

Example Predictive Uncertainty for the Wood River Valley Aquifer Model

Presented by Allan Wylie, IDWR

Date October 1, 2015

Outline

- Hydraulic conductivity
- Specific yield/storage
- Riverbed/drain conductance
- Entity irrigation efficiency
- Tributary underflow

Example Uncertainty Analysis

- Analysis assumes that model is linear
 - Neither the natural system nor the model is linear
- Analysis assumes that uncertainty is normally distributed
 - Uncertainty is not normally distributed
- Analysis assumes observations weights are inversely proportional to uncertainty
 - Sometimes true, sometimes not true
- Analysis is still informative
 - Identifies the parameters and predictions that are tightly constrained by the calibration and those that are loosely constrained by the calibration

Parameter Identifiability Definition

Parameter 1

Parameter Identifiability Definition

Parameter 1

Parameter Uncertainty, L1 K

- Layer 1 K
 - Defined by 568 wells
 with 2,524
 observations
 - ~6 observations per well
 - 1,575 in 8 wells during last year of calibration period
 - Constrained by the calibration

Parameter Uncertainty, L2 K

- Layer 2 K
 - Defined by 16 wells with 263 observations
 - 251 observations in one well

Parameter Uncertainty, L3 K

- Layer 3 K
 - Defined by 196 wells with 422 observations
 - 201 observations in one well

Parameter Uncertainty, L1 Sy

- Layer 1 Sy
 - Defined by 568 wells with 2,524 observations
 - ~6 observations per well
 - 1,575 in 8 wells in last year of calibration period
 - Most wells don't have regularly repeated observations

Parameter Uncertainty, L2 S

- Layer 2 S
 - Defined by 16 wells with 263 observations
 - 251 observations in one well
 - Most wells don't have regularly repeated observations

Parameter Uncertainty, L3 S

- Layer 3 S
 - Defined by 196 wells with 422 observations
 - 201 observations in one well
 - Most wells don't have regularly repeated observations

Parameter Uncertainty, Wood R

- Wood River riverbed
 conductance
 - Defined by 284 reach gain observations
 - Riverbed conductance includes length, width, and hydraulic conductivity
 - Average for reach

Parameter Uncertainty, Stream

- Willow and Silver Cr conductance
 - Defined by 509 reach gain observations

Parameter Uncertainty, Drain

- Layer 1 drain conductance
 - Defined by two estimated observations

Parameter Uncertainty, Drain

- Layer 2 drain conductance
 - Defined by estimated observation

Parameter Uncertainty, Drain

- Layer 3 drain conductance
 - Defined by estimated observation

Parameter Uncertainty, Irrigation Entity Efficiency

- Irrigation entity efficiency
 - Only applied to entities with groundwater irrigation

Parameter Uncertainty, Tributary Underflow

- Tributary underflow scalar
 - Used to adjust the average annual tributary underflow

Parameter Uncertainty, Tributary Underflow (2)

- Tributary underflow scalar
 - Used to adjust the average annual tributary underflow

Nonadjustable Parameters

- Correlated, data too sparse, too complex, etc
- Reasonable assumptions
- Doesn't mean they don't impact the model
 - Canal seepage
 - Extent of the confining layer
 - Extent of basalt
 - Non-irrigated recharge
 - River stage
 - Etc

Example 1

- Superposition
- Steadystate
- Pumping well in layer
 3 beneath confining layer
- Predict impact on Silver Creek

number of singular values

Analysis

- Example 1
 - Impact of injecting in layer 3 beneath confining layer
- Analysis for predicted impact on Silver Creek
 - Without calibration
 - Total error standard deviation = 107
 - After calibration
 - Total error standard deviation = 9.5
 - 68, 95, 99.7 rule
 - 95% confidence ~ 75% +/- 19%

Reach	Impact at steady state	
nr Ketchum-Hailey	0.79%	
Hailey-Stanton Crossing, Willow Cr + Subsurface Discharge	24.52%	
Silver Creek	74.69%	
Silver Cr Blw Sportsman's Access + Subsurface Discharge	0.00004%	
Total	100.00%	

Sources of Uncertainty

Reductions in Uncertainty

- Determined by subtraction
 - Remove dataset and recheck analysis

Example 2

- Superposition
- Steadystate
- Pumping well in layer 3 beneath confining layer
- Predict impact on Wood River below Hailey, Willow Cr, and subsurface discharge at Stanton Crossing

Analysis

- Example 2
 - Impact of injecting in layer 3 beneath confining layer
- Analysis for predicted impact on Wood River below Hailey, Willow Creek and Subsurface discharge at Stanton Crossing
 - Without calibration
 - Total error standard deviation = 107
 - After calibration
 - Total error standard deviation = 10
 - 68, 95, 99.7 rule
 - 95% confidence ~ 24% +/- 20%

Reach	Impact at steady state	
nr Ketchum-Hailey	0.79%	
Hailey-Stanton Crossing, Willow Cr + Subsurface Discharge	24.52%	
Silver Creek	74.69%	
Silver Cr Blw Sportsman's Access + Subsurface Discharge	0.00004%	
Total	100.00%	

Sources of Uncertainty

Reductions in Uncertainty

- Determined by subtraction
 - Remove dataset and recheck analysis

Summary

Analysis	Target Reach	Prediction	C.I. 95
Example 1	Silver Creek	74.69%	9.49%
Example 2	Willow Cr + Wood R	24.52%	10.23%

- Well injecting below the confining layer
- Observe the impact on selected surface water systems
 - Silver Creek above
 Sportsman's Access,
 subsurface outflow
 - Wood River below
 Hailey, Willow Cr,
 subsurface outflow

Conclusions

- The hydraulic conductivity distribution is constrained by the calibration
- Riverbed conductance is constrained by the calibration
- The storage coefficient distribution is loosely constrained by the calibration
- Drain conductance is loosely constrained by the calibration
- Irrigation entity efficiency is loosely constrained by the calibration
- Tributary underflow sometimes constrained sometimes loosely constrained by the calibration
- There are other parameters assigned "reasonable values" based on expert knowledge that are not adjustable
 - May or may not adversely impact predictive uncertainty
- 95% confidence interval for the selected examples did not include zero

End

All Wells Measured Once

