Wood River Valley
Model Construction Update

Jason C. Fisher
These slides were presented at the Wood River Valley Modeling Technical Advisory Committee meeting Thursday, 8/12/2014, 10am-3pm at the Community Campus, Black Box Room, in Hailey. Taken outside the context of the original presentation, these slides may not provide a complete or accurate representation of the speaker’s intent.
Vertical Overlap Between Adjacent Model Cells
Use of Connected Linear Network (CLN) and Well (WEL) Packages for Pumping
Pump located in CLN

\[Q = C (h_{GWF_1} - b_1) \]

Layer 1

Layer 2

Layer 3

Pump located in CLN₂
Failure to Converge
Failure to Converge

3+ hours
The Well (WEL) Package is Now Used to Simulate Pumping
The Well (WEL) Package is Now Used to Simulate Pumping

Assumption: pumped groundwater from a well is simulated as discharge from the lowest model cell in contact with the wells open interval.
Steady-State Conditions with All Aquifer Components
Raw data files

- Alluvium bottom elevation
- Land surface elevation
- Basalt extent
- Aquitard extent
- Groundwater flows in the tributary canyons
- Groundwater drains at Silver Creek and Stanton Crossing
- Surface water in reaches of Silver Creek and Big Wood River
- Evapotranspiration, diversions, canal seepage, well pumping, irrigated lands, etc.

Package vignette that creates package datasets from raw data files

Package vignette that pre- and post-processes the groundwater flow model

1. Build model grid
2. Specify as volumetric flux boundary condition
3. Specify as head-dependent flux boundary condition
4. Specify as flux boundary condition
5. Build MODFLOW input files

- R raster layers

- .tif
- .adf
- .shp
- .kml
- .csv
- .tif
- .shp
- .csv
- .tif
- .shp
- .csv

- Build and run Windows batch file
- .bat

- Run MODFLOW model

- Read MODFLOW output files and write results
- .lst
- .hds
- .bud
Package ‘wrv’

August 11, 2014

Version 0.1-5
Date 2014-07-28
Title Wood River Valley Groundwater Flow Model
Author Jason C. Fisher
Maintainer Jason C. Fisher <jfisher@usgs.gov>
Depends R (>= 3.1.0), sp, rgdal, rgeos, raster
Imports igraph
Suggests RCurl, knitr, xtable, png
SystemRequirements MODFLOW-USG (>= 1.2)

Description Pre- and post-processing program for the groundwater flow model of the Wood River Valley aquifer system, south-central Idaho.

License file LICENSE

Copyright This software is in the public domain because it contains materials that originally came from the United States Geological Survey (USGS), an agency of the United States Department of Interior. For more information, see the official USGS copyright policy at http://www.usgs.gov/visual-id/credit_ags.html#copyright

URL https://github.com/jfisher-usgs/wrv

BugReports https://github.com/jfisher-usgs/wrv/issues

ByteCompile yes
LazyCompile yes

VignetteBuilder knitr

R topics documented:

alluvium.bottom .. 3
aquifer.extent .. 3
aquitard.extent .. 4
basalt.extent .. 5
BumpDisconnectedCells 5
bw.sc .. 6
canal.seep .. 7
canals .. 8
cities .. 8
comb.sw.rr .. 9
CreateModflowInputFiles 10
disch.usgs.13139510 12
div.gw .. 12
div.sw ... 13
div.wr ... 14
DownloadFile .. 14
efficiency ... 15
et ... 16
et.method ... 17
ExcludeSmallCCells 18
ExtractRasterStack 19
GetSeasonalMultiplier 21
intf.basins ... 22
infiltration ... 22
irr.entries .. 23
irr.lands ... 24
irr.lands.year ... 24
lakes ... 25
land.surface .. 26
map.labels ... 27
PlotMap .. 27
pod.gw .. 30
pod.wells .. 30
precip.zones .. 32
precipitation .. 33
priority.cuts .. 33
public.parcel .. 34
ReadModflowBinaryFile 35
ReadModflowListFile 36
rivers ... 37
SetPolygons .. 37
sink.locations ... 38
soils .. 39
source.locations 39
tributaries ... 40
wetlands ... 41

Index 42
Questions