

Adjustable Parameters

Presented by Allan Wylie, IDWR Date August 12, 2014

Outline

- Adjustable parameters
 - Anything estimated
- The "Model"
- Flow diagram

Adjustable Parameters

- Physical properties
 - Hydraulic conductivity and transmissivity
 - Specific yield and storage coefficient
 - Riverbed conductance
 - Drain conductance
- Input into groundwater flow model
 - MODFLOW input files

Adjustable Parameters

- Components of the water budget
 - Recharge on non-irrigated land
 - Tributary underflow
 - Irrigation entity efficiency
- Input to recharge program
 - Recharge program output is input to MODFLOW
 - Recharge and well files

- Estimate hydraulic conductivity (K) or spacific yield (SY) at pilot points
- Interpolate values between pilot points

 PEST adjusts pilot point value and interpolates values for cells between pilot points

- Pilot Points are assigned to a layer
- Layer 1, 2 and 3 <u>can</u>
 have the same northing
 and easting
- Water level observations area an important calibration target
 - 76 wells
 - 162 total observations
 - 2.1 observations per well

- Pilot Points can be in different zones
- Preferred value =
 same as other pilot
 points in same
 sediment type and
 same layer

 Can have basalt Pilot Points

 Can have aquitard Pilot Points

 Can have alluvial sediment Pilot Points

- Pilot Points are assigned to a layer
- Pilot Points can be assigned to zones
 - Sand and gravel aquifer
 - Confining layer
 - Basalt

Riverbed Conductance (RBC)

Adjust RBC by reach

Riverbed Conductance (RBC)

- Wood River Valley Model Reaches
- Wood River Reaches in valley have preferred value
 - Same as neighbors
- Silver Creek Reaches
 - Preferred value same as neighbors

Tributary valley inflow (TRB)

- Adjust TRB by tributary valley
- Preferred value = starting estimate

Irrigation entity efficiency

- Adjust by entity
- Assign inefficiency (seepage) to layer 1
- 80% efficiency = 20% of headgate delivery & groundwater pumping applied as recharge to layer 1

Irrigation entity efficiency

- Adjust by entity
- Lots of entities
- Group HOAs in valley together
 - Preferred value same as other HOAs
- Group agricultural entities in triangle together
 - Preferred value same as other agricultural entities
- Other ideas?

DAHO Department of Water Resources

The Steady State Wood River Model Batch File

- · rem delete intermediate files
- del rch?.ref
- del hk?.ref
- del *.hds
- del *.bud
- del wrv_ss_adj.fhb
- rem
- rem multiply recharge array by warping array
- twoarray
- striphead<StripHeadRch.in
- rem
- rem adjust tributary underflow
- adjfhb<adjfhb.in
- rem
- rem build modflow transmissivity arrays
- fac2real<L1Fac2Real.in
- striphead<StripHeadL1.in
- fac2real<L2Fac2Real.in
- striphead<StripHeadL2.in
- fac2real<L3Fac2Real.in
- striphead<StripHeadL1.in

- rem
- rem run modflow
- mfusg wrv_ss_test.nam
- rem
- rem read model output
- rem model generated heads
- mod2obs<mod2obs.in
- rem river gains
- bud2smp<b2s_BigRch.in
- smpstat<smpstat.in
- rem seepage run reaches
- bud2smp<b2s_ReachGn.in
- rem calculate ratios
- smpstat<smpstat2.in
- ratio2<Ro_nKeHai.in
- ratio2<Ro HaiStan.in
- ratio2<Ro_SprCr.in
- rem discharge from model
- bud2smp<b2s_Drain.in

Calibration Tool

- PEST
 - Compares model output with observations
 - River aquifer interactions
 - Spring discharge
 - Water levels in wells
 - Objective is to minimize difference between modeled and observed values
 - Prepares input files
 - MODFLOW
 - Recharge Program

Synclinal fold

Anticlinal fold

Soil Moisture SM + Soil Retention S

Percolation (not modeled) Stream Flow

Base Flow QE

DAHO Department of Water Resources

End