Wood River Valley Model Process Flow Diagrams

Jason C. Fisher

U.S. Geological Survey Idaho Department of Water Resources

PROVISIONAL: FOR INFORMATIONAL PURPOSES ONLY

These slides were presented at the Wood River Valley Modeling Technical Advisory Committee meeting Thursday, 06Feb2014, 10am-4pm at the Community Campus, Rm 200, in Hailey. Taken outside the context of the original presentation, these slides may not provide a complete or accurate representation of the speaker's intent.

MODFLOW-USG Input Files

Simulates in the WRV Aquifer System

	.nam	Name file: names of input and output text files	NA	
	.ba6	Basic Package file: used to specify - locations of active, inactive, and specified head cells - initial heads in all cells	Describes the spatial domain of the aquifer system, the location of inflow and outflow boundaries (such as stream channels), and an initial estimate of the water table surface	
	.dis	Discretization file: description of model grid - number of rows, columns and layers - cell size	NA	
	.zon .lpf .sms	Zone file: zone arrays used to specify the cells that are associated with a parameter	Describes the locations of hydrogeologic zones in the aquifer system	
		Layer-Property Flow package file: properties controlling flow between cells	Describes the hydraulic conductivity, porosity, storativity (confined), and specific yield (unconfined) for each hydrogeologic zone	
		Sparse Matrix Solver file: options for the nonlinear solution method that uses a Newton-Raphson iteration scheme with under relaxation	Solves the groundwater flow equations in the unconfined (water-table fluctuations) and confined aquifers	
	.oc	Output control file: options for writing output files	NA	
Specified head boundary condition	fhb	Flow and Head Boundary file: specified flow cells where flow can vary within a stress period	Groundwater entering the aquifer system through the tributary canyons and upper boundary of the BWR valley	
Head-dependent flux boundary conditions	[.drn	Drain Package file: if head in the cell falls below a certain threshold, the flux from the drain to the model cell drops to zero	Groundwater leaving the aquifer system beneath Silver Creek and Stanton Crossing	
	.riv	River Package file: if head in the cell falls below a certain threshold, the flux from the river to the model is set to a specified lower boundary	Streamflow gains and losses	
Flux boundary condtions	[.rch	Recharge Package file: specified flux distribution over the top of the model in units of length per unit time	Precipitation and excess irrigation, direct evapotranspiration	
	.well	Well Package file: specified flux to individual cells in units of length cubed per unit time	Canal losses, pumping (irrigation, domestic, municipal), wastewater infiltration	

Questions

Wood River Valley Model Construction Update

Jason C. Fisher

U.S. Geological Survey Idaho Department of Water Resources

Reach	Depth (m)	Depth (ft)	Riverbed (m)	Riverbed (ft)
Big Wood, Nr Ketchum to Hulen Rd	0.61	2	0.30	1
Big Wood, Hulen Rd to Ketchum	0.61	2	0.30	1
Big Wood, Ketchum to Gimlet	0.61	2	0.30	1
Big Wood, Gimlet to Hailey	0.61	2	0.30	1
Big Wood, Hailey to N Broadford	0.61	2	0.30	1
Big Wood, N Broadford to S Broadford	0.61	2	0.30	1
Big Wood, S Broadford to Glendale	0.61	2	0.30	1
Big Wood, Glendale to Sluder	0.61	2	0.30	1
Big Wood, Sluder to Wood River Ranch	0.61	2	0.30	1
Big Wood, Wood River Ranch to Stanton Crossing	0.61	2	0.30	1
Willow Creek	0.30	1	0.91	3
Buhler Drain abv Hwy 20	0.30	1	0.91	3
Patton Creek abv Hwy 20	0.30	1	0.91	3
Cain Creek abv Hwy 20	0.30	1	0.91	3
Chaney Creek abv Hwy 20	0.30	1	0.91	3
Mud Creek abv Hwy 20	0.30	1	0.91	3
Wilson Creek abv Hwy 20	0.30	1	0.91	3
Grove Creek abv Hwy 20	0.30	1	0.91	3
Loving Creek abv Hwy 20	0.30	1	0.91	3
spring creeks blw Hwy 20	0.61	2	0.91	3
Silver Creek, Sportsman Access to Nr Picabo	0.61	2	0.91	3

Table 3: Description of reaches in the Big Wood River and Silver Creek.

Riverbed bottom elev. = Land surface elev. – Ave. river depth – Riverbed thickness

⁺pto/=tmero +lat_0=42 +lon_0=-114 +k=0.9998 +x_0=2500000 +y_0=1200000 +datum=NAD83 +units=m +no_dels +ellps=GRS80 +lowgs84=0.0,0

Head Dependent Flux Boundary: River Package (RIV) + Drain Package (DRN)

Land Surface Water Table River Surface Low Permeability Streambed Material Cell Boundary Impermeable Walls Head in. River Cell Surface Low Permeability Material Céll Boundary

River in the field and in a model grid cell

http://inside.mines.edu/~epoeter/583/08/exercise/riv.htm

River in the field and in a model grid cell

Gaining reach (flow into river)

Losing reach (flow into aquifer)

Head Dependent Flux Boundary: River (RIV)

Head Dependent Flux Boundary: Drain (DRN)

Darcy's Law: $Q = -KA [(h_d - h_0) / L]$ $Q = -C (h_d - h_0)$ where drain conductance is C = KA / L

Work-In-Progress

Calculating recharge on irrigated lands and municipal/subdivision

Converting ESRI ArcGIS processing instructions into R code

UPPER WOOD RIVER IRRIGATED LANDS PROCESSING STEPS

- IRRIGATED/SEMI-IRRIGATED AREA. For each year available (currently 7 years), eliminate wetlands and BLM/USFS land from irrigated and semi-irrigated lands, and classify irrigated and semiirrigated lands by water source and irrigation entity.
 - a. Add irrigated lands file BW_YEAR_xxxxx from BigWoodIrrigatedLands.gdb with Definition Query: STA-TUSYEAR<>Non-irrigated
 - b.Add wetlands file wetlands_nwi_idaho with Definition Query: SYS_DESCRI<>UPLAND
 - c. Erase (Analysis Tools/Overlay/Erase) wetlands from irrigated lands, save as a temporary file
 - d. Erase (Analysis Tools/Overlay/Erase) BLM_USFS_Blaine from temporary file created in 1.c., save as a temporary file
 - e. Clip (Analysis Tools/Extract/Clip) IrrigationEntities with temporary file created in 1.d. Save as IrrByEntityYEAR in BigWoodIrrigatedLands.gdb
 - f. Add "acres" field (Double) to IrrByEntityYEAR attribute table and calculate geometry
 - g. Summarize by field "EntitySrce" with Sum of "acres", save as SumAcresbyEntityYEAR.dbf in BigWoodIrrigated-Lands.gdb
 - h. Repeat for other available years
- 2. CIR. For each month (April through October), calculate ET, precipitation, and CIR for each irrigation entity and water source
 - a. Calculate mean ET by irrigation entity and water source:

- Run Spatial Analyst/Zonal Statistics as Table with Feature zone data = IrrBvEntityYEAR Zone field = EntitySrce Input value raster = bw met YEARMO or **BW NET YEARMO** Output table = AvgETbyEntityYEARMO.dbf Statistics type = MEAN b. SumAcresByEntityYEAR does not exist for some years. Look up IL YEAR to use for YEAR in IL YEAR.csv. c. Join SumAcresByEntityYEAR to AvgETByEntityYEARMO, add fields "ET AF", "SumAcres", "PrecipZone", "Precip", and "CIR" to AvgETByEntityYEARMO and calculate fields i. "SumAcres" = "Sum acres" ii. "PrecipZone" = "First prec" iii. Remove join iv. "ET_AF" = "MEAN"/25.4/12 * "SumAcres" v. "Precip ft" = monthly depth in feet for PrecipZone, look up in BigWood Precip.csv vi. "Precip AF" = "Precip ft" * "SumAcres" vii. "CIR AF" = "ET AF" - "Precip AF" d. Repeat for other months (April through October of all years)
- 3. DIVERSIONS. Calculate canal seepage, field headgate delivery, and incidental recharge.
 - a. SURFACE WATER DIVERSIONS. Sum surface water diversions (AF) in WRV_SWDiv.csv by irrigation entity for each stress period. (Measured returns are included as negative values. Assign to SWDiv.
 - b. GROUNDWATER DIVERSIONS.

```
1 library(wrv) 1
 2 setwd("D:/Projects/WRV/R") 9
 3 crs <- alluvium.bottom@proj4string¶</p>
 4 9
 5 ReadShapefile <- function(dsn, laver, crs) {</p>
 6 obj <- readOGR(dsn=dsn, layer=layer, verbose=FALSE) ¶</p>
 7 obj <- spTransform(obj, crs) ¶</p>
 # if (all(suppressWarnings(gIsValid(obj, byid=TRUE)))) 
 9 ----return(obj)¶
10 obj <- gBuffer(obj, width=0, bvid=TRUE) 9
11 return(obj[gIsValid(obj, byid=TRUE), ]) 1
12 }9
13 9
14 # 1. IRRIGATED/SEMI-IRRIGATED AREAT
15 9
16 dsn <- file.path(getwd(), "Data", "Irrigated Lands") 1</pre>
17 9
18 wetlands ---- <- ReadShapefile (dsn, "Wetlands nwi idaho", crs) 4
19 blm.usfs --- <- ReadShapefile(dsn, "BLM USFS Blaine", crs) 1
20 irr.entities <- ReadShapefile(dsn, "IrrigationEntities", crs) </p>
21 9
22 layers <- c("BW 1996 060713", "BW 2000 061213", "BW 2002 061713", 1
23 "BW 2006 061913", "BW 2008 062513", "BW 2009 062513", 1
24: ttttttt"BW 2010 062713") 9
25 years <- substr(layers, 4L, 7L) ¶</p>
irr <- lapply(layers, function(i) ReadShapefile(dsn, i, crs)) </pre>
27 names(irr) <- years 1
28 9
29 col.names <- paste0("STATUS ", substr(years, 1, 3)) 1</pre>
30 Fun <- function(i) irr[[i]][irr[[i]]@data[, col.names[i]] != "non-irrigated", ]]</p>
31 irr <- lapply(seg along(irr), Fun) 1</p>
32 9
33 Fun <- function(i) SetPolygons(i, wetlands, "gDifference", buffer.width=0.001) 4</p>
34 irr.erase <- lapply(irr, Fun) ¶</pre>
35 Fun <- function(i) SetPolygons(i, blm.usfs, "gDifference", buffer.width=0.001) 4</p>
36 irr.erase <- lapply(irr.erase, Fun) ¶</pre>
37 names(irr.erase) <- years¶
```

Questions

