

December Calibration Run

Presented by Allan Wylie, IDWR December 3, 2015

Important Changes

- Set maximum tributary underflow to 20% of average annual precipitation within the basin
- Set kriging limit for Sy to between 0.10 to 0.30

- Adjustments to river stage in Wood River Ranch to Stanton Crossing reach
- Discovered river cells in Silver Cr set in layer 2 and layer 3.

- Results in three river cells at one X,Y location
- Jason made adjustments to remove layer 2 and 3 cells

- Wells with GPS or surveyed location
- Measured by a trained technician
- Total head change from north to south is about
 1,500 ft
 - 30 ft mismatch = 2%

- Wells with GPS or surveyed location
- Measured by a trained technician
- If fit was perfect
 - Intercept = 0
 - Slope = 1
 - $R^2 = 1$
 - All points on the red line

Geo-located Wells

- Wells located by address
- Measured by driller

Geo-located Wells

- Wells located by address
- Measured by driller
- If fit was perfect
 - Intercept = 0
 - Slope = 1
 - $R^2 = 1$
 - · All points on the red line

Driller Wells

- Wells located by PLS
- Measured by driller

Driller Wells

- Wells located by PLSS
- Measured by driller
- If fit was perfect
 - Intercept = 0
 - Slope = 1
 - $R^2 = 1$
 - All points on the red line

Sun Valley Wells

- Municipal production wells
- 2 well fields
- Measured by municipal employee
- One well from each field

- Graduate student installed transducers
- 12 wells
- 2 are wells we already use
- Not all wells useful for us
- Measurements every 15 min
- Mid 2010 to mid 2011
- Reduced 15 min frequency to one per day
- 5 domestic wells
 - Filtered out pumping events

nr Ketchum-Hailey

Hailey-Stanton Crossing

Willow Creek

Silver Abv Sportsman's Access

Silver Blw Sportsman's Access

Subsurface Discharge From Model

- Weight on these observations is low
- Stanton Crossing
 - Estimated ~ Negligible
 - 300 ac-f/yr
 - 0 0.41 cfs
 - Modeled = 0.33 cfs
 - 240 ac-ft

Subsurface Discharge From Model

- Weight on these observations is very low
- Silver Cr underflow
 - Estimated ~ 4,000 –53,000 ac-f/yr
 - 5.5 73 cfs
 - Modeled = 8.6 cfs
 - 6,242 ac-ft

DAHO Department of Water Resources

End

Outline

- 3nd Final Calibration
 - Specific yield in layer 1 was to low in places
 - Adjustments to dry bed assumptions
- Transient Calibration Run
- Are we there yet?
 - We expect to submit this version for review

Review

- Recharge program
 - Tributary underflow
 - Adjusted by multiplying starting values by a scalar
 - Adjust seasonal amplitude
 - · Adjust averaging period
 - Surface water irrigation efficiency
 - Canal seepage fixed percentage of diversion
 - · Currently held fixed
- Physical properties adjusted by changing values in MODFLOW input files
 - Aquifer hydraulic conductivity and storage
 - Riverbed conductance
 - Drain conductance

All Wells Measured Once

All Wells Measured Once

Sun Valley Wells

Sun Valley Wells

The Nature Conservancy Wells

The Nature Conservancy Wells

Sub-reach Targets

- March 2013 seepage run
- Match ratios to larger reach

Sub-reach Targets

- August 2012 seepage run
- Match ratios to larger reach
- Flows for nr Ketchum to Hailey are unusual
- Seepage run results removed for nr Ketchum to Hailey

Sub-reach Targets

- October 2012 seepage run
- Match ratios to larger reach

Layer 1 Aquifer head (famsl)

Riverbed Conductance

- Riverbed conductance in M²/d
- Wood River

Streambed Conductance

- Riverbed conductance in M²/d
- Willow Cr, and Silver Cr

Drain Conductance

- Drain conductance in M²/d
- Layer 1
 - Silver Creek
 - Stanton Crossing

Drain Conductance

- Drain conductance in M²/d
- Layer 2
 - Silver Creek

Drain Conductance

- Drain conductance in M²/d
- Layer 3
 - Silver Creek

Layer 1 Hydraulic Conductivity

- Layer 1 modeled as non-time varying transmissivity
- Pilot points can be moved
- Number of pilot points not fixed
- Tributary valleys are in their own zones
- In valley and triangle
 - Min = 1.67 ft/day
 - Max = 4,412 ft/day
 - Mean = 715 ft/day

Layer 1 Hydraulic Conductivity

- Tributary valleys are in their own zones
 - Contain maximum and minimum values
- In valley and triangle
 - Min = 1.67 ft/day
 - Max = 4,412 ft/day
 - Mean = 715 ft/day
- 437 wells in Wood River alluvial sediments.

Layer 2 Hydraulic Conductivity

- Layer 2 modeled as confined
- Includes basalt in east
- Includes confining layer
- Sand and gravel aquifer in valley and triangle
 - Min = 27 ft/day
 - Max = 52 ft/day
 - Mean = 33 ft/day

Layer 2 Hydraulic Conductivity

Groundwater, Freeze & Cherry, 1979

- Low hydraulic conductivity in confining layer
 - Min = 0.000236 ft/day
 - Max = 0.000469 ft/day
- Basalt
 - Min = 49.7 ft/day
 - Max = 59.4 ft/day
- Sand and gravel In valley and triangle
 - Min = 27 ft/day
 - Max = 52 ft/day
 - Mean = 33 ft/day
- 14 wells in Wood River alluvial sediments.

Layer 3 Hydraulic Conductivity

- Layer 3 modeled as confined
- Basalt
 - Min = 53.1 ft/day
 - Max = 68.2 ft/day
- Sand and gravel aquifer in valley and triangle
 - Min = 724 ft/day
 - Max = 7,365 ft/day
 - Mean = 2,595 ft/day

Layer 3 Hydraulic Conductivity

- Basalt
 - Min = 53.1 ft/day
 - Max = 68.2 ft/day
- Sand and gravel aquifer in valley and triangle
 - Min = 724 ft/day
 - Max = 7,365 ft/day
 - Mean = 2,595 ft/day

Layer 1 Storage

- Layer 1 temporarily modeled as non-time varying thickness
- Pilot points can be moved
- Number of pilot points not fixed

Layer 2 Storage

- Layer 2 modeled as storage
- Includes basalt in east
- Includes confining layer
- · Pilot points can be moved
- Number of pilot points can be changed

Layer 3 Storage

- Layer 3 modeled as storage
- Includes basalt in east
- Pilot points can be moved
- Number of pilot points can be changed

Surface Water Irrigation Efficiency

- CIR/Diversion
 - Efficiency of canal system and field irrigation system
- Inefficient fraction infiltrates into layer 1 aquifer
 - Note to the engineers
 - Low efficiency is not necessarily bad

Tributary Underflow

- Trib underflow adjusted using
 - Adjustment factors
 - Adjust average flux
 - Reduction factor
 - · Adjust seasonal amplitude
 - Averaging period
 - 200 day, 300 day, 400 day, etc

Tributary Underflow

Tributary	Scalar	Av Basin Precip AcFt	Modeled AcFt	% Basin Av PPT
Adams Gulch	0.01	17600	8.51	0.05%
Chocolate Gulch	0.01	864	0.70	0.08%
Cold Springs Gulch	0.91	3341	159.26	4.77%
Clear Creek	0.01	2288	1.06	0.05%
Cove Canyon	3.59	11200	512.88	4.58%
Croy Creek	2.06	23595	1447.38	6.13%
Deer Creek	3.02	74213	4405.48	5.94%
Eagle Creek	3.40	17248	3442.80	19.96%
Elkhorn Gulch	0.02	12757	0.87	0.01%
East Fork	1.00	120629	467.69	0.39%
Greenhorn Gulch	0.08	30464	52.12	0.17%
Indian Creek	0.10	10149	241.62	2.38%
Lake Creek	1.44	17280	3441.64	19.92%
Lees Gulch	3.79	2240	450.58	20.12%
Ohio Gulch	0.01	4270	2.12	0.05%
Oregon Gulch	3.38	6919	1161.58	16.79%
Quigley Creek	0.09	15504	48.27	0.31%
Seamans Creek	1.93	18768	3740.12	19.93%
Slaughterhouse Gulch	0.08	11509	39.73	0.35%
Trail Creek	3.36	111274	9677.70	8.70%
Townsend Gulch	0.01	960	0.40	0.04%
Upper Big Wood River	22.74	313278	13892.63	4.43%
Warm Springs Creek	4.99	180735	2408.15	1.33%

Tributary Underflow

Tributary	Scalar	Av Basin Precip AcFt	Modeled AcFt	% Basin Av PPT
Adams Gulch	0.01	17600	8.51	0.05%
Chocolate Gulch	0.01	864	0.70	0.08%
Cold Springs Gulch	0.91	3341	159.26	4.77%
Clear Creek	0.01	2288	1.06	0.05%
Cove Canyon	3.59	11200	512.88	4.58%
Croy Creek	2.06	23595	1447.38	6.13%
Deer Creek	3.02	74213	4405.48	5.94%
Eagle Creek	3.40	17248	3442.80	19.96%
Elkhorn Gulch	0.02	12757	0.87	0.01%
East Fork	1.00	120629	467.69	0.39%
Greenhorn Gulch	0.08	30464	52.12	0.17%
Indian Creek	0.10	10149	241.62	2.38%
Lake Creek	1.44	17280	3441.64	19.92%
Lees Gulch	3.79	2240	450.58	20.12%
Ohio Gulch	0.01	4270	2.12	0.05%
Oregon Gulch	3.38	6919	1161.58	16.79%
Quigley Creek	0.09	15504	48.27	0.31%
Seamans Creek	1.93	18768	3740.12	19.93%
Slaughterhouse Gulch	0.08	11509	39.73	0.35%
Trail Creek	3.36	111274	9677.70	8.70%
Townsend Gulch	0.01	960	0.40	0.04%
Upper Big Wood River	22.74	313278	13892.63	4.43%
Warm Springs Creek	4.99	180735	2408.15	1.33%

OLD Wood River Stage

- Nr Ketchum to Hailey
 - Interpolate change between Nr Ketchum and At Hailey
- Hailey to Glendale Rd
 - Use change from At Hailey
- Glendale Rd to Wood River Ranch
 - Use steady state stage when dry bed is not dry
 - Stage = river bottom when dry bed is dry
- Wood River Ranch to At Stanton Crossing
 - Use At Stanton Crossing change

MODFLOW River Package

- River stage = river bottom
 - River dry perched above aquifer
 - No aquifer river interaction
- River stage = river bottom
 - River intersects aquifer
 - River gains
- River stage above aquifer head
 - River loses water to aquifer

NEW Wood River Stage

- Nr Ketchum to Hailey
 - Interpolate change between Nr Ketchum and At Hailey
- · Hailey to Glendale Rd
 - Use change from At Hailey
- Glendale Rd to Wood River Ranch
 - Use steady state stage when dry bed is not dry
 - Stage = river bottom when dry bed is dry
- Wood River Ranch to At Stanton Crossing
 - Stage = river bottom
 - when first goes dry until October
 - Use change from At Stanton
 Crossing rest of the year