	1	439	126	365.15	9722979	907 4	Ł							
3419695	1	440	126	365.15	9722979	907 4	Ł							
3419696	1	441	126	365.15	9722979	907 4	ł.							
3419697	1	442	125	365.15	9722979	907 4	ł.							
3419698	1	442	126	365.15	9722979	907 4	ł.							
3419699	1	443	125	365.15	9722979	907 4	ł							
3419700	1	444	125	365.15	9722979	907 4	ł							
3419701	1	445	125	365.15	9722979	907 4	ł							
3419702	1	446	125	365.15	9722979	907 4	ł							
3419703	1	447	124	365.15	9722979	907 4	ł							
3419704	1	447	125	365.15	9722979	907 4	ł							
3419705	1	448	124	365.15	9722979	907 4	ł							
3419706	1	408	114	191.27	1919698	288 4	ł							
3419707	1	408	115	191.27	1919698	288 4	ł.							
3419708	1	408	116	191.27	1919698	288 4	ł							
3419709	1	408	117	191.27	1919698	288 4	E.							
3419710	1	408	118	191.27	1919698	288 4	ł.							
3419711	25	568	0	<pre># ITMP,</pre>	NP S	TRES:	PER:	IOD	200605					
3419712	1	14	-31	.091935	1612903	1								
3419713	1	1 5	-28	.893870	6451613	1								
3419714	1	2 2	-43	.856773	8709677	1								
3419715	1	2 3	-46	.455483	5483871	1								
3419716	1	2 4	-43	.005160	9677419	1								
3419717	1	2 5	-26	.244838	3870968	1								
3419718	1	2 6	-18	.002580	3225806	1								
3419719	1	2 7	-46	.509031	9354839	1								
3419720	1	3 1	-35	.049677	0967742	1								
3419721	1	3 2	-30	.887096	4516129	1								
3419722	1	3 3	9.3	0729578	528035	1								
3419723	1	34	9.3	0729578	528035	1								
3419724	1	3 5	-40	.992580	3225806	1								
3419725	1	3 6	9.3	0729578	528035	1								
3419726	1	3 7	-27	.109031	9354839	1								
3419727	1	4 1	-38	.257741	6129032	1								
3419728	1	4 2	-30	.248064	1935484	1								
3419729	1	4 3	9.3	0729578	528035	1								
3419730	1	4 4	9.3	0729578	528035	1								-
•	_	_	_	_	_	m	-	_	_	_	_		,	
ength : 1412	Ln : 3	4197	11 C	ol:43 Se	:20 1		D	os\W	indows	UTF-8			INS	

Modify *.wel file

- Add to maximum well count at beginning of file (25809 + 115 = 25924)
- Save file as Scenario1.wel

F:\WRV\Training\CmdPrmpt\Scenario1\Scenario1.wel - Notepad++ [A	dministrator] 📃 📼 💌
File Edit Search View Encoding Language Settings Macro	Run Plugins Window ? X
	🗓 🗔 🎫 🏽 💽 🖉 🔊
Scenario 1.wel 🖸	
1 # Wood River Valley flow model (2016-02-02	14:58:19 America/Denver) 🔺
2 # MODFLOW Well Package	
3 25809 O AUXILIARY id NOPRINT # MXACTW, IWEL	CB, [Option]
4 25755 0 # ITMP,NP STRESS PERIOD ss	
5 1 1 4 -10.9841564003776 1	
6 1 1 5 -5.43384098819124 1	
7 1 2 2 -15.2635041499936 1	
8 1 2 3 -15.1013250025282 1	
9 1 2 4 -15.9876215975102 1	
10 1 2 5 -8.12657940344982 1	
11 1 2 6 -3.89230873012673 1	
12 1 2 7 -8.92252736811956 1	
13 1 3 1 -9.62431168967614 1	
14 1 3 2 -10.6113026010945 1	
15 1 3 3 9.98119393315781 1	
16 1 3 4 9.98119393315781 1	
17 1 3 5 -13.210785624648 1	
18 1 3 6 10.0690589485188 1	
19 1 3 7 -6.15194173063876 1	
21 1 4 2 -6.489353996383// 1	
26 1 4 7 -9.43207409110983 1	
29 1 5 5 -5.89364315101/6/ 1	
31 1 3 3 -18.8363070613612 1	
32 1 5 6 -15.5761561005776 1	
33 1 5 7 -17.772323333437 1	
35 1 5 9 -10 96926034303 1	
36 1 6 2 -7 66105941113031 1	
37 1 6 3 -5 99423110851894 1	
38 1 6 4 -8.09742856115591 1	-
4 III	•
length:1412 Ln:3 Col:1 Sel:5]1 Dos\Windov	vs UTF-8 INS

Modify *.nam file

- Change name of WEL file from wrv_mfusg.wel to Scenario1.wel
- Save file as Scenario1.nam

F:\WF	RV\Training\CmdPrmpt\Scenario1\Sc 🗖 🔳 🗾								
File Ed	lit Search View Encoding Language Settings								
Macro	Run Plugins Window ? X								
· · · · · · · · · · · · · · · · · · ·									
📄 Scena	😑 Scenario 1.nam 🛛 🔚 Scenario 1.wel 🗵								
1	LIST 10 wrv_mfusg.lst								
2	BAS6 11 wrv_mfusg.ba6								
3	DIS 12 wrv_mfusg1.dis								
4	LPF 13 wrv_mfusg.lpf								
5	DRN 14 wrv_mfusg.drn								
6	RIV 15 wrv_mfusg.riv								
7	WEL 16 Scenario1.wel								
8	SMS 17 wrv_mfusg.sms								
9	OC 18 wrv_mfusg1.oc								
10	DATA(BINARY) 50 wrv_mfusg.bud								
11	DATA(BINARY) 51 wrv_mfusg.hds								
12									
Ln:7 C	ol : 21 Dos\Windows ANSI INS								

Navigate to local directory and run MODFLOW

- C X Administrator: Command Prompt - mfusg Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved. C:\Users\jsukow>f: F:\>cd F:\WRV\Training\CmdPrmpt\Scenario1 F:\WRV\Training\CmdPrmpt\Scenario1>mfusg MODFLOW-USG U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUNDWATER FLOW MODEL Version 1.2.00 03/21/2014 Enter the name of the NAME FILE: Scenario1 Using NAME file: Scenario1.nam Run start date and time (yyyy/mm/dd hh:mm:ss): 2016/09/26 12:03:30 Solving: Stress period: Time step: Groundwater Flow Eqn. 2 Solving: Stress period: Time step: Groundwater Flow Eqn. 3 4 Time step: Solving: Stress period: Groundwater Flow Eqn. Solving: Stress period: Time step: Groundwater Flow Eqn. 5678 Solving: Stress period: Time step: 1 Groundwater Flow Eqn. Solving: Stress period: Time step: 1 Groundwater Flow Ean. Solving: Stress period: Time step: 1 Groundwater Flow Eqn. 1 Time step: Solving: Stress period: Groundwater Flow Ean. ğ Solving: Stress period: Time step: 1 Groundwater Flow Eqn. 10 11 Solving: Stress period: Time step: Groundwater Flow Eqn. 11 Solving: Stress period: Time step: Groundwater Flow Eqn. 12 Solving: Stress period: Time step: 1 Groundwater Flow Eqn. 13 1 Solving: Stress period: Time step: Groundwater Flow Eqn. 1 Solving: Stress period: -14 Time step: Groundwater Flow Eqn.

Check for normal termination of MODFLOW and inspect water balance

	Administrator:	Command Pro	mpt						3
I	Solving:	Stress	period:	146	Time step:	1	Groundwater Flow	Egn.	*
	Solving:	Stress	period:	147	Time step:	1	Groundwater Flow	Egn.	
I	Solving:	Stress	period:	148	Time step:	1	Groundwater Flow	Egn.	
I	Solving:	Stress	period:	149	Time step:	1	Groundwater Flow	Egn.	
l	Solving:	Stress	period:	150	Time step:	1	Groundwater Flow	Egn.	
I	Solving:	Stress	period:	151	Time step:	1	Groundwater Flow	Egn.	
	Solving:	Stress	period:	152	Time step:	1	Groundwater Flow	Egn.	
	Solving:	Stress	period:	153	Time step:	1	Groundwater Flow	Egn.	
	Solving:	Stress	period:	154	Time step:	1	Groundwater Flow	Egn.	
	Solving:	Stress	period:	155	Time step:	1	Groundwater Flow	Egin.	
	Solving:	Stress	period:	156	Time step:	1	Groundwater Flow	Egn.	
	Solving:	Stress	period:	157	Time step:	1	Groundwater Flow	Ean.	
	Solving:	Stress	period:	158	Time step:	1	Groundwater Flow	Ean.	
	Solving:	Stress	period:	159	Time step:	1	Groundwater Flow	Ean.	
	Solving:	Stress	period:	160	Time step:	1	Groundwater Flow	Ean.	
	Solving:	Stress	period:	161	Time step:	1	Groundwater Flow	Ean.	
	Solving:	Stress	period:	162	Time step:	ī	Groundwater Flow	Ean.	
	Solving:	Stress	period:	163	Time step:	ĩ	Groundwater Flow	Ean.	
	Solving:	Stress	period:	164	Time step:	ī	Groundwater Flow	Fan.	
	Solving:	Stress	period:	165	Time step:	ĩ	Groundwater Flow	Fan.	
	Solving:	Stress	period:	166	Time step:	ī	Groundwater Flow	Fan.	
	Solving:	Stress	period:	167	Time step:	ĩ	Groundwater Flow	Fan.	
	Solving:	Stress	period:	168	Time step:	ī	Groundwater Flow	Ean.	
	Solving:	Stress	period:	169	Time step:	ĩ	Groundwater Flow	Fan.	
	Solving	Stress	period:	170	Time step:	ī	Groundwater Flow	Ean.	
	Solving	Stress	period:	171	Time step:	ĩ	Groundwater Flow	Ean	
	Solving	Stress	period:	172	Time step:	ī	Groundwater Flow	Ean.	
	Solving	Stress	period:	173	Time step:	î	Groundwater Flow	Ean	
	Solving	Stress	period:	174	Time step:	ī	Groundwater Flow	Ean	
	Solving	Stress	period:	175	Time step:	î	Groundwater Flow	Ean	
	Solving	Stress	period.	176	Time sten	ĩ	Groundwater Elow	Ean	
	Solving:	Stress	period:	177	Time step:	î	Groundwater Flow	Ean.	
	Solving	Stress	period:	178	Time step:	ĩ	Groundwater Elow	Ean	
	Solving	Stress	period:	179	Time step:	ī	Groundwater Flow	Ean.	
	Solving	Stress	period:	180	Time step:	ĩ	Groundwater Flow	Ean	=
	Solving	Stress	period:	181	Time step:	ī	Groundwater Flow	Ean.	
	Solving	Stress	period:	182	Time step:	ĩ	Groundwater Flow	Ean	
	Solving	Stress	period:	183	Time step:	ī	Groundwater Flow	Ean.	
	Solving:	Stress	period:	184	Time step:	ĩ	Groundwater Flow	Fan.	U
	Solving	Stress	period:	185	Time sten:	ĩ	Groundwater Elow	Ean	
	Solving:	Stress	period:	186	Time step:	î	Groundwater Flow	Ean.	
	Solving	Stress	period.	187	Time sten	ĩ	Groundwater Elow	Ean	
	Solving:	Stress	period:	188	Time step:	î	Groundwater Flow	Ean.	
	Solving:	Stress	period:	189	Time step:	ĩ	Groundwater Flow	Fan.	
	Solving:	Stress	period:	190	Time step:	ī	Groundwater Flow	Ean.	
	Solving	Stress	period:	191	Time step:	ĩ	Groundwater Elow	Ean	
	Solving	Stress	period	192	Time step:	1	Groundwater Flow	Ean.	
	Solving	Stress	period	193	Time step:	ĩ	Groundwater Flow	Ean.	
	Run end d	ate and	time (vu	Ju/mm/dd	hh:mm:ss): 2	016709/3	26 14:34:31		
	Flapsed r	un time	: 21 Minu	tes. 41	875 Seconds	020.0571			
	22000001			,					
	Normal t	erminati	ion of sim	nulation					
	F:\WRV\Tra	ining\C	ndPrmpt\Sc	cenario1	>				-

CUMULATIVE	VOLUME	5 L**3	RATES FOR THIS TIME ST	EP L**3/T	
IN:			IN:		
ST	ORAGE =	969217988.8101	STORAGE	= 47881.7057	
CONSTANT	HEAD =	0.0000	CONSTANT HEAD	= 0.0000	
	WELLS =	3483689944.5938	WELLS	= 233822.3750	
D	RAINS =	0.0000	DRAINS	= 0.0000	
KIVER LE	AKAGE =	3493343184.93/3	KIVER LEAKAGE	= 0/0951.18/5	
тот	AL IN =	7948253118.3413	TOTAL IN	= 952655.2682	
OUT:			OUT:		
ST	ORAGE =	978128808.6586	STORAGE	= 60726.8254	
CONSTANT	HEAD =	0.0000	CONSTANT HEAD	= 0.0000	
	WELLS =	1812842946.0225	WELLS	= 14968.5010	
D	RAINS =	193059485.3343	DRAINS	= 349/2.8/43	
KIVER LE	AKAGE =	4905205041.0025	RIVER LEAKAGE	= 842059.3125	
TOTA	L OUT =	7949236881.0778	TOTAL OUT	= 952727.5132	
IN	- OUT =	-983762.7500	IN - OUT	-72.2450	
ERCENT DISCRE	PANCY =	-0.01	PERCENT DISCREPANCY	-0.01	

Extract stream-aquifer flux from MODFLOW budget file

- D X Administrator: Command Prompt F:\WRV\Training\CmdPrmpt\Scenario1>bud2smp<b2s BigRch.in Program BUD2SMP writes a bore sample file of MODFLOW-generated inflows/outflows within user-specified zones. Note: This program reads a MODFLOW or MT3D unformatted file. Sometimes there are problems in reading files of this type due to incompatibilities between different FORTRAN compiliers. If there are any such problems please contact johndoherty@ozemail.com.au and I will send you an alternative copy of this program. Enter name of grid specification file: - grid specifications read from file w rv.asf How many layers in model? Enter name of MODFLOW unformatted budget output file: Is this a MODFLOW88 or M ODFLOW96 budget file [8/9]? Enter maximum number of output times: Enter text to identify MODFLOW flow type: Enter simulation starting date [mm/dd/vyvy]: Enter simulation starting time [h h:mm:ss]: Enter time units emploved by model [v/d/h/m/s]: Enter name of integer array file for layer 1: - integer array read from file bigrch.inf Enter name of integer array file for layer 2: - integer array read from file bigrch.inf Enter name of integer array file for layer 3: - integer array read from file bigrch.inf A total of 5 different non-zero zones were identified in integer arrays. An identifier must now be provided for each zone to appear in the bore sample output file:-Enter identifier for flows in zone 1 (10 characters or less): Enter identi fier for flows in zone 2 (10 characters or less): Enter identifier for flows in zone 4 (10 characters or less): Enter identifier for flows in zone 3 (10 c Enter identifier for flows in zone 5 (10 characters or le haracters or less): ss): Enter name for bore sample output file: Enter flow rate factor: Assign flows to beginning, middle or finish of time step? [b/m/f]: Enter name for run record file: data for 193 model output arrays written to file ModRchGain.smp - see file BigReach.rec for a record of arrays found in file wry mfusg.bud F:\WRV\Training\CmdPrmpt\Scenario1>_

Extract groundwater flux across outlet boundaries from MODFLOW budget file

🖾 Administrator: Command Prompt
F:\WRV\Training\CmdPrmpt\Scenario1>bud2smp <b2s_drain.in< td=""></b2s_drain.in<>
Program BUD2SMP writes a bore sample file of MODFLOW-generated inflows/outflows within user-specified zones.
Note: This program reads a MODFLOW or MT3D unformatted file. Sometimes there are problems in reading files of this type due to incompatibilities between different FORTRAN compiliers. If there are any such problems please contact johndoherty@ozemail.com.au and I will send you an alternative copy of this program.
Enter name of grid specification file: – grid specifications read from file w rv.gsf
How many layers in model? Enter name of MODFLOW unformatted budget output file: Is this a MODFLOW88 or M ODFLOW96 budget file [8/9]? Enter maximum number of output times: Enter text to identify MODFLOW flow type:
Enter simulation starting date [mm/dd/yyyy]: Enter simulation starting time [h h:mm:ss]: Enter time units employed by model [y/d/h/m/s]: Enter name of integer array file for layer 1: - integer array read from file
DrainKch.inf Enter name of integer array file for layer 2: - integer array read from file DrainPcb inf
Enter name of integer array file for layer 3: - integer array read from file DrainRch.inf
A total of 2 different non-zero zones were identified in integer arrays. An identifier must now be provided for each zone to appear in the bore sample output file:-
Enter identifier for flows in zone 2 (10 characters or less): Enter identifier for flows in zone 1 (10 characters or less):
Enter name for bore sample output file: Enter flow rate factor: Hssign flows to beginning, middle or finish of time step? [b/m/f]: Enter name for run record file:
- data for 193 model output arrays written to file ModDrain.smp - see file Drain.rec for a record of arrays found in file wrv_mfusg.bud
F:\WRV\Training\CmdPrmpt\Scenario1>_

-

Extract aquifer heads at selected locations from MODFLOW heads file

Administrator: Command Prompt - O X F:\WRV\Training\CmdPrmpt\Scenario1>mod2smp<m2s example.in Program MOD2SMP writes a bore sample file of model-generated heads over time, interpolated to the sites of user-supplied bores. Note: This program reads a MODFLOW or MT3D unformatted file. Sometimes there are problems in reading files of this type due to incompatibilities between different FORTRAN compiliers. If there are any such problems please contact johndoherty@ozemail.com.au and I will send you an alternative copy of this program. Enter name of grid specification file: - grid specifications read from file w rv.asf Enter name of bore coordinates file: -10 bores and coordinates read from bor e coordinates file example.wcf Enter name of bore listing file: -10 bores read from bore listing file examp le.wcf Enter name of unformatted model-generated file: Is this a MODFLOW or MT3D file ? [f/t]: How many different output times are represented in this file? Enter blanking threshold value for arrays in this file: Enter time units used by mode 1 (yr/day/hr/min/sec) [y/d/h/m/s]: Enter simulation starting date [mm/dd/vvvv]: Enter simulation starting time [h h:mm:ssl: Enter name for bore sample output file: Working - 579 arrays, covering 193 different model output times, read from file

- wrv mfusa.hds
- bore sample file examplehds.smp written ok.

F:\WRV\Training\CmdPrmpt\Scenario1>

Difference baseline results from scenario stream flux results

Difference baseline results from scenario drain flux results

Change in groundwater flow across outlet boundaries

Change in aquifer heads at selected locations

Example head locations with respect to recharge site

