Outline

• Introduction
• Calibration Targets
• Adjustable Parameters
• Process
Calibration Targets

• River gains
 – Big Wood River
 – Silver Creek
 – Willow Creek

• Water levels in wells

• Underflow out of the model
River gains

- Continuous stations
 - Big Wood nr Ketchum
 - 4/2011 – present
 - Big Wood River at Hailey
 - 7/1915 – present
 - Big Wood River at Stanton Crossing
 - 9/1996 – present
 - Silver Cr at Sportsman Access
 - 10/2007 – present
 - Willow Cr
 - 6/2006 - present

- Seepage runs
 - August 2012
 - October 2012
 - March 2013

Daily average discharge, Big Wood River near Ketchum (cfs)

Daily average discharge, Big Wood River at Hailey (cfs)

\[y = 0.3475x + 0.1845 \]

\[R^2 = 0.9612 \]
Nr Ketchum to Hailey reach gain (includes runoff from smaller tributaries)

- Monthly average gain (cfs)
- Jan-95 to Jan-13

Graph showing monthly average gain from Jan-95 to Jan-13.
Hailey to Stanton Crossing (includes smaller tributaries)
Flow in Big Wood River

• With the stream flow routing package flow in the river can be used as a calibration target

• Possible additional targets could include making sure that the river is dry in the appropriate places at the appropriate times
 – Dry is not a continuous function
 – More on this later
Water levels in wells

- Most wells don’t have many measurements during the calibration period
Adjustable Parameters

- **Aquifer properties**
 - Hydraulic conductivity
 - Pilot points
 - Specific yield
 - Pilot points
 - Riverbed conductance
 - Drain conductance

- **Components of water budget**
 - ET
 - By irrigation entity
 - Tributary inflow
 - By tributary valley
 - Canal seepage
 - By irrigation entity
Pilot Points

- Estimate hydraulic conductivity (K) or specific yield (SY) at pilot points
- Interpolate values between pilot points
Pilot Points
Riverbed Conductance (RBC)

- Assign RBC by reach
Evapotranspiration (ET)

• Assign ET adjustment factors by entity
 – \(\frac{(\text{model-start})}{\text{start}}\)
Tributary valley inflow (TRB)

- Assign TRB adjustment tributary valley
Canal Seepage (CNL)

- Assign CNL adjustment factors by entity
PEST

- Parameter ESTimation software (PEST) ‘http://www.pesthomepage.org/’
- PEST is the industry standard software package for parameter estimation and uncertainty analysis of complex environmental and other computer models.
- PEST does not have a Graphical User Interface (GUI), it works from the command line.
PEST

- Simple 2 parameter model
- Populate jacobian matrix
 - Adjust each parameter record impact of adjustment on every observation
- Calculate upgrade vector
- Move down upgrade vector comparing model output with field observations
- When match stops improving, stop and repopulate jacobian matrix
- etc
PEST

– Jacobian matrix
 • Change between model output and field observations with respect to change in model parameters

– Best if model output is continuous
 • i.e. decrease non-irrigated recharge results in lower water levels at well X
 • What if well goes dry?
 – Results in non-continuous output?
 – Wells actually go dry
 – What value do we hand to PEST?
PEST

- **Jacobian matrix**
 - Change between model output and field observations with respect to change in model parameters

- **Best if function is continuous**
 - i.e. decrease non-irrigated recharge results in lower water levels at well X
 - What if well goes dry?
 - Results in non-continuous output?
 - Wells actually go dry
 - What value do we hand to PEST?
PEST

- Populate jacobian matrix using fixed transmissivity model
 - Wells can not go dry
- Calculate upgrade vector using jacobian populated with fixed transmissivity model
- Evaluate upgrade vector using variable transmissivity model
 - Wells can go dry
Conclusions

• Calibration Targets
 – River gains and losses
 • Flow in river
 – Water levels in wells
 – Outflow from model

• Adjustable Parameters
 – Hydraulic conductivity (K)
 – Specific yield (Sy)
 – Riverbed conductance (RBC)
 – Drain conductance (DC)
 – Evapotranspiration adjustment factor (ET)
 – Tributary inflow adjustment factor (TRB)
 – Canal seepage factor (CNL)