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EXECUTIVE SUMMARY

The Treasure Valley Hydrologic Project (TVHP) was a multi-year study to develop a better
understanding of ground water resources in the lower Boise River basin (Treasure Valley) of
southwestern Idaho. This report presents, as part of the TVHP, a summary of hydrologic
conditions in the Treasure Valley aquifer system. The report describes (1) Treasure Valley
aquifer characteristics, (2) multi-level ground water monitoring wells installed as part of the
TVHP, (3) results from water level measurements, and (5) aquifer inflows and outflows. The
report concludes with a description of ground water flow in Treasure Valley aquifers. This
conceptual model of ground water flow forms the basis for a series of numerical simulations
(Petrich, 2004a; Petrich, 2004b) conducted as part of the TVHP.

The Treasure Valley aquifer system resides in a complex series of interbedded, tilted, faulted,
and eroded sediments extending to depths of over 6,000 feet (Wood and Clemens, in press).
These sedimentary aquifers contain shallow, local flow systems (with ground water residence
times ranging from days to tens of years), and a deep, regional flow system (with residence
times ranging from hundreds to tens of thousands of years). Only a few wells extend beyond
a depth of 1,200 feet.

Water levels indicate general ground water movement in a westerly to southwesterly
direction. Individual hydrographs indicate relatively stable water levels in many areas.
Some areas, such as southeast Boise and an area south of Lake Lowell, have experienced
water level declines of approximately 30 and 65 feet, respectively. A number of wells in
other areas (primarily in the eastern portion of the valley) have also experienced water level
declines over the last several years. These declines have generally been less than 10 feet.

The largest component of recharge to shallow aquifers is seepage from the canal system and
infiltration associated with irrigated agriculture. Recharge to the deeper aquifer occurs in the
eastern portion of the valley and along the Boise Front. Ground water discharge to rivers,
drains, and canals represents the dominant form of discharge from the Treasure Valley
aquifer system. The primary form of natural discharge from the deeper aquifers is thought to
be regional upwelling in the southern and western portions of the basin, with ultimate
discharge to the Boise River and/or Snake River.

Ground water residence times in the deeper, regional aquifer system were found to increase
with depth and with distance along a regional east-to-west-trending flow path. Residence
time estimates ranged from thousands to tens of thousands of years.

Relatively long residence times in the regional flow system (over 20,000 years) imply that
(1) regional aquifers are marginally transmissive, (2) recharge rates to the deeper regional
aquifers are limited, and/or (3) regional aquifers are discharge-limited. Although there are
abundant silt and clay layers with low hydraulic conductivity, productive sand layers are
present throughout central portions of the valley. These sand zones are tapped by many
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irrigation and municipal wells. Recharge to the deeper, regional system is limited, but
generally has been sufficient for current rates of withdrawal. Thick lacustrine clays at the
distal end of the valley likely inhibit upward (discharge) flow, limiting the amount of water
that can flow through the system.
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1. INTRODUCTION

1.1. Project Background

The lower Boise River basin of southwestern Idaho (commonly referred to as the
“Treasure Valley”) has experienced significant population growth, local ground water
declines, and periodic drought conditions in the last two decades. This led to public
concern about the status and future of water resources in the valley. The Treasure
Valley Hydrologic Project (TVHP) was formed to address some of these issues and to
provide a framework for future water management. The purpose of the TVHP was to
develop a better understanding of ground water resources in the Treasure Valley and to
evaluate changes in regional and local ground water conditions (Petrich, 2004c). The
project included numerous components, including (1) water level measurements, (2)
monitoring well construction, (3) water budget development, and (4) numerical
modeling.

1.2. Report Scope

This report presents a summary of hydrologic conditions in the Treasure Valley aquifer
system. The report includes descriptions of the (1) Treasure Valley area, (2) Treasure
Valley aquifers, (3) multi-level ground water monitoring wells installed as part of the
TVHP, (4) ground water levels based on well measurements, and (5) aquifer inflows
and outflows. The report concludes with a description of ground water flow in
Treasure Valley aquifers. This description of ground water flow forms the basis for a
series of numerical simulations (Petrich, 2004a; 2004b).

This report draws, in part, from other reports and papers prepared as part of the TVHP.
These include the following:

1. Geologic and Tectonic History of the Western Snake River Plain, Idaho and
Oregon (Wood and Clemens, in press)

2. Water Budget for the Treasure Valley Aquifer System for the years 1996 and
2000 (Urban, 2004)

3. Simulation of Ground Water Flow in the Lower Boise River Basin (Petrich,
2004a)

4. Ground Water Recharge and Flow in the Regional Treasure Valley Aquifer
System (Hutchings and Petrich, 2002a)

5. Influence of canal seepage on aquifer recharge near the New York Canal
(Hutchings and Petrich, 2002b)
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6. Domestic, Commercial, Municipal, and Industrial Water Demand
Assessment and Forecast in Ada and Canyon Counties, Idaho (Cook et al.,
2001)

7. Stratigraphic Studies of the Boise (Idaho) Aquifer System using Borehole
Geophysical logs with Emphasis on Facies Identification of Sand Aquifers
(Squires and Wood, 2001)

8. Seismic Reflection Project - UPRR 2000 Profile (Liberty and Wood, 2001)

9. Hydrogeology, Geochemistry, and Well Construction of the Treasure Valley
Hydrologic Project Monitoring Well #1 (Dittus et al., 1999)

10. 1996 Water Budget for the Treasure Valley Aquifer System (Urban and
Petrich, 1998)

11. New York Canal Geologic Cross Section, Seepage Gain/Loss Data, and
Ground Water Hydrographs: Compilation and Findings (Carlson and Petrich,
1998)

12. Seismic Reflection Imaging of a Geothermal Aquifer in an Urban Setting
(Liberty, 1998)

13. Structure Contour Map of the Top of the Mudstone Facies, Western Snake
Supporting Data for Groundwater Conditions and Aquifer Testing of the
Tenmile Ridge Area of South Boise, Ada County, Idaho (Dittus et al., 1998)

14. Ground Water Quality Characterization and Initial Trend Analysis for the
Treasure Valley Shallow and Deep Hydrologic Subareas (Neely and
Crockett, 1998)

15. Structure Contour Map of the Top of the Mudstone Facies, Western Snake
River Plain, Idaho (Wood, 1997¢)

16. Cross Section of the Treasure Valley in the Boise Area: Notes on the
Geology of the Boise, Ontario, Parma, and Notus areas (Beukelman, 1997a;
Beukelman, 1997b; Beukelman, 1997c; Beukelman, 1997d)

17. Preliminary Map of the Base of the Sedimentary Section of the Western
Snake River Plain (Wood, 1996b)

1.3. Previous Investigations

Numerous previous investigations have focused on geology and hydrology in the
Treasure Valley or Western Snake River Plain (WSRP). Lindgren (1898) provided
early geologic descriptions of the Boise River Valley. Mabey (1982), Malde (1991),
Wood and Anderson (1981), and Wood and Clemens (in press) described the
geological setting. Othberg (1994), Othberg and Stanford (1992), Wood and Anderson
(1981), Malde (1991), Clemens (1993), Wood (1994), and Wood and Clemens (in
press) described valley stratigraphy.  Several authors have described aquifer
characteristics, including Dion (1972), Ralston and Chapman (1970), Wood and

February 2004 Page 2 IWRRI



Anderson (1981), Squires et al. (1992); and Wood and Clemens (in press). Previous
ground water flow models were developed by Lindgren (1982), Newton (1991), and
Brockway and Brockway (1999). The work conducted as part of the TVHP builds on
these efforts.
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2. DESCRIPTION OF PROJECT AREA

2.1. Project Area

The TVHP project area consists of (1) the lower Boise River sub-basin and (2) the area
between the lower Boise River sub-basin and the Snake River (Figure 2-1). The lower
Boise River sub-basin begins where the Boise River exits the mountains near Lucky
Peak Reservoir. From Lucky Peak Dam, the lower Boise River flows about 64 (river)
miles northwestward through the Treasure Valley to its confluence with the Snake
River. The Boise River drains the central portion of the valley; the Snake River drains
the southern portion of the valley. The project area (shown in red) extends south to the
Snake River because ground water flows from some portions of the lower Boise River
basin south toward the Snake River.

]

) AR
T ]

y Basin Boundary

o B s -7
:,—‘-'-_q’-’-Tﬁhs,u’E_e-Va@y’Boundary.; _
; a2 v e A et B

Figure 2-1: Map showing the Boise River basin, lower Boise River sub-
basin, and Treasure Valley Hydrologic Project

The entire Boise River basin covers over 4,020 square miles in southwestern Idaho.
Elevations in the basin range from a high of 10,174 feet above mean sea level (msl) to
a low of 2,185 feet (msl) at the confluence of the Boise and Snake Rivers.

Most of the surface water in the lower Boise River basin originates in the upper Boise
River basin. Much of the runoff from high elevation areas is stored in three reservoirs:
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Anderson Ranch Reservoir, Arrowrock Reservoir, and Lucky Peak Reservoir (Figure
2-1). The northern portion of the basin drains a large portion of Idaho’s south-central
mountains. Major surface water bodies in the Treasure Valley include the Boise River,
Lake Lowell, and the Snake River (Figure 2-2).

Boise River Eagle

Caldwell Meridian

Scale (miles)
I e~ . I
0 5 10 15

Figure 2-2: Treasure Valley area.

2.2. Population

The Treasure Valley was home to approximately 426,300 people in 2000', or about
one-third of Idaho’s population. Most of the Treasure Valley population is
concentrated in the growing cities of Boise, Nampa, Caldwell, and Meridian, as well as

a number of smaller communities (Figure 2-2).

Population growth in these areas for the period 1970-2000 is shown in Figure 2-3. The
population is projected to grow to approximately 655,000 people by 20207, an increase
of over 50% in 20 years.

" Source: U. S. Census data, presented by the Community Planning Association of Southwest Idaho

(http://www.compassidaho.org/demo/profiledemocharacteristics.pdf).
? Source: Community Planning Association of Southwest Idaho (http://compassidaho.org)
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Figure 2-3: Treasure Valley population growth for the period 1970-2000
(solid lines) and projected growth for the period 2000-2020 (dashed
lines).
2.3. Climate

The Treasure Valley has a temperate and arid to semi-arid climate. Average high
temperatures range from about 90°F in summer to 36°F in winter (Figure 2-4); average
low temperatures range from about 20°F in winter to about 56°F in summer. The
average precipitation ranges from about 8 to 14 inches throughout most of the valley
(Figure 2-5), most of which falls during the colder months (Figure 2-6).

% 1
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30 1
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20 —e— Boise Airport
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Source: State Climate Services, Biological and Agricultural Engineering Department, University of Idaho.

Figure 2-4: Monthly average temperatures.
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Figure 2-5: Annual precipitation at the Boise Airport between 1940 and

2001.
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Figure 2-6: Boise River basin precipitation at selected sites.
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2.4. Land Use

Approximately half of the land area in the Treasure Valley (Figure 2-7) is devoted to
irrigated agriculture. Major crops grown in the Treasure Valley include alfalfa and
alfalfa seed, sugar beets, wheat, beans, silage and seed corn, onions, and potatoes.
Residential and commercial uses account for approximately 10% of the land use, and
the remaining land is primarily open range and foothills.

Red areas indicate irrigated land; green areas indicate rangeland (IDWR infrared image)

Figure 2-7: Treasure Valley land use.

2.5. Irrigation

Large-scale irrigation in the Treasure Valley began in the late 1800s, and by the 1930s,
irrigated lands covered a large portion of the valley (Figure 2-8). The primary
application method is flood irrigation, with water diverted from the Boise River.
Expansion of irrigated land continued after 1939 (Figure 2-8). Some of the water for
expanded irrigation was drawn from the Payette River (through the Black Canyon
canal system), and some was obtained from ground water sources. In 1996,
approximately 252,000 acres were irrigated with surface water (Urban and Petrich,
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1998). An additional estimated 42,300 acres were irrigated with ground water. An
increasing amount of irrigated land has been taken out of production in recent decades
(Figure 2-8). Most of the loss of irrigated land between 1938—1939 and 2000 can be
attributed to urban expansion.

Irrigated in 2000 and Irrigated in 1938/1939 Not Irrigated in 2000, Not Irrigated in 1938/1939
I irrigated in 2000, Not Irrigated in 1938/1939 I Not Irrigated in 2000, Irrigated in 1938/1939

Figure 2-8: Changes in Treasure Valley irrigated lands between 1938—1939
and 2000 (IDWR data).

The region’s croplands are irrigated primarily with surface water through an extensive
network of reservoirs and canals. The first canals were constructed in the 1860s; there
are now over 1,100 miles of major and intermediate canals in the Treasure Valley
(Figure 2-9)°. The majority of canals are owned and maintained by canal companies
and irrigation districts (Figure 2-10). The Treasure Valley also has an extensive
network of drains (and ditch companies that service the drains). These channels serve
to drain water (often originating from irrigation practices) from low-lying areas. In
some cases the drains are also canals, and shallow ground water discharging to drains
is used for additional surface water irrigation.

? Figure created by IDWR based on canals included in 1:100,000 scale topographic mapping.
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Figure 2-9: Major and intermediate canals in the Treasure Valley (IDWR
data).
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== Boise Valley Irrigation Ditch CO
=0 Black Canyon Irrigation District
=== Boise City Canal Company
0 Boise-kuna Irrigation District
mmm Canyon County Water Co Ltd
=== Eureka Ditch Co No 2
== Eureka Water Co
mmm Farmers Cooperative Ditch Co
mmm Farmers Union Ditch Co Ltd
wm== Franklin Ditch Co
=0 |rrigation Entity Less Than 2000 Acres
== Middleton Irrigation Association

I Middleton Mill Ditch Co
mmm Nampa Meridian Irrigation District
=== New Dry Creek Ditch Co
wm=m New York Irrigation District
m== Pioneer Dixie Ditch Company
=== Pioneer Irrigation District
=== Riverside Irrigation District, Ltd

| Settlers Irrigation District

- Big Bend Irrigation District
=== The Riverside Irrigation District Ltd
=== Thurman Mill Ditch Company Ltd
= \Wilder Irrigation District

Treasure Valley Boundary

Figure 2-10: Treasure Valley irrigation district boundaries (IDWR data).
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Of the estimated 252,000 acres irrigated in 1996 (Figure 2-11), approximately
101,000 acres was irrigated by sprinkler systems (Urban and Petrich, 1998). Of this
total, approximately 42,000 acres (42%) are irrigated with ground water and 59,000
acres (58%) are irrigated with surface water. Ground water is used for irrigation in
locations where surface water is unavailable or in times of surface water shortages.
Irrigation wells were installed during the late 1920s and 1930s to provide supplemental
irrigation during times of drought. Additional wells for primary and supplemental
irrigation (and domestic uses) have been drilled during the last several decades.

Lucky Peak
Reservoir

Treasure Valley Boundary
Sprinker Irrigation

Flood Irrigation
Residential/Urban/Commercial

JORLI

Rangeland

Figure 2-11: Treasure Valley flood and sprinkler irrigation in 1994 (IDWR
data).

February 2004 Page 12 IWRRI



3. AQUIFER DESCRIPTION

3.1. Introduction

This section provides a description of Treasure Valley aquifer characteristics. Material
for this section was drawn from geological investigations conducted prior to and as part
of the TVHP. A description of flow characteristics, based on aquifer characteristics,
hydraulic heads, hydraulic gradients, and estimates of inflows and outflows, is
provided in Section 7.

3.2. Geologic Setting

The lower Boise River sub-basin (Treasure Valley) is located within the northwest-
trending topographic depression known as the Western Snake River Plain (WSRP).
The WSRP is a Neogene-aged (Table 3-1) continental rift basin (Wood and Clemens,
in press), separating Cretaceous granitic mountains of west-central Idaho from the
granitic/volcanic Owyhee mountains in southwestern Idaho. The WSRP now has the
appearance of a northwest-trending graben associated with continental rifting (Mabey,
1982; Wood and Anderson, 1981). The WSRP extends from around Twin Falls, Idaho,
northwestward to Vale, Oregon. The section of the WSRP containing the lower Boise
River valley is about 30 miles wide (Figure 2-1 and Figure 2-2).

The WSRP is believed to have been formed by crustal extension (Malde, 1991, p.251).
Malde suggests that the basin began forming as early as 17 million years ago (Ma),
although Wood and Clemens (in press) suggest that the basin began forming about
11 Ma, with major faulting that occurred between 11 and 9 Ma (Wood and Clemens, in
press). Miocene-aged (Table 3-1) rhyolite flows and domes are present along the
margins of the WSRP. Rhyolite is present in outcrops in the Boise Foothills near
Boise. Geothermal wells in the downtown Boise area draw water from two rhyolite
zones separated by arkosic sand and granitic gravels. Deep wells north and west of
Boise have not penetrated rhyolite (to the authors’ knowledge); for example, the
14,100-foot-deep J.N. James well near Meridian did not encounter rhyolite (S. Wood,
pers. comm., 2000). For this reason Wood and Clemens (in press) hypothesize that
much of the plain may have been an upland during Miocene silicic volcanism.

The basin dropped, relative to surrounding highlands, by isostatic compensation
(Malde, 1991) in response to thick accumulations of volcanics associated with rifting
and deposition of overlying sediments (Mabey, 1982). Wood and Clemens (in press),
Squires and Wood (2001), and others have described fluvial and lacustrine sediment
deposition that occurred in the basin during this time (Section 3.3).
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Approximate| Approximate
Era Duration beginning
Period Epoch (Millions of (Millions
Years) of Years Ago)
Holocene | Approx. Last
Quaternary (Recent) 10,000 years 10,000 years
o Pleistocene 2 2
N Pliocene 3 5
o Neogene -
3 Miocene 18 23
© Tertiary Oligocene 15 38
Paleogene Eocene 16 54
Paleocene 11 65
o Cretaceous 71 136
N Jurassic 54 190
?
[0
= —
Triassic 35 225

1 Shading indicates ages represented in Treasure Valley geology.

Table 3-1: Geologic time during the Cenozoic and Mesozoic eras.

Volcanic activity returned to the WSRP during the late stages of Lake Idaho (see
Section 3.3) about 5.5 Ma (Wood and Clemens, in press). Lava erupted from a line or
series of volcanic vents referred to as the Kuna—Mountain Home volcanic rift. These
Quaternary basalt flows, assigned to the upper Snake River Group (Malde, 1991,
p.266; Malde and Powers, 1962), flowed across portions of the ancestral Snake River
Valley in an area that is now south of the Boise River (Malde, 1991). The Snake River
then changed course, incising at its present location along the southern margin of the
basalt flows. More recent eruptions (from Kuna Butte and other local sources along
the rift) spilled lava into the Snake River Canyon south of Melba. The Snake River has
since incised into this basalt (Malde, 1991, p.267).

3.3. Stratigraphic Profile

The general stratigraphy of the WSRP consists of interbedded layers of sand, silt, and
clay overlying Miocene tuffaceous sediments and basalt flows (Figure 3-2). The
sediments, ranging up to 6,000 feet in thickness in some locations, distinguish the
WSRP from the Eastern Snake River Plain (ESRP), which is primarily Quaternary
basalt in its upper section (Wood and Anderson, 1981, p.9).
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Figure 3-1: Cross-section of the WSRP.

The Miocene-aged tuffaceous basalt rests unconformably on granitic rocks of the Idaho
Batholith, on late Miocene rhyolite, and/or on basalt of the Miocene Columbia River
Group (Wood and Clemens, in press). The basalt assemblage is several hundred feet

thick in the Boise area and forms the basement for sediments comprising the Treasure
Valley aquifers.

The upper surface of the Miocene basalt forms a highly irregular surface (Figure 3-2),
intersected by numerous northwest-southeast trending faults (Figure 3-3). The basalt
surface was interpreted by Wood (1996b) based on well data, deep seismic reflection

data, subsurface investigations in east Boise (Squires et al., 1992), and shallow seismic
data (Liberty, 1996a; Liberty, 1996b).
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Figure 3-2: Upper Miocene basalt surface.

Faulting has been described by numerous authors (Barrash and Dougherty, 1995;
Liberty, 1996a; Liberty, 1996b; Liberty, 1998; Liberty and Wood, 2001; Malde, 1991,
p. 259; Othberg and Stanford, 1992; Squires et al., 1993; Squires et al., 1992; Wood,
1994; Wood, 1996b; Wood and Anderson, 1981; Wood and Clemens, in press) on the
basis of surface geomorphology, stratigraphic correlations, and seismic reflection
surveys and associated interpretations. Displacement along these faults ranges from
feet to hundreds of feet. Cumulative fault offsets (up to several hundred feet of
displacement) and basinward downwarping account for much of the basin structural
relief (Figure 3-3). The East Boise Fault truncates the Boise Fan sediments with 400 to
600 feet of displacement along the fault (Squires et al., 1992). Additional faults are
illustrated in Othberg and Stanford (1992).

Other major faults include the Eagle-West Boise Fault, Foothills Fault, Middleton—
Meridian Fault, Lake Lowell Fault, and Southwest Boundary Fault (Wood, 1996b).
The West Boise—Eagle Fault has about 800 feet of displacement near Chinden
Boulevard just west of the Boise Fairgrounds and has been recognized by apparent
stratigraphic offsets in wells between Dry Creek and Eagle along Highway 55.
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Transmissive sands appear to be rare below a depth of 300 to 400 feet northeast of the
fault (R. Dittus, pers. comm., 2003)*; productive sands are present at deeper depths
southeast of the fault. The clay northeast of the fault is considered to be part of the
mudstone facies of the Terteling Springs Formation (Burnham and Wood, 1992). The
Foothills Fault also is a recognizable feature along the Boise Foothills near Boise (with
an offset of greater than 500 feet in the Boise vicinity), although seismic data in the
lower Stewart Gulch area (Wood, written comm., 2003) do not show large
displacement along the foothills margin. The Middleton—Meridian Fault (actually seen
as four faults distributed over a 1.5-mile-wide area in the Chevron seismic line) has an
approximate offset of 1,200 feet (Wood, 1996b). The Lake Lowell Fault is mapped
between the southern edge of Lake Lowell and Wilder and has a displacement of about
400 feet. Finally, Wood (1996b) describes about 4,000 feet of subsurface structural
relief over a 5 mile area southwest of Marsing, although detailed subsurface studies
have not been done in this part of the valley.

A thick sequence of sediments overlies the Miocene volcanics (Figure 3-1). These
sediments are categorized into two groups: the older and deeper Idaho Group and
younger Snake River Group (Table 3-2). Idaho Group sediments represent a thick
series of predominantly lacustrine sediments that include the Chalk Hills, Terteling
Springs, and Glenns Ferry Formations (Kimmel, 1982; Wood and Clemens, in press).
In general, these sediments range to several thousand feet in thickness and grade finer
with depth.

The Idaho Group sediments originated from large lakes in the WSRP during the late
Miocene and Pliocene epochs. The base of the sedimentary sequence consists of
interbedded arkose, mudstone, and volcanic ash, considered part of the Chalk Hills
Formation (Kimmel, 1982). Sediments within the bottom 300 feet are generally coarse
sand and pebble gravel originating from the Idaho Batholith and other older volcanics,
grading upward into tuffaceous muds, clays, and ash beds (Wood and Clemens, in
press). The Chalk Hills sediments are faulted and tilted, dipping 4 to 12 degrees
basinward, compared to overlying lacustrine sediments that dip less than 4 degrees
(Wood and Clemens, in press). In some areas, an unconformity associated (in part)
with the occurrence of gravels separates Chalk Hills sediments from overlying
sediments (Squires and Wood, 2001; Wood and Clemens, in press).

A transgressive sequence followed the draining of the Chalk Hills Lake, beginning
about 5.5 Ma, resulting in a vast lake referred to as Lake Idaho (Wood and Clemens, in
press). At its maximum extent, Lake Idaho reached an elevation of about 3,600 feet
(msl) in the Boise Foothills. Most of the exposed sediments in the Boise Foothills
appear to have been deposited during this transgressive sequence. These sediments,

* The TVHP #1 well (Figure 4-2) was drilled on the northeast side of this fault to a depth of 1,005 feet, with the
lower 600 feet in dominantly clay materials (Dittus et al., 1999); see Section 4.
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mapped as the Terteling Springs Formation (Burnham and Wood, 1992; Wood and
Clemens, in press), include shoreline sand deposits with oolitic sand lenses, small
deltaic deposits, and a mudstone facies associated with lacustrine deposition
basinward. The Terteling Springs Formation is indicated by a 400-foot-thick section of
near-shore sediments marked by oolitic lenses and extends to an elevation of up to
3,200 feet (msl) in the Boise Foothills (Squires and Wood, 2001).

Time Lithostratigraphic Units Group
Alluvium
Gravel of the Boise Terrace
> Gravel of the Whitney Terrace
! Gravel of the Sunrise Terrace
I3 Basalt of the Gowen Terrace (0.572 + 0.210 Ma)
S Gravel of the Gowen Terrace Snake River
C Basalt of the Fivemile Creek (0.974 + 0.130 Ma) Group
Gravel of the Fivemile Creek
~1.8 Ma
% Tenmile Gravel
8 East Boise alluvial fan deposits
o Pierce Gulch Sand | Glenns Ferry Formation
~5.0 Ma
Terteling Sp'rlngs Basalt of Aldape Park (9.4
Sand Facies
; +0.6 Ma
Mudstone Facies Idaho Group
© Boise Foothill Volcanic Assemblage
§ Basalt of Pickett Pin Canyon
o Volcaniclastic sediments and tuffs and Barber rhyolite
% ash
2 Lower basalt flow rocks
=] Rhyolite of Quarry View Park (11.8 £ 0.6 Ma)
Rhyolite of Table Rock Road Idavada Group
Rhyolite of Cottonwood Creek (11.3 + 0.6 Ma)
~38 Ma
(SN0
o <
N ©
23 Granitic Rocks Idaho Batholith
o w
=
Adapted from Squires and Wood (2001).

Table 3-2: Stratigraphic names in the WSRP.

Malde and Powers (1962) suggested that the lowest occurrence of oolitic shoreline
sands marks the base of the Glenns Ferry Formation, which covered a large area from
the Snake River at Glenns Ferry to Homedale. More recently, Burnham and Wood
(1992) and Wood and Clemens (in press) have defined the lower portion of these
sediments as the Terteling Springs Formation.
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Wood and Clemens (in press) hypothesize that Lake Idaho began to recede about 4 Ma,
with the outlet downcutting at a rate of approximately 400 feet per million years.
Sediments (originally eroded from uplands and deposited at the basin margins) were
further eroded as Lake Idaho water levels dropped. These sediments contributed to
filling the receding lake, forming interbedded sand and mud sequences and extensive
lacustrine delta systems. Along the Boise Foothills, these sediments are represented by
a 200-foot-thick coarse sand unit (Pierce Park Sand) with Gilbert-type foreset bedding.
The Pierce Park Sand correlates basinward with the Glenns Ferry Formation (Squires
et al., 1993; Wood and Clemens, in press), which overlies the Terteling Springs facies.
These sediments were spread basinward as the lake system receded from the valley
during the Lake Idaho regression (E. Squires, pers. comm., 2003).

Within the general transgressive (Terteling Springs deposits) and regressive (Pierce
Park—Glenns Ferry deposits) sequence, there is evidence of rising and lowering lake
levels. The occurrence of gravel layers in the valley several miles from the basin
margins within a general lacustrine sediment sequence is evidence of fluvial
deposition, indicating multiple episodes of lowering and raising of lake levels within
the transgressive-regressive sequence (Squires and Wood, 2001).

The top of the upper Idaho Group is marked in several parts of the Treasure Valley by
a widespread fluvial gravel deposit known as the Tenmile Gravel. Tenmile Gravels
contain rounded granitic rocks and felsic porphyries originating from the Idaho
Batholith to the north and northeast. The Tenmile Gravels may range up to several
hundred feet in thickness along the Tenmile Ridge south of Boise but are less than
50 feet thick in the Nampa-Caldwell area (Wood and Anderson, 1981).

Wood (1994) identified a buried lacustrine delta within the Idaho Group sediments in
the Nampa-Caldwell area. The location of the delta in the WSRP suggests that the
eastern part of the Boise River basin was delta plain and flood plain at the time of
deposition, while the western part was a slack-water (e.g., lake) environment. The
delta probably prograded northwestward into a lake basin about 850 feet deep based on
high-resolution seismic reflection data and resistivity log interpretations. The
delta-plain and delta-front sediments were shown to be mostly fine-grained, well-sorted
sand with thin layers of mud (Wood, 1994). The northwest trend of the delta indicates
a sediment source to the southeast, such as where the Snake River flows today (Wood,
1994).

The uppermost sediments and basalt covering much of the project area (Figure 3-3)
belong to the Pleistocene-age Snake River Group (Othberg and Stanford, 1992). The
Snake River Group sediments, consisting primarily of coarse-grained sand and gravels,
include Quaternary alluvium, a series of Quaternary terrace gravels and sands, and
Pleistocene basalt flows (Wood and Anderson, 1981). The basalt flows cover
primarily the southern portion of the project area (Figure 3-3).
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Figure 3-3: Surficial geology map.

Several stratigraphic cross-sections were drawn by Beukelman (1997a; 1997b; 1997c;
1997d), Wood (1996a), and Squires and Wood (2001) as part of the TVHP. The cross-
sections were based on drillers’ logs, geophysical logs, geologic outcrops, and seismic
data. Surficial deposits were noted as modern flood plain deposits, Bonneville Flood
slackwater fine sediments, Pleistocene gravels, and older tertiary-age sediments.

A transition from brown to underlying blue or gray sediments is noted in many drillers’
reports and in the various cross-sections. The color transition is observed throughout
central and western portions of the valley (Beukelman, 1997b; Beukelman, 1997c;
Beukelman, 1997d; Squires and Wood, 2001), as far west as Parma and Ontario and as
far east as Boise (Beukelman, 1997a; Squires et al., 1992). The blue-gray sediments
are not found in the upper 1,100 feet of alluvial fan sediments east of Boise (Squires et
al., 1992). The blue-gray sediments generally consist of clay and/or silt but also may
include interbedded sand or even pea gravels. The upper surface of these sediments,
frequently referred to as the “blue clay,” can be found at depths ranging from tens of
feet to over 800 feet below ground surface.
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The origin of the contact between brown and blue-gray sediments is not well
understood. The bluish color probably reflects chemically-reducing conditions
associated with an oxygen-poor environment. Some of the color may be associated
with depositional environment, especially when lacustrine sediments become buried
under new deposition. Some of the color may be associated with post depositional
conditions, as evidenced by gravels and coarse sands within bluish horizons. Local
elevation variations in bluish sediments may reflect erosion of the blue-gray sediments,
exposure to oxygen, and/or structural movement.

The use of color changes to identify depositional environments can be misleading.
Despite the presence of blue-gray sediments throughout much of the valley, the color-
change contact does not appear to represent individual areally-extensive strata. Bluish-
colored sediments may change color if exposed to oxygen (or oxygen-rich ground
water). Thus, the transition from brown to blue-gray sediments probably reflects a
combination of deposition and post-depositional conditions and therefore, is not
necessarily indicative of current ground water flow conditions.

Multiple layers of clay are found within the Idaho Group sediments. These clay layers,
in aggregate, form aquitards separating shallow aquifers from deeper zones. Although
the clay layers are often of substantial thickness, individual clay units are not
necessarily continuous over large portions of the project area.

3.4. Aquifer Description

Treasure Valley aquifers also have been described in terms of subdivisions based on
general material properties and location within the valley (Squires et al., 1992). This
section provides a general description of primary aquifers on the basis of sedimentary
characteristics.

The sediments included in these subdivisions may span multiple formations or geologic
groups (Section 3.3). For instance, some of the East Boise alluvial fan sediments may
be contemporaneous to the upper Chalk Hills Formation (Wood and Clemens, in
press); lacustrine sediments in the central portion of the valley may belong to the Chalk
Hills, Terteling Springs, and/or Glenns Ferry Formations. Distinctions between the
specific geologic formations may not necessarily indicate differences in ground water
flow characteristics. For instance, lacustrine sediments in the central portion of the
valley may have similar ground water flow characteristics, regardless of whether they
belong to the Chalk Hills Formation or the Terteling Springs mud facies.

Thus, the Treasure Valley aquifer system consists of a series of sedimentary aquifers
within the Idaho Group and Snake River Group sediments. Squires et al. (1992)
interpreted five subdivisions (Figure 3-4) within the Idaho Group sediments in the
Boise area using geophysical logs, well logs, and aquifer tests. The five subdivisions
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are the (1) Boise Fan Sediments, (2) Fan-to-Lake Transition Sediments, (3) Central
Boise Lacustrine Sediments, (4) Deep Lacustrine Sands and Alluvial Lake Margin
Sands of west Boise, and (5) Lake Margin Sands of northeast Boise.
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Figure 3-4: Subdivisions of Idaho Group sediments.

The Boise Fan (Squires et al., 1992) covers a large, highly heterogeneous deposit of
gravels, sands, and silts, beginning near Lucky Peak Dam and extending about 6 miles
to the west-northwest. Predominantly silty sands, the Boise Fan sediments also contain
numerous gravel lenses and a few silt lenses. Fan-to-Lake Transition sediments were
described as clays and sands of alternating brown and blue colors, indicating
interfingered oxidized and reduced materials, respectively. Squires et al. (1992)
described the Central Boise Lacustrine sediments as sand, silt, and clay units bearing
lacustrine features (e.g., oolites, fine grain sizes). Sediments underlying an area of
west Boise were described as deep lacustrine sands and alluvial lake margin sands.
Wells in this area encountered 500 feet of nearly horizontal medium- to coarse-grained
sands interbedded with silts, sands, and clays, underlain by 500 to 1,000 feet of fine-
grained sand layers within thick layers of clay and silt. Seismic data indicated a
westerly dip in the lower section of 3 to 7 degrees and 2 to 3 degrees in the upper
materials. Finally, Squires et al. (1992) interpreted lake margin sediments containing
sands, gravels, and occasional silty zones in the area underlying northeast Boise. The
sediments were interpreted as lake margin sediments on the basis of the well-sorted
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nature of the sand layers, interbedded fluvial deposits, and their stratigraphic location
with respect to adjacent geologic outcroppings of the Boise Foothills.

Wood and Anderson (1981) first suggested that the Glenns Ferry sediments rest on a
geological unconformity within the Idaho Group. The lower sediments dip basinward
approximately 4 to 7 degrees. The buried unconformity lies 350 to 400 feet beneath
central and east Boise and 400 to 500 feet deep in west Boise (Squires et al., 1992).
Additional fluvial deposits have been noted within lacustrine sequences (Squires and
Wood, 2001), indicating multiple episodes of rising and lowering lake levels.

Sequences of interbedded sand, silt, and clay, such as the upper portion of the Glenns
Ferry Formation of the upper Idaho Group in the Nampa—Caldwell area, are the major
water-producing aquifers in a large part of Canyon County (Anderson and Wood,
1981).

3.5. Water Chemistry

Despite regional geologic complexity, geochemical analyses conducted as part of the
TVHP (Hutchings and Petrich, 2002a) show predictable relationships between ground
water chemistry and the unique depositional environments of the principal aquifers.
The analyses indicated (1) a strong relationship between concentrations of dissolved
constituents and depositionally-defined aquifer units, (2) apparent geochemical
evolution along the valley axis, and (3) a general east-to-west increase of ground water
residence times.

Geochemical evolution of Treasure Valley ground water appears to be influenced by a
solution of both carbonate and silicate minerals. Ground water near the northeastern
basin margin has experienced little chemical interaction with aquifer minerals; ground
water beyond the northeastern basin margin has experienced substantial interaction
with aquifer minerals.

Concentrations of major ions and other dissolved constituents vary consistently with
depth among aquifer zones. Specific conductance (and by inference, concentrations of
total dissolved solids) is often greater in shallow alluvial aquifers than in some deeper
zones. This finding indicates that water in these deeper zones did not enter the ground
water regime through the carbon-rich sediments found in Treasure Valley soils.

Residence times of Treasure Valley ground water generally increase with depth and
with distance along a regional east-to-west trending flow path (Hutchings and Petrich,
2002a; Hutchings and Petrich, 2002b). Residence times range from years to hundreds
of years in shallow aquifers and thousands to tens of thousands of years in deeper,
regional aquifers.

February 2004 Page 23 IWRRI



Residence times in the shallow system are bracketed, in part, based on tritium
concentrations remaining from nuclear testing during the 1950s and 1960s. Tritium is
present in shallow aquifers, such as those underlying the New York Canal (Hutchings
and Petrich, 2002b). Tritium is virtually non-existent in deeper, regional ground
waters, except where well construction has allowed inter-aquifer mixing. This finding
indicates that ground water in deeper aquifers entered the flow regime prior to
atmospheric nuclear testing during the 1950s and 1960s.

The youngest waters in the deeper, regional flow system entered the subsurface a few
thousand years ago and are found along the eastern and northeastern boundary of the
basin, adjacent to the Boise Foothills. The oldest waters in the regional flow system
entered the subsurface between 20,000 and 40,000 years ago and are now found in the
western reaches of the basin near the Snake River. Ground water in the deep deltaic
aquifers beneath Boise entered the subsurface between 10,000 and 20,000 years ago.

From the ground water chemistry analyses it becomes clear that contemporary seepage
from surface water in the central portion of the valley and/or irrigation water is not the
primary source of recharge for most deeper, regional aquifers. Fractured granite
aquifers of the Idaho Batholith, surface water in the far eastern portion of the valley,
and tributary sedimentary aquifers (underflow) are the most likely sources of recharge
to the regional flow system. A conceptual model consisting of (1) recharge in alluvial
sediments in southeast Boise and at the base of the mountain front north of Boise, (2)
movement of ground water from the recharge areas into the deeper Boise area fluvio-
lacustrine aquifers, and (3) movement of ground water from the Boise area aquifers
into regional deep-lake aquifers of Nampa and Caldwell is consistent with these
chemistry data.

3.6. Ground Water Flow Systems

Ground water for municipal, industrial, rural domestic, and irrigation uses in the
Treasure Valley is drawn from Snake River Group and Idaho Group aquifers. Many
domestic wells draw water from shallow aquifers, such as those in the Snake River
Group deposits. Larger production wells (for municipal and agricultural uses)
generally draw water from the deeper Idaho Group sediments. Flow systems providing
water to these wells can be markedly different. Distinguishing between shallow and
regional ground water flow systems is important for understanding ground water flow
characteristics and managing ground water resources.

Local flow systems in shallow aquifers are recharged by infiltration associated with
precipitation, irrigation, and channel (e.g., streams or canals) losses. These local flow
systems often discharge to local drains or streams. The time from recharge to
discharge in shallow flow systems probably ranges from days to hundreds of years. In
contrast, regional ground water flow systems extend much deeper than local flow
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systems. The Treasure Valley regional flow system begins with downward movement
in coarse-grained alluvial fan sediments in the eastern portion of the valley. Some
water also enters the regional flow system as underflow from the Boise Foothills in the
northeastern part of the valley. The regional flow system is thought to discharge
primarily to the Boise and Snake Rivers in the western and southwestern parts of the
valley. Residence times (Section 3.5) for some of the water in the regional flow system
were estimated to be greater than 20,000 years (Hutchings and Petrich, 2002a).

3.7. Hydraulic Properties®

Numerous hydraulic parameter value estimates have been made for Treasure Valley
aquifers. Most parameter estimates have been made on the basis of single-well tests.
Water production wells are frequently pumped to estimate well yield and specific
capacity. Very approximate estimates of transmissivity can sometimes be obtained
with specific capacity data (Driscoll, 1986). Permeability estimates have also been
made under laboratory conditions at some locations in conjunction with landfill
construction (e.g., Seaman’s Gulch, Clay Butte, and Pickles Butte). In addition, a few
large-scale, multiple-well tests have been conducted in the Treasure Valley.

Specific capacity data obtained from well drillers’ reports were used to develop plots of
aquifer transmissivity values. These plots, however, should only be viewed on a
qualitative basis because of a high degree of uncertainty associated with these data.
The uncertainty is high because of variability in test duration, pumping rate, well
efficiency, differences in well construction (e.g., different lengths of open intervals),
degree of aquifer penetration, and measurement accuracy.

Well pump test data for 197 wells within the valley formed the basis for the specific
capacity plots. The specific capacity data were compiled from drillers’ report
information contained in the IDWR Well Log database’. Specific capacity data were
divided into two depth zone categories: a zone from 0 to 300 feet below ground
surface and a zone greater than 300 feet depth below ground surface. The data were
divided into zones on the basis of open interval depths for wells as listed in the well
drillers’ reports. Aquifer thickness values were (1) entered in Well Log on the basis of
lithology indicated in the drillers’ log or (2) assumed to be the thickness between the
water level in the well and the well bottom.

A transmissivity map for the 0 to 300-foot zone (Figure 3-5) suggests that the bulk of
transmissivity values calculated for shallow aquifers in the Treasure Valley are less
than 200,000 ft*’/day. Isolated areas with comparatively high transmissivity values

> Data for this section were compiled and plotted by Rick Carlson, formerly with IWRRI.
% The Well_Log data base is being developed and maintained by IDWR with data from well drillers’ reports.
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(> 600,000 ft*/day) were noted northeast and southeast of Lake Lowell and just north
of the Boise River near Eagle. These high transmissivity values correlate with areas
underlain by both gravel and basalt.

77\—/\—/..'.

BOISE RlVER\
. . -84 * . %

Transmissivity (ft7/day)

= 0 to 200,000

e 200,000 to 400,000
® 400,000 to 600,000
® (600,000 to 800,000
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N

Scale
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[— |

(Based on specific capacity data for wells with screened
interval beginning at less than 300 feet below land surface)

Figure 3-5: Transmissivity estimates for wells completed between 0 and 300
feet below ground surface.

The map for the greater-than-300-foot zone (Figure 3-6) suggests that transmissivity
values are comparatively greater at depth. The majority of calculated transmissivity
values for deep aquifers across the Treasure Valley ranged between 200,000 and
400,000 ft*/day. Isolated areas of higher transmissivity (600,000 to 800,000 ft*/day)
were apparent beneath west Boise, about 5 miles south of Boise, and 2 miles south of
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Lake Lowell. These areas of high transmissivity are believed to correlate with deep
aquifers containing zones of coarser-grained sediments’.
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(Based on specific capacity data for wells with screened
interval beginning at greater than 300 feet below land surface)
Figure 3-6: Transmissivity estimates for wells completed below 300 feet
below ground surface.

In addition, aquifer parameter estimates were compiled from various single- and multi-
well aquifer test results. The source of these data includes various reports prepared by
public agencies and private consultants. Test locations are shown in Figure 3-7. A
table of values is provided in Appendix B. Estimated hydraulic conductivity values

ranged from 2.49x10° to 1.0x10’ ft/day.

’ These conclusions may be skewed because (1) low-producing wells may not have been completed, and
therefore are not included here, and (2) most of the wells used for aquifer tests are designed for production, and
therefore are completed in the most productive zones.
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Figure 3-7: Locations of selected single and multiple well aquifer tests.
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3.8. Geothermal System

The “cold water” aquifer system contained in the Snake River and Idaho Groups is
underlain by a low-temperature geothermal® aquifer system. Temperatures of the low-
temperature geothermal water range from 85° to 175°F along the Boise Front’ (Petrich,
2003). The geothermal system provides heating for numerous Boise buildings and
residences. In some areas, apparent upwelling from the geothermal system appears to
influence potable non-geothermal ground water chemistry, evidenced by elevated
concentrations of fluoride and other constituents.

The geothermal water along the Boise Front is associated with the Miocene basalts and
underlying rhyolite (Wood and Burnham, 1987, p.121). Geothermal water rises from
fractured rhyolite along the northwest-trending fault zone that marks the northeastern
boundary of the Snake River Plain. A conceptual geothermal water circulation loop
was described by Wood and Burnham (Wood and Burnham, 1987, p.121; Wood and
Low, 1988, p.32-33), in which meteoric water from surrounding highlands circulates
through deep fractures in the Idaho Batholith. The extent of the rhyolite aquifer into
the valley is unknown. The rhyolite is present along the northern and southern margins
of the WSRP, but no wells in the central part of the valley have extended into rhyolite
(S. Wood, pers. comm., 1996). Potentiometric surface maps based on the 2002 mass
measurements in geothermal wells suggest a westerly or southwesterly hydraulic
gradient in the Boise Front area (Petrich, 2003).

It is important to differentiate between geothermal water and water that is greater than
85°F found in deeper Idaho Group sediments. Geothermal water from the rhyolite
aquifers generally contains greater concentrations of sodium, bicarbonate, sulfate,
chloride, fluoride, silica, arsenic, boron, and lithium than the overlying non-geothermal
systems (Wood and Low, 1988, p.32). Upper aquifers, even if containing warm water,
generally have higher concentrations of calcium and magnesium than the geothermal
system. Squires and Wood (1989) note that ground water taken from Tenmile Ridge
wells exhibits warm temperatures (70° to 88° F), but does not contain the high fluoride
content associated with geothermal water on the north side of the Boise Valley. This
lack of chemical similarity suggests that, with the exception of the fault zone area
along the Boise Foothills, (1) the hydraulic connection between aquifers in the Idaho
Group sediments and the geothermal rhyolite aquifers is limited, or (2) the volume of
cold water entering the Idaho Group aquifers is much larger than the volume of
geothermal water entering the Idaho Group aquifers.

¥ “Low-temperature geothermal water” is defined by Idaho Code (I.C.§ 42-233) as ground water with a
temperature greater than 85°F but less than 212°F.

? Boise Front describes the portion of the Idaho Batholith that forms the northeastern boundary of the lower
Boise River basin.

February 2004 Page 29 IWRRI



Limited hydraulic interaction between the geothermal rhyolite aquifers and the non-
geothermal aquifers in the Idaho Group is attributed to low permeabilities of the
materials separating the aquifer zones. Miocene basalt and tuffaceous sediments
overlying the rhyolite geothermal aquifer have low permeability because of clay
alteration and minerals filling the fractures (Squires and Wood, 1989, S. Wood, pers.
comm., 1997)S. Wood, pers. comm., 1997). Low permeability mudstone (which may
be more than several hundred feet thick) at the base of the Idaho Group sediments
further restricts the vertical permeability and hydraulic connection. However, elevated
fluoride and temperature in some non-geothermal aquifers (along the Boise Front and
in an area southwest of Nampa) indicates that some upwelling does occur.
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4. DEDICATED TVHP MONITORING WELLS

Four multi-completion monitoring wells were constructed as a part of the TVHP
(Figure 4-1). The purpose of the wells was to provide water level and chemistry data at
different depths and locations within the aquifer system. A summary of screened
intervals for the multiple-completion wells is provided in Table 4-1. Appendix A
provides construction details and stratigraphic data for each of the wells. Geophysical
data for wells TVHP #1, TVHP #2, and TVHP #4 are also provided in Appendix A.

Figure 4-1: TVHP monitoring well locations.

Monitoring well TVHP #1 was drilled and constructed by United Water Idaho, Inc.
(UWID) during December 1996. The well was drilled as a deep exploratory test well,
and was originally drilled to evaluate potential aquifer units that might be developed
for municipal water supply (Dittus and Squires, 1998). The borehole was drilled to a
depth of 1,050 feet below ground surface but was subsequently backfilled to 357 feet.
Four piezometers were then installed, with completion depths ranging from 170 to
340 feet. Water quality analyses from these piezometers showed the aquifers were not
suitable for use as a municipal supply. UWI donated the well to the TVHP for use as a
long-term monitoring well, and IDWR purchased an access easement to the well from a
private landowner. Water levels (Figure 4-2) indicate an upward hydraulic gradient
and apparent influences of nearby withdrawals and/or recharge.
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Screened Intervals —
Well Name Piezometer | Depth below ground surface
(feet)

Zone 1 300-310, 330-340
Zone 2 270-290

TVHP #1 (Near Eagle) Zone 3 210-220, 240-250

Zone 4 130-140, 150-170

Zone 1 912-922, 932-942

Zone 2 679-689, 699-709
Zone 3 516-536
Zone 4 376-396
TVHP #2 (Caldwell) Zone 5 538248
Zone 6 182-192
Zone 7 142-152
Zone 8 110-120
. 1 600-700
TVHP #3 (Quarry View Park) 5 813-848

1 35-55

2 190-210
TVHP #4 (Municipal Park) 3 300-320
4 450-470
5 710-730

Table 4-1: Construction details for TVHP monitoring wells.

TVHP #1 - Near Eagle Ground Elevation: 2582
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Figure 4-2: Hydrograph for TVHP #1.
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Monitoring well TVHP #2 was constructed within the city of Caldwell during 1999.
As with TVHP #1, this borehole was drilled for the purpose of seeking an additional
source of municipal water. The city of Caldwell and IDWR agreed to share the cost of
completing the borehole as a multi-level monitoring well (with in-kind technical
support by UWID). Completed with eight piezometers, this well nest has completion
depths ranging from 120 to 942 feet. Hydraulic head measurements (Figure 4-3)
indicated a strong upward gradient between 725 feet and shallower zones and a
moderate upward gradient from 550 feet to shallower zones. The vertical head
differences ranged from 35 to 41 feet (upward gradient) between 11/30/99 and 6/20/01,
with an average difference of 37 feet. The four uppermost completions (between 122
and 270 feet depth) are relatively consistent, indicating the possibility of a high degree
of hydraulic connection between these zones. There appears to be a slight downward
gradient from 725 to 1,010 feet. All completions above and including 550 feet show
influences of seasonal withdrawals (i.e., summer declines).

TVHP #2 - Caldwell Ground Elevation: 2440 ft

2
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% Zﬁ D—D-—-D—D—D
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—o— Completion 8 (122 ft

] —/— Completion 6 (208 ft

2390
] (
(

—@— Completion 7 (166 ft)
—CO— Completion 5 (270 ft)
—O— Completion 3 (550 ft)
—@— Completion 1(1,010 ft)

2395 +

—O— Completion 4 (407 ft

)
)
)
—O— Completion 2 (725 ft)

2385 |
2380 1

2375 o—o——O’O‘O\H

2370

2
2360

Water Level Elevation (feet)

1/30/2000

11/30/1 999
3/30/2000
5/30/2000
7/30/2000
9/30/2000

11/30/2000
1/30/2001
3/30/2001
5/30/2001

Figure 4-3: Hydrograph for TVHP #2.

Monitoring well TVHP #3 was completed in June 2001. Originally drilled in 1983, the
well was used to irrigate the nearby Quarry View Park. The deepest completion
produced geothermal water. Production ceased in 1988 to reduce geothermal water use
(Scanlan, 2001). The well was then converted to a dual-level monitoring well by the
city of Boise and IDWR as part of the TVHP. Water levels in the Quarry View well
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were virtually identical between September 2001 and October 2003 (Figure 4-4),
indicating close hydraulic connection between screened intervals. Decreased summer
water levels indicate nearby irrigation influences.

TVHP #3 - Quarry View Well ,
Ground Elevation: 2733.3 ft
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Figure 4-4: Hydrograph for TVHP #3.

Monitoring Well TVHP #4 was completed in July 2002. Located in the southeast
corner of Boise’s Municipal Park, this well was constructed as a multi-completion
monitoring well in an area of downward hydraulic gradients. Initially drilled to a depth
of 800 feet, this well includes five piezometers ranging in depth from 55 to 730 feet.
Water levels in this well (Figure 4-5) indicate similar water levels in the upper three
completions and lower water levels in the lowest two completions, confirming a
downward hydraulic gradient. Water level differences in the Boise Municipal Park
monitoring well ranged from about 15 to 61 feet between 7/29/02 and 4/24/03
(downward gradient). Decreased water levels in the deepest completions during
summer months reflect nearby municipal and irrigation withdrawals.  Several
municipal wells are located near monitoring well TVHP #4, with peak usage of these
wells occurring during the summer months; some are not used at all during the winter
and spring months (R. Dittus, pers. comm., 2003).

February 2004 Page 34 IWRRI



TVHP #4 - Municipal Park Ground Elevation: 2711 ft
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Piezometers 4 and 5 indicate virtually the same water level elevations.

Figure 4-5: Hydrograph for TVHP #4.
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5. GROUND WATER LEVELS

5.1. Introduction

Water level measurements conducted as part of the TVHP include seven mass ground
water level measurements in approximately 300 wells and monthly ground water level
measurements in approximately 70 wells. This section describes and presents results
from these measurements.

5.2. Mass Ground Water Level Measurements

A “mass measurement” consists of a series of ground water level measurements taken
within a short period of time (in this case, one to two weeks). The purpose of a mass
ground water level measurement is to define a potentiometric surface at a point in time.
A potentiometric surface represents the levels to which water rises in wells over a
given area. The water table is the potentiometric surface of an unconfined aquifer.
There may be more than one potentiometric surface for a given area if the hydraulic
head'” varies significantly with depth. A contour map describing a potentiometric
surface is used for evaluating ground water flow directions and hydraulic gradients.

Mass ground water level measurements were conducted as part of the TVHP in the
spring and fall of 1996, 1998, 2000, and fall 2001. Water levels throughout the
Treasure Valley were measured within a one- to two-week time period during each
mass measurement. This section describes the selection of mass measurement wells
and presents potentiometric surface maps created with the mass measurement data.

The U.S. Geological Survey (USGS) selected wells for the mass measurements and
performed the water level measurements. The USGS selected wells by:

1. Identifying candidate wells from the USGS Ground Water Site Inventory
(GWSI) database.

2. Categorizing candidate wells on the basis of open intervals in shallow,
deep, and geothermal aquifers.

3. Choosing wells that are spatially and vertically distributed throughout the
Treasure Valley (where possible) in the non-geothermal aquifers. The
shallow aquifer was targeted for about 60% of the measurements.

The numbers of wells included in the mass measurements are shown in Table 5-1. Additional wells were
included for use in developing potentiometric surfaces if they were measured at approximately the same time as

' Hydraulic head consists of elevation head and pressure head; the hydraulic head for a given aquifer zone is
indicated by the water level in a well screened in the aquifer zone.
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the mass measurement. The open interval of each well was categorized by depth on the basis of ground water
flow model layers ( (see Petrich, 2004a, for more information)

Table 5-2). Wells with screen openings in layers 3 and 4 are grouped together in the
subsequent potentiometric surface maps because of the relatively small number of
wells in each zone.

Mass Measurement Number of Wells Measuring Entity

Spring 1996 343 USGS

Fall 1996 342 USGS
Spring 1998 383 USGS

Fall 1998 372 USGS
Spring 2000 392 USGS

Fall 2000 390 Kleinfelder, Inc.

Fall 2001 341 Kleinfelder, Inc.

Table 5-1: Numbers of wells measured during each of four mass water level

measurements.
Depth below

Laver Thickness Potentiometric

y (feet) Surface (feet)
Layer 1 200 0-200
Layer 2 200 200-400
Layer 3 400 400-800
Layer 4 400 800-1200

(see Petrich, 2004a, for more information)

Table 5-2: Model layer thicknesses.

Well construction details for the mass measurement wells are provided in Appendix D.
The information includes:

1. Well codes indicating whether the well was used only as a mass
measurement well or also for monthly well measurements

2. Well use (e.g., municipal, domestic, irrigation, industrial, etc.)

Upper and lower screen opening elevations (provides a basis for
associating water level data with model layers)

4. Total screen length
5. Aquifer penetration depth (depth of standing water in well)
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The aquifer penetration depth is provided because even deep wells may only penetrate
a short distance into an aquifer. Lack of well depth data indicates that there is no
drillers’ log available for the well''.

5.2.1. Data Collection

Water level measurements during 1996-2000 were collected by the USGS; Kleinfelder,
Inc., collected water levels in fall 2000 and 2001. Pre-measurement tasks included
contacting owners for permission to measure wells, preparing field maps, forms, and
other necessary equipment, and assembling a field crew. Measurement tasks included
visiting well sites, measuring and recording water levels, and updating well inventory
information. Post-measurement tasks included entering measurement and inventory
data into USGS GWSI database and publishing measurements in USGS annual water
data reports.

5.2.2. Potentiometric Surface Maps

Potentiometric surface contour maps based on kriged interpolations for the mass
measurements conducted in spring and fall of 1996, 1998, and 2000, and fall 2001 (for
shallow, intermediate, and deep zones) are provided in Appendix E. Monitoring wells
with open intervals in the layer of interest are shown with gray dots. Three examples
of potentiometric surface plots are shown in Figure 5-1 through Figure 5-3. The
following sections describe some of these figures.

There are several observations that can be made from the potentiometric surface maps
presented in the previous sections and in Appendix E. In general, contour maps drawn
from mass measurement data indicate ground water flow from the eastern part of the
valley toward the west, except for the area south of Boise, where ground water flow is
to the south or southwest. Potentiometric surface contours in the southeastern portion
and parts of the northern part of the study area are uncertain because of the paucity of
data in these areas.

A few wells were used for water level measurements despite the lack of well construction or lithologic
information because they were located in areas of few or no other observation alternatives.
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Figure 5-1: Potentiometric surface, spring 1996, shallow zone (240 wells).
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Figure 5-2: Potentiometric surface, spring 1996, intermediate zone
(49 wells).
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Figure 5-3: Potentiometric surface, spring 1996, deep zone (45 wells).

Additional specific observations include the following:

1. Potentiometric contours from deeper aquifer zones indicate ground water
movement in a westerly direction.

2. Potentiometric surface contours in maps indicate ground water mounding
in the vicinity of the New York and Mora Canals, presumably from canal
leakage (Berenbrock, 1999; Carlson and Petrich, 1998) and infiltration
from irrigated fields.

3. Ground water mounding appears in the area northwest of Lake Lowell.

4. Ground water mounding appears to form a ground water divide between
the Boise and Snake Rivers along the New York and Mora Canals, and
extending northwest from Lake Lowell. North of these canals ground
water flows toward the Boise River, south of these canals hydraulic
gradients indicate ground water flow toward the Snake River. The effects
of ground water mounding underneath the New York Canal are evident in
both the potentiometric surfaces based on shallow and deeper wells,
although water from the New York Canal is not reaching these lower zones
(Hutchings and Petrich, 2002b).

5. The potentiometric surface maps indicate ground water movement from the
Boise Foothills in a west-southwest direction toward the Boise River.
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5.2.3. Seasonal Water Level Changes

Seasonal water level changes occur in the Treasure Valley in response to ground water
withdrawals, surface irrigation, and canal leakage. Figure 5-4 illustrates seasonal water
level changes between spring and fall 1996. The map was prepared by subtracting fall
potentiometric surface in the shallow zone from that of the spring potentiometric
surface in the shallow zone. The map indicates general ground water level increases
(in the uppermost aquifer zone) in the central portion of the valley south of the Boise
River. These rises were attributed to infiltration associated with summer irrigation.
Ground water declines are indicated in the southwestern portion of the valley, though
these declines appear to be associated with select wells and may not necessarily reflect
regional trends.

185 4)
afiueys |aaaT] 1a1eps

& Spring 1996
O Fall 1996

Chan%e map or shallow aquifer;
Fall 1996 grid minus Spring grid.

Figure 5-4: Spring and fall 1996 change map.

The reliability of the water level change map is limited by the reliability of the spring
and fall water level interpolations. The interpolations, and comparisons based on
interpolations, may contain substantial error, especially in areas containing few data
points (such as areas along the periphery of the project area).
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5.3. Periodic Ground Water Level Monitoring

Monthly, quarterly, or semi-annual ground water level measurements were made in a
variety of Treasure Valley wells. The monitoring network and monitoring results are
described in the following sections.

5.3.1. Well Network Description

The TVHP monitoring well network consisted of approximately 72 wells'2. The
purpose of the periodic measurements was to provide a basis for (1) evaluating
seasonal fluctuations in water levels and (2) establishing long-term water level trends.
The wells were measured on a monthly basis from 1996 through 2001, and measured
on a quarterly basis thereafter. The locations of the monthly monitoring wells are
shown in Figure 5-5. Well construction details for these wells are provided in
Appendix D.

e Wells (Hydrographs 1996 - 1999)
® Wells (Hydrographs 1996 - 1999 and pre 1996 - 1999)
Urban Areas

Figure 5-5: Locations of hydrograph wells

12 These wells were also included in the mass measurements described in Section 5.2.
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Thirty of the TVHP monitoring wells have been monitored cooperatively by the IDWR
and the USGS since the 1950s. Water levels in these wells (referred to as “co-op
wells”) were measured primarily on a semi-annual basis, although a few of the wells
were measured more frequently. The measurement frequency in these wells was
increased to a monthly basis in 1996 as part of the TVHP.

Forty-two wells were added to the monthly measurement program in 1996. The 42
monitoring wells were selected from 305 wells measured in the spring 1996 mass
water-level measurement. Criteria for selecting the additional monitoring wells

included
1. Spatial distribution throughout project area
2. Awvailable drillers’ report
3. Reasonably detailed lithologic log
4. Discrete open interval, preferably corresponding with specific aquifer

depths

5. Access to well by USGS, IDWR, or other personnel for conducting
measurements

5.3.2. Hydrographs

Water level measurements from these wells were used to construct well hydrographs.
Hydrographs from the TVHP monthly monitoring wells for April 1996 through
December 2002 are presented in Appendix F. These hydrographs are organized by
area for convenience (Figure 5-5). Hydrographs from wells with a longer sampling
record (long-term “co-op” wells) are also presented in Appendix F.

Hydrograph data indicate that (1) water levels in many parts of the valley appear to be
relatively stable, but water level declines have occurred in some areas; (2) long term
water level increases have occurred in some areas; and (3) most wells fluctuate on a
seasonal basis. The seasonal variations can be caused by pumping, recharge, or both.

In general, water levels in many parts of the valley appear to be relatively stable from
year to year. Some of the stability reflects shallow water levels in the central and
western parts of the valley that are being controlled by topography (e.g., the elevations
of canals and drains). There are, however, a number of wells that have experienced
increasing or decreasing water levels (Table 5-3). Of the 32 wells with long-term data
records, approximately 13 showed water level decreases and 5 showed increases (the
rest were relatively stable)”®. Of the 71 wells with short-term records (which includes
all of the wells with long-term records), approximately 24 showed some amount of

' The number of wells showing water level increases or decreases is somewhat subjective.
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water level decrease and 8 showed increases. The greatest declines have occurred in
the area south of Lake Lowell (declines of about 65 feet) and southeast Boise (declines
of 30 feet). Water levels in several intermediate and deep wells have declined in areas
3 and 5 (Figure 5-5 and Appendix F), which represent the central portion of the basin
(west Boise, Eagle, Meridian, and Kuna).

The wells showing water level increases or decreases (Table 5-3) may or may not
reflect regional conditions. For example, increased withdrawals from an extraction
well used for monitoring (or a nearby pumping well) may cause an apparent local
decline that does not reflect regional water levels. A field survey of select wells
(Figure 5-6) was conducted during August 1999 to determine the possible cause of the
water level changes. Each well was visited and any obvious changes in land use that
may have contributed to the observed water level changes were noted. Appendix G
contains hydrographs for these wells, including a brief description of what may have
contributed to the observed water level changes. In most cases, wells displaying
decreasing trends are located in areas that appeared to be undergoing transitions from
flood irrigated farmland to residential development. It is unclear whether observed
drawdowns in these areas reflect local equilibria required for increased withdrawals or
regional ground water level declines. Additional monitoring is recommended in these
areas using non-pumping wells.

Area Total Numbqr of Wells with Numbe!' of Wells with
(see | Number Increas_mg Water Level Decreas:mg Water Level
Figure | of Wells (categorized by total well | (categorized by total well
3-7) in Area depth below ground depth below ground
surface surface)
0-200' iggi >400' | 0-200' igg: >400'
1&2 4 1 1
Long-Term 3 9 3 3 1
Data Record 4 3 1
(> 7 years) 5 5 1 1 2
6 6 2 1
7&8 5 2
Total number of wells 32 1 4 6 4 3
1 10 1
2 6 1 2
Short-Term 3 15 > ! 3
Data Record 4 9 1 1 3
(~7 years) 5 11 3 4
6 10 2 2 1
7 5 1 1
8 5
Total number of wells 71 3 5 14 6 4

Table 5-3: Approximate number of monitoring wells with increasing or
decreasing water levels.
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Figure 5-6: Locations of wells showing substantial water level changes.
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6. AQUIFER INFLOWS AND OUTFLOWS

6.1. Introduction

An annual water budget was prepared for the Treasure Valley aquifer system for the
calendar year 1996 (Urban and Petrich, 1998). The water budget provides an estimate
of the current balance between total aquifer withdrawals and discharge, aquifer
recharge, and changes in aquifer storage. Specific objectives for this water budget
were to (1) define major water budget components, (2) estimate inflows and outflows
for the Treasure Valley aquifer systems, (3) describe, where possible, the spatial
characteristics of inflows and outflows, (4) create GIS coverages of the water budget
data, and (5) create input files (e.g., recharge, withdrawals and ET) for the Treasure
Valley ground water flow model. A revised 1996 water budget was completed more
recently (Urban, 2004) and also includes a water budget for the year 2000.

6.2. 1996 Water Budget

Inflows to the Treasure Valley aquifer system include (1) seepage from canals and
irrigated fields, (2) seepage from rivers and streams, (3) seepage from Lake Lowell, (4)
underflow, (5) infiltration of precipitation and surface water, and (6) seepage from rural
domestic septic systems. Outflows include (1) municipal withdrawals, (2) industrial
withdrawals, (3) irrigation withdrawals, (4) rural domestic withdrawals, (5) stock
withdrawals, (6) discharge to canals, drains, and rivers, and (7) evapotranspiration.

Total inflow (Table 6-1) into the Treasure Valley aquifer system was estimated to be
1,035,000 acre-feet (af) in 1996, while total outflow was estimated to be 999,000 af.
The net difference shows an apparent increase in aquifer storage of 36,000 af. This
difference is less than 4% of the total recharge or discharge and is well within the
estimated margin of error of individual component estimates.

The largest source of estimated ground water recharge was seepage from the canal
system, followed by seepage from flood irrigation and precipitation. The aggregate
discharge to the Boise and Snake Rivers (through canals, drains, or direct discharge) is
far greater than all withdrawals combined. On a valley-wide basis, the volume of
annual ground water withdrawals represents approximately 20% of the total 1996
ground water recharge (Table 6-1).
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Sources of
Recharge and Discharge Estimated Recharge/Discharge for 1996
Recharge’ acre-feet Percent of Total
Canal Seepage 637,000 61
Seepage from Rivers and Streams 16,000 1
Seepage from Lake Lowell 19,000 2
Underflow 8,000 1
Flood Irrigation and Precipitation2 302,000 30
Recharge by Other Land Uses® 48,000 4
Rural Domestic Septic Systems 5,000 <1
Total Recharge1 1,035,000
Discharge
Domestic and Industrial Withdrawals 66,000 6
Municipal Irrigation 10,000 1
Self-Supplied Industrial 21,000 2
Agricultural Irrigation 72,000 7
Rural Domestic Withdrawals 27,000 2
Stock Watering 3,000 <1
Discharge to Rivers and Drains 800,000 81
Total Discharge 999,000
Net Difference® +36,000

1. See text for explanations; values shown in this table are rounded to the nearest 1,000 acre-feet.

2. Includes recharge from precipitation and irrigation on flood-irrigated lands only.

3. Includes recharge from precipitation by land use; does not include flood-irrigated land.

4. Because of the error associated with the individual water budget components, a positive net difference
does not necessarily indicate a positive change in aquifer storage.

Table 6-1: Summary of recharge and discharge estimates contained in the
1996 water budget.

Primary ground water withdrawal and recharge areas do not necessarily coincide
throughout the valley. The primary recharge areas are those with extensive canals
and/or flood irrigation, while the greatest withdrawals occur in areas that are not flood
irrigated. For example, agricultural irrigation withdrawals (non-supplemental) are
concentrated in areas where surface water irrigation is unavailable, and municipal
withdrawals are concentrated near the urban areas of Boise, Nampa, Caldwell, and
Meridian. As a result, withdrawals may exceed recharge in local areas within the
Treasure Valley, resulting in local water level declines. Water level increases were
noted in areas where recharge appears greater than local withdrawals.

The aggregate nature of the water budget masks the differences between inflows to and
outflows from individual aquifer zones. Much of the inflow may only recharge
shallow aquifers; recharge to deeper zones depends on local vertical hydraulic
gradients and aquifer material properties. Recharge to deeper zones is estimated to be
a small portion of the total aquifer inflows (Petrich, 2004a).

The aggregate nature of the water budget also masks the temporal characteristics of
ground water recharge, withdrawals, and natural discharge. Infiltration from the
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surface water distribution system and irrigation occurs primarily in the summer. The
actual aquifer recharge from irrigation activities lags the initial infiltration, thus water
levels may be rising months after irrigation has ceased. Municipal withdrawals also
vary throughout the year but are generally greatest during the summer irrigation
season.

Several general conclusions were drawn from this 1996 water budget:

1. The largest components of aquifer recharge in the Treasure Valley are
seepage from the canal system and infiltration associated with irrigated
agriculture.

2. Discharge to rivers, drains, and canals is the largest source of discharge
from the Treasure Valley aquifer system.

3. Overall, aggregate aquifer recharge to the Treasure Valley aquifer system
appears to be in dynamic equilibrium with the aggregate aquifer discharge.
The net difference between estimated recharge and discharge is well within
the error range of the large water budget components and is therefore
negligible.

4. Recharge to shallow Treasure Valley aquifers is influenced significantly by
land use (by the location of irrigation activities).
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7. TREASURE VALLEY GROUND WATER FLOW CHARACTERISTICS

This section presents a summary of ground water flow in the Treasure Valley based on
the descriptions of aquifer characteristics (Section 3, page 13), water level
measurements (Section 5, page 36), and inflows and outflows (Section 6, page 46).
This summary represents a “conceptual model” of ground water flow in the basin that
was the basis for a series of aquifer simulations (Petrich, 2004a; 2004b).

The Treasure Valley aquifer system is comprised of a complex series of interbedded,
tilted, faulted, and eroded sediments extending to depths of over 6,000 feet in the
deepest parts of the basin (Wood and Clemens, in press). The valley contains shallow,
local flow systems (with ground water residence times ranging from years to hundreds
of years) and a deep, regional flow system (with residence times ranging from
hundreds to tens of thousands of years). Few water wells extend beyond a depth of
about 1,200 feet.

The Treasure Valley sedimentary section reflects a history of lacustrine, deltaic, fluvial,
and alluvial deposition (see Section 3.3). In general, basin sedimentary deposits grade
from coarser, more permeable sediments near the Boise Front to finer, less permeable
sediments at the distal end of the basin. At the basin scale, sediments also grade finer
with depth. Highly permeable deposits associated with deltaic and/or fluvial
deposition are often sandwiched between lacustrine deposits of lower permeability.

Ground water flow in the Treasure Valley is controlled by aquifer characteristics and
hydraulic gradient. Aquifer characteristics influencing ground water flow include grain
size, sorting, stratigraphic layering, sedimentary layer dip, sediment grain cementation,
and the degree of fracturing (in basalt aquifers). Additional controls on the movement
of ground water are attributed to structural processes, including faulting throughout the
basin and along the basin margin. A series of southeast-northwest trending faults
dissect the valley, with stratigraphic offsets of several hundred feet or more. Analyses
of aquifer test data from southeast Boise (West and Osiensky, 1999) indicate negative
boundary conditions associated with faults in the southeast Boise area. Artesian
conditions just north of the Boise River in the vicinity of monitoring well TVHP #1
may be created in part by restricted flow across the Eagle-West Boise Fault Zone
(Figure 3-2). Ground water chemistry data (Hutchings and Petrich, 2002a) indicate
different ground water chemistry north of the fault zone compared to the area south of
the fault zone, suggesting restricted flow across the fault zone. Basin downwarping
and an associated downslope trend in sediment deposition contribute to steeply dipping
sedimentary deposits that may cause deeper aquifer units to pinch out at depth (Wood,
1997a). Based on seismic imaging and outcrop mapping, aquifer sediments of various
fault blocks are dipping at angles ranging from zero to approximately 12 degrees
(Wood, 1997a).
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Fractures within shallow Pleistocene basalts or along upper and lower surfaces of
individual basalt flows can contribute to ground water movement. For instance, basalt
fractures and course-grained sediments underlying the basalt may greatly contribute to
transmitting leakage from the New York Canal (and other surface water channels) into
shallow aquifers.

An erosional unconformity associated with changing lake levels in Pliocene Lake
Idaho truncates down-dipping units near the basin margin near Boise (Squires and
Wood, 2001; Squires et al., 1992; Wood, 1997a). The unconformity separates
lacustrine and deltaic sediments (tilted in the Boise area) from overlying
lacustrine/deltaic sediments. Coarse-grained sediments associated with the erosional
unconformity (Squires et al., 1992; Wood, 1997a) appear to serve as a manifold for
deeper, regional ground water migrating horizontally into the basin from alluvial fan
sediments in the eastern portion of the basin (corroborated by E. Squires, pers. comm.,
2002).

Potentiometric surface contours indicate ground water movement in a westerly to
southwesterly direction, depending on depth and location (Section 5.2.2, page 38).
Potentiometric surface contours in shallow aquifer zones reflect surface hydrologic
conditions, such as mounding under the New York and Mora Canals (e.g., Figure 5-1)
or discharge to the Boise River. The mounding in the vicinity of the New York Canal
represents a local ground water divide, with shallow ground water north of the canal
flowing toward the Boise River and shallow ground water south of the canal flowing
toward the Snake River. Potentiometric surface contours from shallow aquifers show
ground water flow toward and discharge to the Boise River in mid- to lower reaches.
Potentiometric surface contours in deeper zones indicate a more uniform westerly flow
direction (Section 5.2.2, page 38). Downward hydraulic gradients are indicated along
the Boise Foothills, the eastern part of the study area (see TVHP #4 well in Figure 4-5),
and in the vicinity of the New York and Mora Canals. Upward gradients are evident in
the central and western portions of the valley (see TVHP #2 hydrographs in Figure 4-3)
and in the vicinity of the Boise River.

Individual hydrographs (Section 5.3 and Appendix F) indicate relatively stable water
levels in many areas, although water level declines have occurred in a number of wells.
Wells in two areas, southeast Boise (e.g., well 03NO3E-30DDAA1) and south of Lake
Lowell (e.g., well 03N04W-11ADA1), have experienced declines of approximately 30
feet and 65 feet, respectively. Water levels in these areas appear to have stabilized in
recent years.

Additional ground water level declines were observed (Appendix F and Table 5-3) in
areas 3 (northwest Boise and Eagle, Figure 5-5) and 5 (southwest Boise, Meridian, and
Kuna). Most of the long-term declines in these wells have been less than 10 feet.
Reasons for the declines may include increased withdrawals from the measured wells
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(very few of the monitoring wells are dedicated to monitoring alone), increased nearby
withdrawals, and/or changes in local infiltration rates (Appendix G). Further
investigation of these apparent declines is warranted to determine if they reflect
regional or local conditions. Additional monitoring wells would also be warranted in
these areas of apparent declines.

A number of shallow monitoring wells indicated water level decreases (Table 5-3).
Shallow wells may be especially sensitive to changes in local surface water irrigation
patterns in areas where the water table is not in direct hydraulic connection with
surface channels. Ground water level changes are less likely in shallow wells in areas
where the water table is controlled by topography (by virtue of drains and canals).

Seasonal water level fluctuations are evident in many Treasure Valley wells. The
fluctuations generally are a response to seasonal increases in withdrawals (e.g., summer
irrigation withdrawals) or increases in recharge associated with surface water
irrigation.

The largest component of recharge to shallow aquifers is seepage from the canal
system and infiltration associated with irrigated agriculture (Urban, 2004; Urban and
Petrich, 1998). Water enters shallow aquifers as infiltration from canals, irrigated
areas, and other water bodies (e.g., Lake Lowell), and possibly from upper reaches of
the Boise River (e.g., Barber Dam to Capitol Street Bridge) during high flows.
Infiltration from surface channels occurs if and when (1) water is available and
(2) hydraulic heads in the channel (or lake) are higher than the surrounding aquifer
heads. Additional recharge sources include mountain front recharge, underflow from
the granitic Idaho Batholith and tributary sedimentary aquifers, and direct precipitation.

Shallow aquifer levels increased by as much as 100 feet in some areas in response to
the initiation of large-scale flood irrigation in the late 1800s and early 1900s. Shallow
ground water levels rose to and remained at (or near) ground surface in many areas (at
least seasonally), discharging to drains and other surface channels.

Shallow and intermediate aquifers are separated from deeper zones by interbedded silt
and clay layers in many parts of the valley. While individual clay layers are not
necessarily areally extensive, multiple clay layers in aggregate form effective barriers
to vertical ground water movement.

Recharge to the deeper aquifers begins as downward flow through coarse-grained
alluvial fan sediments in the eastern portion of the basin and as underflow at basin
margins. Ground water is then thought to flow horizontally into the basin via more
permeable sediments (e.g., coarse-grained sediments of the geological unconformity
overlying Chalk Hills sediments), intersecting the alluvial fan sediments.
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This is illustrated in water chemistry data collected from shallow aquifers near the New
York Canal. Water in the canal, as in upper portions of the Boise River, has relatively
low specific conductance (and by inference, total dissolved solids). In shallow aquifers
underlying the canal, specific conductance was found to increase with depth,
corresponding with canal water that has infiltrated through soil horizons. In contrast,
water in deeper sand units separated from upper zones by multiple clay layers has
lower specific conductance than water in overlying horizons (Hutchings and Petrich,
2002a; Hutchings and Petrich, 2002b). This finding indicates that water in at least
some deeper aquifers originates at the basin margins and does not enter the ground
water regime through the carbon-rich sediments found in Treasure Valley soils.

Residence times of Treasure Valley ground water were generally found to increase
with depth and distance along a regional east-to-west-trending flow path (Hutchings
and Petrich, 2002a). Residence time estimates ranged from thousands to tens of
thousands of years. The youngest waters entered the subsurface a few thousand years
ago and were found along the northeastern boundary of the basin, adjacent to the Boise
Foothills. The oldest waters entered the subsurface between 20,000 and 40,000 years
ago and were found in the western reaches of the basin near the Snake River. Ground
water in the deep deltaic aquifers beneath Boise entered the subsurface between 10,000
and 20,000 years ago.

Comparisons between measured water chemistry constituents and established models
of geochemical processes (Hutchings and Petrich, 2002a) show that (1) ground water
near the northeastern basin margin has experienced little interaction with aquifer
minerals, and (2) ground water beyond the northeastern basin margin has experienced
substantial interaction with aquifer minerals. Geochemical evolution of Treasure
Valley ground water appears to be influenced by solution of both carbonate and silicate
minerals.

Ground water discharge to rivers, drains, and canals represents the dominant form of
discharge from the Treasure Valley aquifer system (Urban and Petrich, 1998). The
primary form of natural discharge from the deeper aquifers is thought to be regional
upwelling in the southern and western portions of the basin, with ultimate discharge to
the Boise River and/or Snake River. Rates of discharge from the deeper aquifers in the
western portions of the valley are unknown but are probably low because of the thick
accumulation of lacustrine clays separating these aquifers from ground surface.

Relatively long residence times in the regional flow system (over 20,000 years) implies
that (1) regional aquifers are not very transmissive, (2) recharge rates to the deeper
regional aquifers are very limited, and/or (3) regional aquifers are discharge-limited.
Although there are abundant silt and clay layers with low hydraulic conductivity,
productive sand layers are present throughout central portions of the valley; these sand
zones are tapped by many irrigation and municipal wells. Recharge to the deeper,
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regional system is limited but has generally been sufficient for current rates of
withdrawal. Thick lacustrine clays at the distal end of the valley likely inhibit upward
(discharge) flow, limiting the amount of water that can flow through the system.

In summary, the Treasure Valley aquifer system consists of shallow aquifers
containing local ground water flow systems and a deeper, regional ground water flow
system. Recharge to the shallow system consists largely of infiltration from irrigated
fields and canals. Primary discharge is to the Boise and Snake Rivers and other
streams and to drains discharging into these channels. The deeper, regional flow
system consists of (1) recharge in alluvial sediments in southeast Boise and at the base
of the mountain front north of Boise, (2) movement of ground water from the recharge
areas into the deeper Boise area fluvio-lacustrine aquifers, and (3) movement of ground
water from the Boise area aquifers into regional lacustrine/deltaic aquifers in the
central and western portions of the valley.
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Appendix A. CONVERSION FACTORS

Volume

1 cubic foot of water = 7.4805 gallons = 62.37 pounds of water

1 acre-foot (af) = enough water to cover 1 acre of land 1 foot deep
1 acre-foot (af) = 43,560 cubic feet

1 acre-foot (af) = 325,850 gallons

1 million gallons = 3.0689 acre-feet

Flow Rates

1 cubic foot per second (cfs) = 448.83 gallons per minute (gpm) = 26,930 gallons per hour
1 cubic foot per second (cfs) = 646,635 gallons per day = 1.935 acre-feet per day

1 cubic foot per second (cfs) for 30 days = 59.502 acre-feet

1 cubic foot per second (cfs) for 1 year = 723.94 acre-feet

1 cubic meter per second (cms) = 25.31 cubic feet per second

1 cubic meter per second (cms) = 15,850 gallons per minute

1 million gallons per day (mgd) = 1,120.147 acre-feet per year

1 miner’s inch =9 gallons per minute

I miner’s inch = 0.02 cubic feet per second

Hydraulic Conductivity
1 gallon per day per foot® (gal/day/ft*) = 0.134 foot/day = 0.0408 meters/day

Economic

$0.10 per 1,000 gallons = $32.59 per acre-foot
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Appendix B. AQUIFER TEST DATA

This appendix contains selected aquifer test data (compiled by Rick Carlson, formerly with
the Idaho Water Resources Research Institute). References for the aquifer test data are listed
beginning on page 81.
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New % constant rate pump
N - i i
Playground | M | 260 [T | m | 1145 | PUTPING | oany | 13200 | 150 | 88 s | pgq |test Jacobs Semi-| g | med. | 5450, | 4 [Astep testwas
© 260 well log Drawdown Sand completed
Well w)
S Method
New % constant rate pump
N 111 - pumping e test, Jacobs Semi- med.
Playground | T | 260 260 | M 1145 well late | 16,000 150 107 24.0 log Drawdown 8 Sand 2/13/92 | 1
Well g 9
e} Method
New g constant rate pump
N 111 - obs. well xx test, Jacobs Semi- med.
Playground | T [ 260 260 | ™ 1145 1 (80ft) early | 12,300 150 82 24.0 log Drawdown 8 Sand 2/13/92 | 1
Well w)
O Method
New %’ constant rate pump
Playground | M | 260 [Tl m | 1145 | OPS:Welll 156 | 18300 | 150 | 122 | 8E-04 | 240 |teStJacobsSemi-i g | med. | 50, | 4
© 260 1 (80ft) ’ ' log Drawdown Sand
Well g
o Method
New % constant rate pump
IS 111 - obs. well - . test, Jacobs Semi- med.
Playground | T | 260 60| M 1145 2 (1700ft) early 150 24.0 log Drawdown 8 Sand 2/13/92 | 1
Well @)
e} Method
New % constant rate pump
N 111 - obs. well . test, Jacobs Semi- med. T for this well is
Playground | M [ 260 260 | M 1145 2 (1700ft) late | 23,000 150 153 24.0 log Drawdown 8 Sand 2/13/92 | 1 suspect,
Well w)
S Method
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New % constant rate pump

N 111 - obs. well test, Jacobs Semi- med.
m *kk *kk Kk i}
Playground | @ 260 60| M 1145 3 (2000ft) early 150 24.0 log Drawdown 8 Sand 2/13/92 1
Well w)
S Method
New % constant rate pump
n 111 - obs. well - xx ok test, Jacobs Semi- med.
Playground m 260 260 | M 1145 3 (2000ft) late 150 24.0 log Drawdown 8 Sand 2/13/92 1
Well @)
e} Method
New Ball g constant rate pump
N - i-
Diamond | [ | 435 |15 | m | 1200 | °°% " | cary | 58,000 | 150 | 387 | | 310 [leShJacobsSemi) 5y med | 500, | o
Well o 9
o Method
New Ball %’ constant rate pump
N - i-
Diamond | [ | 435 |15 m | 1200 [ %% %! | tate | 13,000 | 150 | 87 | 7E-04 | 310 |'eShJacobsSemi-f o, med g0 |
Well o 9
o Method
New Ball % constant rate pump High, late, T
N - i-
Diamond | M 435 186 m | 1200 obs. well early - 150 xx 8E-04 31.0 test, Jacobs Semi 24 med. 3/2/92 9 values sug_gest
© 396 2 log Drawdown Sand hydraulic
Well o) )
o Method boundaries
New Ball % constant rate pump
N - i-
Diamond | [ | 435 | 150 | m | 1200 | °°%,%" | tate | 13000 | 150 | &7 | x| 310 [leShJacobsSemi 1 med 500, | o
Well o 9
S Method
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New Ball | & 186- obs. well Tont Tacons Semr med
Diamond | I | 435 306 | M 1200 3 early ok 150 Hoax 3E-04 31.0 | ’ Drawd 24 S d 3/2/92 2
Well s og Drawdown an
S Method
N )
Floating 4 215- ' constant rate pump fine .Early T
Feather | @ | 415 |200| m | 743 | PU™P9 | eany | 11,086 | 160 | * or | 0.3 |0k 030008 Semi- 759N 101 3126/91 | 3 | Poreved to be
Hills well | @ - we og Drawdown course affected by
8 385 Method sand casing storage.
B )
. z 215- constant rate pump fine
Floating m 265 umpin test, Jacobs Semi- sand to
Feather | @ | 415 |20 | m | 743 | PUVER9 | jate | 143749 | 160 | 898 103 |} Drawd 720 3/26/91 | 3
Hills Well | © - we og Drawdown course
8 385 Method sand
N .
Floating z 215- constant rate pump fine
Feather | B | 415 |20 | m | 743 | 2> Wl jate | 83350 | 160 | 521 | 0.019 | 10.3 | @b ShoWSemi- |7pq 500 10} 55591 | 3
Hills Well | © - ( ) og Time course
8 385 Drawdown Method sand
. 2 215- constant rate pump fine High T from
Floating m 265 obs. well test, Chow Semi- sand to gravity
Feather | w [ 415 375‘ m 743 2 1300ﬁ early | 553,418 | 160 3459 0.02 10.3 VI Ti 720 3/26/91 | 3 drai
Hills Well | © - ( ) og Time course rainage
8 385 Drawdown Method sand effects
. z 215- constant rate pum fine High T from
Zz pump ¢
Floating m 265 obs. well test, Chow Semi- sand to gravity
Feather | « [ 415 375‘ m 743 4 2'500ﬂ early | 681,132 | 160 4257 | 0.005 10.3 ‘I Ti 720 3/26/91 | 3 drai
Hills Well | © - ( ) og Time course rainage
8 385 Drawdown Method sand effects
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Floating % 215- constant rate pump fine
Feather | B | 415 |20 | m | 743 | 205 W@l | jate |219,720| 160 | 1373 | 0.017 | 10.3 | @b ShoWSemi- |7pq 5800 10} 55591 | 3
Hills Well | © - ( ) og Time course
8 385 Drawdown Method sand
Floating % 215- constant rate pump fine
Feather | M | 415 |25 | m | 743 [ ObS:well | oy [315,339| 160 | 1971 | 0.017 | 10.3 | 1€t ChowSemi- |54 sandto] 5pe04 | 3
Hills Well | © 375- 5 (3700ft) log Time course
8 385 Drawdown Method sand
Floating % 215- constant rate pump fine
Feather | B | 415 |200| m | 743 |05 WOl | jate | 287490 160 | 1797 | 0.006 | 10.3 | ©5h Chow Semi- 175 a0 10} 396,94 | 3
Hills Well | © - ( ) og Time course
8 385 Drawdown Method sand
% constant rate pump
Broadway | m 250- pumping ok o test, Jacobs Semi-
Well N 532 524 m | 2975 well no 225 66.0 log Drawdown 6 sand 7/20/72 4
g Method
Redwood 2 298- constant rate pump course Cvr;?:;alg\;;tizt?
Creek | m | 415 |33 | m | 2100 [PUTPING | o | 55000 | 200 | 275 | | 240 |!eStJacobsSemi-\ gt on ol 4704 | 5 | feetabove
Subdivision -~ 361 - well log Drawdown ravel round
WellNo. 1 | & 401 Method 9 Sgu oo
Redwood 2 298- constant rate pump course
Creek | m| 415 |313| m | 2100 [0S Well | o |154000| 200 | 770 | 2E-04 | 24.0 |'€SLJacobsSemi-|g ot n ol amoa | 5
Subdivision . 361 - 1 (2600ft) ’ ) log Drawdown : ravel
WellNo. 1 | & 401 Method ¢
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Willow Lane m unkn ?ggftigégﬁtseg:rm? course 9 observation
- @ 90 m | 1400 yes no | 274,000 90 3044 0.02 23.0 ’ 72 |sandto| 9/14/62 | 6 wells were
Well Field 5 own log Drawdown | .
3 Method grave monitored.
w
Unclear if time
2 constant rate drawdown
S pump course measurements
m - i i-
veterans | 3| 275 | 1% m | 800 | PUTRING | yes | x| 4p5 | e | e | oqp3 |10%h 930008 SeMi gy | angio| 5/10/96 | 7 | were recorded
8 9 Method gravel from
e} observation
wells.
Unclear if time
2 drawdown
< constant rate pump course measurements
m - i-
Vetorans | &S| 275 | 0| m | 800 | obs.well | late | 10036 | 125 | 80 | x| 123 |5 80008 SOMi gy | sangio| 5110196 | 7 | were recorded
8 9 Method gravel from
e} observation
wells.
Unclear if time
S drawdown
Z constant rate pump
Gary Lane m 742- umpin test, Jacobs Semi- course measurements
e IR | 87 |gap | m | 600 [PUURNS | yes | e | q00 | 78 | o | 34 [sand to| 3/23/96 | 8 | were recorded
cDu 9 Method gravel from
> observation
wells.
Unclear if time
5 drawdown
% constant rate pump
Gary Lane | [ 742- test, Jacobs Semi- course measurements
Well IN 837 g37 | M 600 | obs.well | late 3,955 100 40 el 7.8 Io’ Drawdown 34 |sandto| 3/23/96 | 8 | were recorded
l_‘CIU 9 Method gravel from
> observation
wells.
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569-
w 589, .
% 604- constant rate pump Aquifer
m 624 pumping test, Jacobs Semi- parameters
Fisk Well | @ 850 I m [ 1500 no 39,554 145 273 ex 68.2 ’ 7 | sand? | 1/28/92 9 determined
8 639- well log Drawdown from puMDIn
3 660, Method \‘;e” ping
- 705-
715
460-
470,
495-
515,
600-
610,
w 695- .
g 705, constant rate pump Aquifer
m 725- test, Jacobs Semi- parameters
Market Well| & 944 s |1,500 no no 40,000 440 91 el 40.0 ’ 8 | sand? | 5/28/91 | 10 [ determined
o 735, log Drawdown from pumoin
S 760- Method V‘\’,e” ping
- 775,
804-
814,
830-
840,
892-
902
N
Z 598 constant rate pump
m . i-
HPWell |=& 700 | 5 | s [1400| no |eary| 20600 | 87 | 340 | = | 190 | JSCObZ Semi-| g | sand? | 517/91 | 11
3 685 og Drawdown
=} Method
(@]
S
rzn 598 constant rate pump Low, late, T
HPwell | N 700 | 5- | s [1400| no | late | 12300 | 87 | 141 | == | 100 |leSbJacobsSemi-l gt o | 5q7/92 | 41 |Values suggest
> 685 log Drawdown hydraulic
a Method barriers.
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New Z constant rate pump Low, late, T
m - i-
Goddard | & | 851 || s [1714| yes | late [ 22000 | 70 | 314 | | 150 [teShJacobsSemi) g g | pipgigq | 4z [ValLeS SUOGest
well S og Drawdown ydraulic
g Method barriers.
560-
w
zZ 575, step-rate pump .

. w . ) Estimated long
Columbia 1o m goy [628-| o | o no | eary| 5000 | 150 | 33 s | gg [test Jacobs Semi-| | fine | o500 | 13 |term yields less
Test Well S 638, log Drawdown sand than 200gpm

711- Method :
O
731
. 560-
Z 575, step-rate pump
Columbia (g m 628- . ok test, Jacobs Semi- fine
TestWell |- & 802 638, | S 40 no middle| 1,100 150 7 3.3 log Drawdown 4 sand 10/5/90 | 13
S 711- Method
731
560-
% 575, step-rate pump Low, late, T
Columbia (g m 628- o test, Jacobs Semi- fine values suggest
Test Well = & 802 638, s 88 no late 500 150 3 21 log Drawdown 4 sand 10/5/90 | 13 hydraulic
S 711- Method barriers.
731
215-
g 241, T values ma
N 285- constant rate pump have y
CassiaWell| 3 | 590 [320| s | 850 | no |early| 50,000 | 150 | 333 | * | 200 |'St Jacobs Semi- | 5 7 [UNKNOW | 5159/00 | 14 | decreased with
o - og Drawdown n longer pum
z 367, Method il
= 390- '
400
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215-
% 241, T values may
N 285- constant rate pump
m 321 test, Jacobs Semi- unknow have
Cassia Well| & 590 357l S 850 no late | 40,000 150 267 e 29.0 Io, Drawdown 5.7 n 5/29/90 | 14 |decreased with
g 367  Method longer pump
bt 390. test.
400
w
& constant rate pump S.C.
N . - ;
Bergeson | .\ T 852 | 2 | m | 1200 | PY"PINS | eany | 60,000 | 385 | 156 | =+ | 150 |teStJacobsSemi-| o5 | 5500 | 46 | Dstermined
Well % well log Drawdown from step-rate
5 Method pump test.
w
Z constant rate pump S.C.
N ) - ;
Bergeson | [ g5y | 2 | m | 1200 | PUPING | 14te | 25000 | 385 | 65 s | qpq [test Jacobs Semi-| o1 5| 54504 | g | Determined
Well 8 well log Drawdown from step-rate
:5 Method pump test.
w
b4
Bergeson m obs. well Ct:ggts tigégztsespgnr':}[_) Storativity
Well =N 852 ? m | 1200 1 early | 150,000 | 385 390 0.005 15.0 Io,g Drawdown 12 ? 2/13/90 | 16 value is
)U> Method suspect.
53]
w
zZ
Bergeson m obs. well <t:22ts tigct:c:fatsesp:rrr:? Storativity
Well -~ 852 ? m | 1200 1 late | 60,000 385 156 0.005 15.0 Io’g Drawdown 12 ? 2/13/90 | 16 value is
g Method suspect.
5]
w
% constant rate pump
m i-
P |-l 82 | 2 | m | 1200 | %% no | 40000 | 385 | 104 | 4E04 | 150 | IEeRS Sz | 2 | 2130 | 16
~ Method
o7]
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w
% constant rate pump
m i-
Bergeson | \ ) 52 | 2 | m | 1200 | O Wel | 1o | 40000 | 385 | 104 | 2E-04 | 150 |teShJACODSSemi-| | ol o590 | 16
Well % 3 log Drawdown
%E Method
2
Clinton | 3 urnpin ot dacobs Semi. Shortterm S.C
@ | 485 | ? | s | 1500 [ PU"PNS | jate | 13,000 = | 189 ’ 9| 2 2/8/91 | 17 | averaged 27
Street Well | O well log Drawdown
@ Method gpmft
> 537- constant rate pum S.C. is suspect
Yanke- m 692 umpin test, Jacobs Spemi? sand, because of
Nicholson = = 880 | s | 1500 | PUTPING | g 29,000 320 91 el 30.0 ’ 120| clay, | 11/16/90 | 18 | discrepancies
3 697- well log Drawdown . ;
North Well ; 860 Method gravel in static water
o level.
N
% constant rate pump
J.R. Flat m pumping test, Jacobs Semi-
Test Well % 567 s 725 well early | 8,500 log Drawdown 0.3 7/28/89 | 19
o) Method
N
N
% constant rate pump
J.R.Flat | M pumping test, Jacobs Semi-
Test Well § 567 s 815 well late | 25,000 log Drawdown 6 7/28/89 | 19
O Method
N
w .
Z constant rate pump Pumping well
New Long m 123- pumping test, Jacobs Semi- was
Meadow |® 5| 415 m | 1775 early | 62,000 278 223 el 32.0 ’ 12 3/14/89 | 20 | determined to
= 401 well log Drawdown .
Well w have high
@ Method o
o efficiency.
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w .
Z constant rate pump Pumping well
New Long M 123- umpin test, Jacobs Semi- was
Meadow |8 | 415 m | 1775 | PY"PI"S | jate | 31,000 | 278 | 112 32.0 ’ 12 3/14/89 | 20 | determined to
= 401 well log Drawdown )
Well @ have high
@ Method S
e} efficiency.
I Pumping well
b4
Newlong | i 123- obs. well oot Jacons Som was
Meadow |8 | 415 m | 1175 ; no | 43,000 | 278 155 il 32.0 ’ 12 3/14/89 | 20 | determined to
= 401 2 log Drawdown )
Well w have high
w Method S
e} efficiency.
S
] constant rate pump
. N . -
Swift No. 2 | T m | 2200 | PU"PING | eany [ 100,000 e | gp [test Jacobs Semi] 4, 3/11/89 | 21
Well =} well log Drawdown
@)
e} Method
N
N
% constant rate pump
Swift No. 2 | (3 m | 2200 | PUMPING | iidie| 30,000 3p |test Jacobs Semi-|  , 3/11/89 | 21
Well =} well log Drawdown
@)
e} Method
N
N
% constant rate pump
. N . -
Swift No. 2 m m | 2200 pumping late | 15,000 o 32 test, Jacobs Semi 12 3/11/89 | 21
Well =] well log Drawdown
g
e} Method
N
S
% constant rate pump
. N -
Swift No. 2 | m | 2200 | obs. well | early | 100,000 0.001 | 32 |test Jacobs Semi-| ., 3/11/89 | 21
Well =} log Drawdown
w)
3 Method
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2 constant rate pump
N test, Jacobs Semi- 3/11/89 | 21
Swift No. 2 | M m | 2200 | obs. well |middle| 35,000 0.001 | 32 log Drawdown | 12
Well < Method
Q
w early- step rate pump Late, low T
S i deep e wu | test, Jacobs Semi- | o/g/gs | 22 | valueslikely
Londoner |» M| 5,59 s 55 pumplllng zone | 8,500 65 131 log Drawdown due to aquifer
Well |7 53 we (810- Method thinning.
@ 875)
@ late- step rate pump L?t(:skl)i\live-lry
R ing | deep - s | test, Jacobs Semi- op | Valu .
Londoner |5 7 2?1200 s 140 pumplllng zone | 2,500 65 38 log Drawdown 6 9/8/88 due Fo a_1qu|fer
Well [N we (810- Method thinning.
S 875)
early- Low amount of
< '”“Zr.' step rate pump drawdown
m ing | Meo" ~e | test, Jacobs Semi- 9/2/88 | 22| likely due to
Londoner | | g 21200 s 35 puweplllng ate | 5,000 100 50 log Drawdown 45 UDpir zone
Well % zone Method leakage.
2 (650-
750)
late- Low amount of
%J mt%r_- step rate pump drawdown
m ing | M9 wse | test, Jacobs Semi- 0/2/88 | 22 | likely due to
Londoner | T3 1500 s | 135 | PP | ate | 5000 | 100 | 50 log Drawdown | 45 e
Well ] v zone Method leakage.
> (650-
750)
= early- step rate pump
(¥ . upper . « | test, Jacobs Semi- 22
Londoner |, 3 21200 s | 82 |PUmPNY | zone | 10,000 | 330 | 30 log Drawdown | 4 8/19/88
Well @ Wel ] (220- Method
2 550)
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%’ step rate pump Third step of
. o . . test was used
RiverRun 1o ml 485 |198| 1y | 1880 | PUMPING | cany | 50,000 test, Jacobs Semi- | 3/11/88 | 23 | as constant
Well N 480 well log Drawdown t test
S Method rfls pump tes
.5 hours).
w Third step of
. % . step rate pump . test was used
RiverRun o mi 485 |198-1 1 | 1880 | PU™PING | niddle| 25,000 test, Jacobs Semi- | 4 3/11/88 | 23 | as constant
Well N 480 well log Drawdown
S Method rtls pump st
.5 hours).
%: step rate pump Third step of
. o . . test was used
RiverRun o mi 4g5 |198-1 1 | 4880 | PUMPING | 1516 | 5,000 test, Jacobs Semi- | 4 4 3/11/88 | 23 | as constant
Well N 480 well log Drawdown t test
S Method res pump tes
.5 hours).
Q step rate pump Third step of
. o . test was used
RiverRun 1o ml 4g5 |198| 1 | 1880 | %PS-Welll o | 10,000 0.03 test, Jacobs Semi- | 3/11/88 | 23 | as constant
Well N 480 1 (100ft) log Drawdown t test
S Method ree pump tes
.5 hours).
w Third step of
River Run |o & 198- obs. well tost, Jacos Semi- test was used
90 485 m | 1880 |2 (Logger| no 7,500 5E-05 ’ 11 3/11/88 | 23 | as constant
Well N 480 log Drawdown
o well) rate pump test
@ Method (9.5 hours)
w Third step of
_ Z obs, well step rate pump test was used
RiverRun o ml 4g5 |198-1 \ [ 4880 | 209 | o | 6,000 3E-05 test, Jacobs Semi- | 4 3/11/88 | 23 | as constant
Well N 480 Meadow log Drawdown t test
S Well) Method rate pump tes
© (9.5 hours).
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Hidden fine _Pumping rate
Hollow 30. umbin constant rate sand to is based on an
Landfil EW- 58 |4, | m | 45 P Wé’” 91 no | 5400 | 18 | 300 10.1 | pump-bailer test, | 2.5 %21 | 4/24/97 | 25 | average of
Neuman Method variable
2 sand )
pumping rates.
Hidden fine _Pumping rate
Hollow 3. obs constant rate sand to is based on an
) 58 m 45 ) no 10,900 17 641 0.05 10.1 pump-bailer test, | 2.5 4/24/97 | 25 average of
Landfill EW- 53 well1(10ft) Nueman Method course variable
2 sand )
pumping rates.
Hidden fine ‘Pumping rate
Hollow 32- obs. well constar_1t rate sand to is based on an
L . 58 m 45 ) no 24,400 22 1,109 0.1 10.1 pump-bailer test, | 2.5 4/24/97 | 25 average of
andfill EW- 54 2 (160ft) Nueman Method course variable
2 sand )
pumping rates.
Hidden fine _Pumping rate
Hollow 50- umbin constant rate sand to is based on an
Landfil EW- 98 75| m| 45 P Wé’” 91 no | 4300 | 22 195 8.2 | pump-bailer test, | 2 |32 2| 4/22/97 | 25 | average of
Nueman Method variable
3 sand )
pumping rates.
Hidden fine ‘Pumping rate
Hollow 50- obs. well constant rate sand to is based on an
L ) 98 m 45 . no 10,700 22 486 0.04 8.2 pump-bailer test, | 2 4/22/97 | 25 average of
andfill EW- 71 1 (9ft) Nueman Method course variable
3 sand )
pumping rates.
Hidden fine .Pumplng rate
Hollow 50- obs. well constar_}t rate sand to is based on an
L . 98 m 45 ) no 19,300 21 919 0.1 8.2 pump-bailer test, | 2 4/22/97 | 25 average of
andfill EW- 72 2 (136ft) Nueman Method course variable
3 sand )
pumping rates.
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Hidden constant rate fine is ltj)r:srgggo:la;en

Hollow 78 |91 | m | 45 [PU™PING | o | 2400 | 20 | 105 | ** | 47 | pumpvbailertest, | 1 |S2"9| 4128197 | 25| average of
Landfill EW- 71 well N course .

4 ueman Method sand variable
pumping rates.

Hidden constant rate fine isP Ltj)?spelzgoza;en

Hollow 51- obs. well . sand to

) 78 m 45 no 4,200 21 200 0.06 4.7 pump-bailer test, | 1 4/28/97 | 25 average of
Landfill EW- 72 1 (12ft) course -
4 Nueman Method sand variable
pumping rates.

Hidden constant rate fine ig l:)?spelggoaa;en

Hollow 78 | %1 m | a5 |OPSWell o | 21000 | 22 | 955 | 0.002 | 47 | pump-bailertest, | 1 |59 4128197 | 25| average of
Landfill EW- 73 2 (80) N course :

4 ueman Method sand variable
pumping rates.
constant rate pump .

. w . B ) Short duration
Allied Seed | = | oy 5 |5.0-1 o | g |PUMPING |\ | 4491 | 195 | 130 | = | 3.8 |tesbJacobsSemi-j, 1 fine q01 | o6 | pump test with
Coop MW-1 = 20.0 well log Drawdown sand

recovery data.
Method
Domestic
water level
Mark Lynn g 165- pumping recovery test sand pump was
Stock = | 429 m 172 no 77,000 135 570 b e S 120| and | 10/17/94 | 27 pumping
300 well Jacobs Semi-log
Water Well | £ Drawdown Method gravel intermittently
during test.
Domestic
water level
Mark Lynn Z 165- obs. well recovery test sand pump was
Stock =X | 429 m 172 ’ no |108,000| 135 800 0.01 o 7 120| and | 10/17/95 | 27 pumping
= 300 (275ft) Jacobs Semi-log . h
Water Well Drawdown Method gravel intermittently
during test.
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Several
C\évriiﬁ?c:li(al 25- pumping monitoring
45 m ? no | 143,100 30 4,770 0.03 o o 10 | gravel | 9/1988 | 28 wells are
Center Well 45 well located at the
9 site.
Some
fluctuation in Q
N. Fivemile constant rate pump Wgzgg;ﬁ:d'
Extraction 67 |120-| m | 82 |PUTPING | \ue | 86730 | 23 | 3771 | 0115 | 1.5 |t€sbJacobsSemi-| oo | 11716195 | 29 | capacity value
Well 65.0 well log Drawdown is likely
FMEW-2 Method attributed to
10% well
efficiency.
Some
fluctuation in Q
N. Fivemile constant rate pump wgsgé)i:ﬁ:d.
Extraction 67 |120| m | 82 [OPS:well| ooy | 696,388 | 23 |30.278| 0.009 | 1.5 |t€stJacobsSemi- |, ool | 1116095 | 29 capa?:ity value
Well 65.0 1(125) ’ ’ ’ : log Drawdown is likely
FMEW-2 Method attributed to
10% well
efficiency.
Some
fluctuation in Q
N. Fivemile constant rate pump wgsgé)i:ﬁ:d.
Extraction 67 |120-| | s2 [OPS:Well| e |111,751| 23 | 4859 | 0.185 | 1.5 |t€sbJacobsSemi-| o\t e | 1116095 | 29 capa?:ity value
Well 65.0 1 (125) ’ ’ ’ ’ log Drawdown is likely
FMEW-2 Method attributed to
10% well
efficiency.
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Some
fluctuation in Q
N. Fivemile constant rate pump was nqtgd.
Extraction 67 |120| o | s2 |OPS:Well| oy |404668| 23 |17.,594| 0.006 | 1.5 |t€stJacobsSemi- |, oo o] 1116195 | 29 | ca Sa?:ﬁmc:lue
Well 65.0 2 (157) Y : ' : : log Drawdown 9 pis |i|Ze|y
FMEW-2 Methed attributed to
10% well
efficiency.
Some
fluctuation in Q
N. Fivemile constant rate pump was nqtgd.
Extraction 67 |120| | 82 |OPS:Well| e |123644| 23 | 5376 | 0.053 | 1.5 |tesbJacobsSemi-| o, o o] 1116095 | 29 | ca ?;zzﬁmcglue
Well 65.0 2 (157) ’ : : log Drawdown 9 pis |i|Ze|y
FMEW-2 Method attributed to
10% well
efficiency.
Some
fluctuation in Q
N. Fivemile constant rate pump was no.t.ed'
Extraction 67 |120| | 82 |OPS:well| e |169,870| 23 | 7386 | 0.027 | 1.5 |tesbJacobsSemi-f o, o o] 1116195 | 29 | ca ?;zzﬁmcglue
Well 65.0 3 (168)) ’ : : log Drawdown 9 pis "ﬁ’ely
FMEW-2 Method attributed to
10% well
efficiency.
Some
fluctuation in Q
N. Fivemile constant rate pump was no.t.ed'
Extraction 67 |120| ;m | 82 [ObS.well| oy | e 23 | o 15 |test Jacobs Semi-| .\ oo o | 11/16/95 | 29 | ca Sa?:ﬁmc:lue
Well 65.0 4 (335) Y log Drawdown 9 pis Iilzlely
FMEW-2 Method attributed to
10% well
efficiency.
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Some
fluctuation in Q
N. Fivemile constant rate pump wg;gggscd.
Extraction 12.0- obs. well test, Jacobs Semi- .
Well 67 650| M 82 4 (335) late | 165,981 23 7217 0.079 15 log Drawdown 24 | gravel | 11/16/95 | 29 capiascllitlz/e\llalue
FMEW-2 Method attributeé/ to
10% well
efficiency.
Caldwell revt\:/;if/eerrle;/:slt 5 aquifer test
Geothermal m 1000 | obs. well no 10,472 23 455 2E-04 38.5 Theis D y d ' 3.9 ? 8/23/89 | 30 | periods were
Well 1 _Ie:|s t '\;a\t/\;] %Wn completed
est Metho
o constant rate pump
Oregon > pumping e test, Theis
Trail Well ,-","-, 838 well 9,000 800 " Drawdown Test 720 1/13/92 | 31
Method
. constant rate pump
Terteling | ¢ 342- test, Theis
Production | & 642 632 obs. well 31,000 300 103 2E-04 D 720 1/13/92
m rawdown Test
Well Method
Centennial | water level Observation
Production | & | 416 obs. well 31,000 | 800 | 39 | 2E-04 recovery test, |2, 1113/92 | 31 |Well for Oregon
Th
m eis Drawdown Trail 30 day
Well Test Method pump test
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water level Observation
Gowen e 375- recovery test well for Oregon
Production | § 702 507 obs. well 45,000 125 360 0.001 Theis D y d ’ 720 1/13/92 | 31 Trail 30 dg
Well m eis Drawdown rai ay
Test Method pump test
o water level Observation
Micron Test| = 629- recovery test, well for Oregon
Well & 855 845 obs. well 480,000 | 215 2,233 | 0.002 Theis Drawdown 720 1/13/92 | 31 Trail 30 day
Test Method pump test
o water level Observation
Columbia | = recovery test, well for Oregon
Test Well ,-‘1-’, 802 obs. well 30,000 800 38 0.003 Theis Drawdown 31 Trail 30 day
Test Method pump test
(4]
Canyon Co | €
Drainage | = 1030 0.025 6/53 | 32
District No. | o«
4 0
(@]
N
Z
Pioneer %
Irrigation | N 1550 5,000 | 0.004 10/53 32
N . a
District O
=
z
Pioneer w
Irrigation C% 2110 23,000 0.23 11/53 32
District ©
X
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COMMENTS
REFERENCE > S S S o o
™ ™ [32) -
START DATE © © 8 © 8 o
~— ~— N ~ © @
LITHOLOGY
DURATION (hours)
METHOD
SPECIFIC
CAPACITY (gpm/ft)
© Q S ™ <
STORATIVITY S 8 8 S 8
(=} S S (=} (=}
HYDRAULIC ) o o 3
COND-UCTIVITY S S <] S 8
(gpd/ft’) N 0 o o
Assumed Aquifer
Thickness (ft)
TRANS-MISSIVITY
(gpd/ft)
MULTIPLE TIMES
MULTIPLE WELLS
PUMPING RATE 2 3 3 3 S =
- < @ S} o x
(gpm) ~ h @ = 2 2
Multiple or Single
Well?
COMPLETION
INTERVAL(FT)
DEPTH OF
PUMPING WELL
(FT)
LOCATION 3N3W11DAT | 3N2W8CC1 | 3N2W9DD4 | ,\\oon. | 2NTW7BC4 | 4NTW13DCH
> 9 <
O P - [ = © = % >
PUMPING WELL 822 g2 TS 822 e _E i 9
NAME 5§58 S 58 EES 558 mO®F fole)
L ED L ED <zh A ED o 3 T®
= = ° = i 4 nT
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COMMENTS

REFERENCE

32

32

32

32

32

START DATE

3/51

11/53

11/53

9/53

11/53

LITHOLOGY

DURATION (hours)

METHOD

SPECIFIC
CAPACITY (gpm/ft)

STORATIVITY

0.001

0.001

0.006

0.43

HYDRAULIC
COND-UCTIVITY
(gpd/ft’)

660

900

2,400

1,500 | 0.00007

2,500

Assumed Aquifer
Thickness (ft)

TRANS-MISSIVITY
(gpalft)

MULTIPLE TIMES

MULTIPLE WELLS

PUMPING RATE
(gpm)

600

125

600

980

1,380

Multiple or Single
Well?

COMPLETION
INTERVAL(FT)

DEPTH OF
PUMPING WELL
(FT)

LOCATION

4N1W13DC2

3N1E5AB1

3N1E5AB1

3N1E36AD2

3N2E25BB1

PUMPING WELL
NAME

State Fish

Hatchery

US Bureau

of
Reclamatio

US Bureau

of
Reclamatio

M.S. Ayres

Ada Co
Drainage
District No.

2
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References for Aquifer Test Data
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Report, JIMM, Boise, Idaho.

Montgomery, J. M., Sept. 1992, New Diamond Well, City of Boise Project Closeout
Report, JMM, Boise, Idaho.

CH2M Hill, June 1991, Results of The 30-Day Pumping Test and Aquifer Analysis
Report, Prepared For Floating Hills, Inc., Boise, Idaho.
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Idaho.
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Scanlan Engineering, Boise, Idaho.
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Scanlan Engineering, Boise, Idaho.
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Appendix C. CONSTRUCTION DETAILS FOR DEDICATED, MULTI-
LEVEL PIEZOMETERS

**% Construction diagrams for TVHP monitoring wells provided under separate cover. ***
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Appendix D. CONSTRUCTION AND MEASUREMENT DETAILS FOR
MASS MEASUREMENT WELLS
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Well Site 1D Well Well Surface | | Open | Well | 1996 | 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

S oes | 432644116195401 | 43.44556 | -116.3317 | 2782 | 27-288 | 288 X X X X X X X

OINOIE | 4326416221201 | 43.44473 | 11637 2817 | 279440 | 440 X X X X X

TR AE | 432613116162001 | 43.43695 | -116.2747 | 2860 U | 232312 | 322 X X

O o= | 432525116203301 | 43.42361 | -116.3425 | 2820 H 38-386 386 X X X X X X X

Ao | 432442116223001 | 43.41167 | -116.3775 | 2880 | 18-440 | 440 X X X X X X X

OIN OIS | 432336116164601 | 4339333 | -116.2794 | 2849 | 36-530 | 530 X

S AAs | 4323016200401 | 43.38361 | 1163344 | 2865 ! 19618 | 618 X X X X X

OIRILY | 432717116242501 | 43.45472 | -116.4069 | 2800 | 183-325 | 401 X X X X

ANy | 432707116250501 | 43.45195 | -116.4181 | 2850 | 245455 | 455 X

oo | 432618116304401 | 4343834 | -116.5122 | 2820 | 14408 | 408 X X X X

O eaty | 432613116302601 | 4343695 | -116.5072 | 2780 | 12-461 | 461 X

OTLITY | 432613116300001 | 434375 | -116.5028 | 2800 | 18-591 591 X

O oaas | 432520116260401 | 43.42222 | -116.4344 | 2890 | 293-541 | 541 X

oo | 432500116303901 | 4341667 | -116.5108 | 2730 H | 484520 | 520 X X X X X

oo | 432407116260001 | 43.40195 | -116.4333 | 2888 | 345502 | 502 X X X X

O amas | 432452116234201 | 43.41445 | 116395 | 2880 ! 20-366 | 366 X X X X X

o | 432344116255001 | 4330556 | -1164331 | 2904 un | 18-365 | 500 X X X X X X X

O oAnDy | 432351116203701 | 43.3975 | 1164936 | 2740 ! 21-415 | 415 X X X X X

OBy | 432729116134201 | 43.45806 | -116.2283 | 3005 M | 488615 | 625 X X X

O Raas | 432732116155501 | 43.45889 | -116.2653 | 2910 W | 448510 | 535 X X X X X X X

01N 02C | 432620116140102 | 43.43889 | -116.2336 | 2930 H | 375400 | 400 X X X X X X

%11"[‘)8%\’1" 432645116343001 | 43.44584 | -116.575 2700 | 450-685 | 685 X X X X X X X

01N 02W | 432708116353901 | 43.45222 | -116.5942 | 2675 i 415-720 | 720 X X X X X X X
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Well Site 1D Well Well Surface | | Open | Well | 1996 | 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall
05ADD'
O ALS | 432709116365101 | 43.4525 | -116.6142 | 2728 ! 596-720 | 720 X X X X X X
O oaay | 432554116342101 | 43.43167 | -116.5725 | 2665 H - 252 X X X X X X X
O onas’ | 432613116331001 | 43.43695 | -116.5528 | 2660 H 19150 | 150 X X X X X X X
OTNOAW | 432510116353301 | 4341945 | -116.5025 | 2718 | 370-565 | 565 X X X X
el | 432232116330401 | 43.37555 | -116.5511 | 2600 H 35213 | 213 X X X X X
oo | 432652116401701 | 43.44778 | 1166714 | 2730 H | 500-1000 | 1000 X X X X X
OIS | 432646116402101 | 4344611 | 1166725 | 2715 Ho| 331731 | 731 X X X X X X X
O ol | 432640116440701 | 4344445 | 1167353 | 2240 H | 416560 | 560 X X X X X X X
O amay | 432548116375701 | 4343 | 1166325 | 2688 || 220607 | 607 X X X X X X X
O ana? | 432403116375601 | 43.40083 | -116.6322 | 2740 H | 599710 | 710 X X X X X
JNOSE | 432500115560301 | 43.41667 | 1159342 | 3530 H 38110 | 110 X X
oAt | 432326115501601 | 43.39167 | -115.9889 | 3360 N | 500752 | 763 X X X X X
O ans | 432530115532201 | 43.4275 | -115.8894 | 3660 u 53-68 82 X X
1S o | 432200116282501 | 43.36916 | -116.4736 | 2738 ! 9-370 370 X X X X X
O aany | 431944116294401 | 43.32889 | -116.4956 | 2615 | 225383 | 388 X X X X
Shone, | 431816116292801 | 43.30444 | -116.4911 | 2575 || 200282 | 295 X X X X
OrooiWl | 431816116291401 | 43.30444 | -116.4872 | 2500 || 259279 | 300 X X X X
O oany | 431848116295001 | 43.31333 | -116.4972 | 2543 H | 299400 | 400 X X X X
any | 4318511630101 | 43.31417 | -116.5031 | 2512 H | 198-300 | 300 X X X X X X
O onay | 432147116333601 | 43.36305 | -116.56 2410 H 3244 44 X X X
015020 | 432040116354701 | 43.34444 | -116.5964 | 2350 H | 120170 | 180 X X X X X
DiooeW | 4320311631201 | 4334194 | -116.52 2530 H | 137183 | 183 X X X X
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Well Site 1D Well Well Surface | | Open | Well | 1996 | 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

ool | 4320316311202 | 4334194 | -116.52 2530 H 18:300 | 300 X X X X X

el | 4319481633001 | 4333 | -116.55 2395 H - 235 X X X X X X X

O bay | 432037116332101 | 43.34361 | -116.5558 | 2450 H | 220420 | 420 X X X X X

0102 | 431917116313301 | 43.32139 | -116.5258 | 2490 | 127-190 | 190 X X X X X X

010 oa | 432202115573001 | 43.36722 | -115.9583 | 3375 u - 530 X X X X X X X

ST | 433230116173301 | 43.54167 | 1162925 | 2739 H - 145 X X X X X X

oo O | 433242116182601 | 43545 | 1163072 | 2729 ! 169-184 | 184 X X X X X X X

PN | 433220116222001 | 4353583 | -116.3708 | 2735 H | 236242 | 242 X X X

oA | 433124116233501 | 4352361 | 1163917 | 2670 HI | 135-145 | 145 X X X X X X

OO oIE | 433120116214401 | 4352472 | 1163622 | 2728 H | 254-260 | 260 X X X X X X

o | 433127116170101 | 4352083 | -116.2867 | 2885 H - 290 X X X X X X

O as | 4331016191301 | 43.51694 | -116.3203 | 2766 H | 240243 | 243 X X X X

Don; | 4329316190701 | 43.49194 | -116.3186 | 2836 | 360-440 | 444 X X

A | 432050116181601 | 43.49972 | -116.3045 | 2910 | 332-382 | 386 X X X X

o | 4320116184601 | 43.48639 | -116.3128 | 2840 H | 298300 | 300 X X X X X X

. | 432915116222001 | 4348417 | -116.3678 | 2730 H 19215 | 215 X X X X X

S oAs | 432834116213801 | 4347611 | -116.3606 | 2742 H 19130 | 130 X X X X X X

S oas | 432734116223001 | 43.45045 | 1163775 | 2748 H | 225248 | 248 X X X X X X X

CALs | 432748116205201 | 43.46333 | 1163478 | 2758 H 16224 | 224 X X X X X X X

tons | 432746116210202 | 43.46278 | -116.3506 | 2752 H - 0 X X

02N oIE | 432822116183801 | 43.47278 | 1163106 | 2825 || 230340 | 340 X X X X X X X

O on | 432825116173501 | 4347361 | 1162031 | 2867 | S/ | 300-305 | 305 X X X X X X X

02N 01W | 433246116255401 | 43.54611 | -116.4317 | 2658 H | 100-104 | 104 X X X X X X X
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Well Site 1D Well Well Surface | | Open | Well | 1996 | 1996 | 1998 | 1998 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall
02BBA1
%23'\,{«313\?/ 433246116262701 | 4354611 | -116.4408 | 2650 H 299-306 | 306 X X X X X X X
Ol | 433155116294401 | 4353194 | -116.4956 | 2570 H 30-126 | 126 X X X X
o | 433145116304301 | 4352917 | -116.5119 | 2548 H 98-102 103 X X X X X X X
OANINY | 433155116202501 | 43.53194 | -116.4903 | 2570 H 33-94 94 X X X X X
O AUA; | 433140116271401 | 4352778 | 1164539 | 2600 H - 37 X X X X X X X
O oy | 433140116271402 | 4352778 | 1164539 | 2600 U | 1924197 | 197 X X X X
O oy | 433155116263101 | 4353194 | -116.4419 | 2640 H | 1284130 | 130 X X X X X X X
O oy | 433143116245101 | 4352861 | -116.4142 | 2685 ! 64-130 190 X X X X X X X
0PAI | 433154116242601 | 43.53167 | -116.4072 | 2675 H 93-95 95 X X X X X X X
Ot | 433102116242301 | 4351722 | -116.4064 | 2683 H - 96 X X X X X X X
O oo | 433038116261201 | 4351056 | -116.4367 | 2675 H 95-96 96 X X
ooy | 432046116251401 | 4349611 | 1164206 | 2691 H - 110 X X X X X X
ooy | 432853116270001 | 4348139 | 1164525 | 2689 H | 400410 | 410 X X X X X X X
ooy | 432828116285001 | 43.47445 | -116.4806 | 2670 H | 242250 | 250 X X X X X
Oy | 432757116202601 | 4346584 | -116.4906 | 2685 | 150-234 | 240 X X X X X X X
oo | 432800116253001 | 4346667 | -116.4275 | 2790 ! 155-210 | 218 X X X X X X X
O aes | 433244116005501 | 43.54556 | -116.1653 | 2921 P | 375507 | 702 X X X
- | 433235116112801 | 43.54306 | -116.1911 | 2915 U | 114805 | 805 X X
O oas | 433233116113201 | 435425 | 1161922 | 2011 | PP | 435500 | 567 X X
O aal | 433216116132201 | 4353778 | -116.2228 | 2887 ! - 0 X X X
O oas | 433218116134201 | 43.53833 | -116.2283 | 2884 | 300-400 | 555 X X
O ba: | 433218116135301 | 43.53889 | -116.2319 | 2880 | HiS | 332353 | 353 X X X X X X X
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Well Site 1D Well Well Surface | | Open | Well | 1996 | 1996 | 1998 | 1998 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

DN oes | 433157116162301 | 435325 | -116.2731 | 2768 H - 0 X X X X X X

02N 02 | 433200116162001 | 4353333 | -116.2722 | 2770 H | 185195 | 195 X X

O aat | 433119116161601 | 4352195 | -116.2711 | 2020 H | 448460 | 460 X X X X X X X

O ook | 433144116135801 | 43.52889 | -116.2328 | 2873 || 362640 | 640 X X

S Aes | 433143116092001 | 43.52833 | -116.1531 | 3035 H | #17-503 | 503 X X X X

O OoF | 433050116140301 | 4351389 | -116.2342 | 3139 ! 537-860 | 880 X X

O JoF | 433007116133501 | 43.50195 | -116.2264 | 3142 UH | 523-800 | 800 X X

O Aoa- | IDWR-S2000-01 | 43.50195 | -116.2083 | 3175 P | 691912 | 930 X X X X

O ea: | 432812116161401 | 4347 | -1162706 | 2920 H | 294395 | 401 X X X X X X

O oot | 432753116141901 | 4346472 | -116.2386 | 2985 | | 492-559 | 564 X X

SN2k | 432732116123401 | 4345889 | -116.2004 | 3040 H | 484504 | 504 X X X X X X X

o ew | 4332116324401 | 4353630 | -116.5456 | 2550 H 2073 73 X X X X X X X

oo | 433243116355401 | 43545 | -116.5081 | 2555 H | 178180 | 180 X X X X X X X

002 | 433116116375501 | 4352111 | -116.6319 | 2555 H - 122 X X X X X X X

e Aoay | 433132116345001 | 4352555 | -116.5806 | 2602 P | 178194 | 194 X X X X X X

O ooy | 433128116335001 | 43.52444 | -116.5639 | 2575 H | 178183 | 183 X X X X X X X

DINOAW | 433129116305301 | 43.52472 | 1165147 | 2570 H - 76 X X X X X

Ozt | 432042116364101 | 43495 | 1166114 | 2563 | PH | 155477 | 177 X X X X X X X

ooy | 432028116340601 | 4349111 | -116.5683 | 2640 H | 205207 | 208 X X X X X X X

oz | 432826116342001 | 43.47380 | -116.5722 | 2610 H 99-135 | 135 X X

VRN | 432852116363601 | 4348111 | -116.61 2621 I 176255 | 255 X X X X X X X

OZRaaW | 4328016374401 | 4346695 | -116.6289 | 2705 || 697-920 | 920 X X X X X X X

02N 02W | 432743116362101 | 43.46194 | -116.6058 | 2700 H | 225240 | 240 X X X X X X X
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Well Site 1D Well Well Surface | | Open | Well | 1996 | 1996 | 1998 | 1998 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall
32CDB1
ok | 433157116035201 | 43.5325 | -116.0644 | 3180 H 78-470 | 470 X X
O - | 433246116081701 | 43.54389 | -116.1339 | 2960 || 475-1001 | 1001 X X
s | 4332216090702 | 4353017 | 1161519 | 3015 | H/P | 335460 | 460 X X X X X X X
02N OoE | 433202116082001 | 4353389 | -116.1389 | 3065 U | 609-845 | 855 X X X X X X X
A, | IDWR-S2000-03 | 4352806 | -116.1461 | 3064 O | 553580 | 580 X X X X X
OONOSE | 433112116084501 | 4352 | -116.1458 | 3058 | UM - 549 X X X X X
02 O3& | 433137116084301 | 4352333 | -116.1431 | 3059 z | s51-561 | 561 X X X X X
OO oos | 433137116084601 | 4352306 | -116.1497 | 3059 z | 801811 | 811 X X X X X
O Basy | 433150116061802 | 4353056 | -116.105 | 3140 | UM | 499-522 | 522 X X X X X
s | 433139116063402 | 435275 | -116.1094 | 3135 H | 599620 | 620 X X X X
0aN O9% | 433132116034701 | 4352555 | -116.0631 | 2838 | PR | 40100 | 100 X X X X X X X
Ao, | 433050116085001 | 4351389 | -116.1472 | 3070 H | 605635 | 642 X X X X
oy | 433217116441301 | 4353806 | -116.7369 | 2600 H | 239247 | 247 X X X X X X X
o | 433044116390601 | 43.51222 | -116.6517 | 2445 | 211310 | 310 X X X X X
O OW | 432019116403701 | 4348861 | -116.6769 | 2750 | 400603 | 603 X X X X X X X
%%"I‘Df\%\qv 432753116375701 | 43.46472 | -116.6325 | 2785 H 364-523 | 523 X X
S oas | 432900115505301 | 43.48333 | -115.9981 | 3680 H 20-217 227 X X
B | 432805115582301 | 43.46806 | -115.9731 | 3700 | 135-260 | 260 X X X
0123"/‘\8‘8’1\’ 433035116452401 0 0 2315 H 97-205 205 X X X X
st | 432840116460101 | 4347778 | -116.7669 | 2260 H 99-121 121 X X X
025 OB | 431402116173701 | 4323389 | -116.2036 | 3155 un | 615816 | 816 X X X
O A | IDWR-S2000-04 | 43.62666 | -116.2744 | 2690 un | 40417 | 420 X X X X X X X
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Well Site 1D Well Well Surface | | Open | Well | 1996 | 1996 | 1998 | 1998 2000 | 2001

Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall
O a5 | 433736116162802 | 43.62667 | -116.2744 | 2690 ! 265420 | 420 X X X X X X X
Ot | 4338016232401 | 43.63361 | -116.39 2590 H 63-64 64 X X X X X X X
OO oiE | 433716116223001 | 4362111 | -116.375 | 2606 H 81-83 83 X X X X X X X
o OIE | 433619116214001 | 43.60528 | -116.3611 | 2650 H - 67 X X X X X X X
. | 4336516192501 | 43.61417 | -116.3236 | 2650 H 99-100 100 X X X X X X X
o | 433646116172101 | 4361278 | 1162892 | 2690 | 77-87 87 X X X X X X X
O o | 433558116171701 | 4350045 | -116.2881 | 2735 H 91-97 97 X X X X X X X
O s | 433605116174602 | 4360139 | -116.2061 | 2726 u - 1000 X X X X X
O s | 433605116174603 | 4360139 | -116.2061 | 2726 P | 318920 | 952 X X X
QN OIE | 433607116185201 | 43.60194 | 1163144 | 2709 Ho| 146151 | 154 X X X X X X X
OOoIE | 433554116184901 | 4350833 | -116.3136 | 2701 P | 479565 | 565 X X X X X X X
OO IE | 433544116194601 | 43.59555 | -116.3204 | 2680 H 85-90 90 X X X X X X X
oA | 433537116192501 | 43.59361 | -116.3236 | 2706 P | 301-335 | 335 X X X X X X X
O on. | 433605116210001 | 4360139 | -11635 2660 ™ | 792877 | 902 X X X X X
oA, | 4336016213701 | 4360028 | -116.3603 | 2650 H 61-66 66 X X X
O o | 433613116222301 | 4360361 | -116.3731 | 2620 H | 100-105 | 105 X X X X X X X
OONOIE | 433433116173801 | 4357583 | 1162039 | 2725 | ZU | 25443 | 446 X X X X X X X
O oA- | 433512116162501 | 43.58667 | -116.2736 | 2750 H - 144 X X X X X X X
oy | 433417116172701 | 4357139 | -116.2008 | 2751 H | 103109 | 117 X X X X X X X
SO | 433347116193101 | 43.56306 | -116.3253 | 2717 Ho| 113118 | 118 X X X X X X X
e | 4333416202102 | 4356139 | -116.3302 | 2695 Ho| 117122 | 125 X X X X X X X
N oiE | 433347116222501 | 43.56306 | -116.3736 | 2667 84132 | 132 X X X X X X
03N 01E_| 433309116192401 | 435525 | -116.3233 | 2718 169-408 | 425 X X X X X X X
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Well Ste 1D Well well Surface | Open Well | 1996 | 1996 | 1998 | 1998 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

34CAAI

03N 01E

Do ORE | 433256116163301 | 43.54889 | -116.2758 | 2810 | 46-152 152 X X X X X X X
03N 01W

Ny | 433800116255901 | 43.63334 | -116.4331 2555 H 145-155 | 156 X X X X X
03N 01W

o oy | 433724116255801 | 43.62333 | -116.4328 | 2560 H 70-72 72 X X X X X
03N 01W

Doianay | 433736116304201 | 4362666 | 1165117 | 2495 H 173175 | 175 X X X X X
OSNOTIW | 433712116204001 | 43.62 | -116.4944 | 2510 H 69-74 80 X X X X X
06DDDC1 : :

03N 01W

o Daay | 433648116285001 | 43.61333 | -116.4806 | 2520 H 140-160 | 160 X X X X X X

03N 01W

oAby | 4337016272201 | 4361694 | -116.4561 2539 H 94-102 102 X X X X X X

ffg‘ggg 433645116253801 | 43.6125 | -116.4272 | 2572 H 145150 | 150 X X X X X X X
03N 01W

S | 433646116244101 | 4361194 | 1164114 | 2595 | ; 36 X X X X X X X
q%’;gm’ 433528116271101 | 43.59111 | -116.453 2677 H 183-190 190 X X X X X X X
0135"52\8?’ 433545116295201 | 43.59583 | -116.4978 | 2635 H 237-240 | 240 X X X X X X X
3133‘8%/\(\1 433450116274001 | 43.58055 | -116.4611 2620 H 193-205 | 295 X X X X X
03N 01W

DoNNY | 433517116243101 | 4358805 | -116.4086 | 2612 H 55-60 60 X X X X X X X
02%'\523’1‘/ 433354116233501 | 43.565 | -116.3931 2712 HS | 327-330 330 X X X X X X X
03N 01W

o oy | 433342116245201 | 4356166 | -116.4144 | 2700 H 202213 | 213 X X X X X X X
03N 01W

e | 433346116264901 | 43.56278 | -116.4469 | 2645 H ; 200 X X X X X X

%31';82’1\’ 433302116294101 | 4355 | -116.4944 | 2542 H 31-67 67 X X X X X X X
03N 02E

N IZE | 4337571612101 | 43.6325 | -116.2031 2712 | 7277 78 X X X X X X X
%i'; :é'f 433729116125701 | 43.62472 | -116.2158 | 2675 | ; 50 X X X X X X X
82'[“)8(2:'15 433713116152101 | 43.62028 | -116.2558 | 2708 P 568-850 | 850 X X X X X X
ggggg'f 433710116151501 | 43.61945 | -116.2539 | 2712 c 94-98 98 X X X X X X X
03N O2E | 433711116151501 | 43.61972 | -116.2542 | 2712 c 124-136 137 X X X X X X X
06DDD2
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Well Ste 1D Well well Surface | Open Well | 1996 | 1996 | 1998 | 1998 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

03N 02E

o 02 | 433637116151901 | 4361028 | -116.2553 | 2715 | 456-471 471 X X X X X X X

1013I§1A%2DE1 433705116110601 | 43.61806 | -116.185 2743 u | 78141220 | 1220 X X X X X X X

ONOZE | 4336191610301 | 43.60528 | -116.175 2718 H ; 68 X X X X X X X

03N 02E

o O2s | 433614116005801 | 43.60389 | -116.1661 | 2730 | ; 0 X X X X X X X

?ﬁgég 433559116105201 | 43.59972 | -116.1811 2710 | 35.55 55 X X X X X X X

22’;855 433557116122201 | 43.59917 | -116.2061 | 2700 HII 78-84 84 X X X X X X X

03N 02E

N2 | 433527116113401 | 43.59083 | -116.1928 | 2719 uP ; 165 X X X X

?3’; AOSE IDWR-S2000-05 | 43.59444 | -116.2447 | 2727 p 399-612 650 X X X X X

?‘Zg Xif 433549116151301 | 43.59694 | -116.2536 | 2720 | 78-80 80 X X X X X X X

23’; /Sig 433522116155502 | 43.58944 | -116.2653 | 2765 P 468-519 | 525 X X X X X

gg';é’g'f 433446116141801 | 4357944 | -116.2383 | 2793 U ; 106 X X X X X X

g?ggé'f 433502116135201 | 43.58389 | -116.2311 2751 DIU ; 58 X X X X X X X

03N 02E

N ACE | 433517116110101 | 4358805 | -116.1836 | 2720 U ; 1200 X X X

O3N02E | 33439116103501 | 43.5775 | -116.1764 | 2742 | 292362 | 425 X X

23DDBC2 : :

ggﬁ /gé'f 433420116091901 | 43.57222 | -116.1553 | 2758 H 63-68 70 X X X X X X X

03N 02E

DoND2E | IDWR-S2000-06 | 4357028 | -116.1631 2759 | 39-65 75 X X X

03N 02E

DoNaet | IDWR-S200007 | 4356778 | -116.1628 | 2788 P ; 416 X X X

03N 02E

SN 2E | 433353116100001 | 43.56472 | -116.1667 | 2800 U 32-42 43 X X X X

03N 02E

JNLO2E | 433358116101301 | 43.56611 | -116.1703 | 2755 U ; 0 X X X X X

03N 02E

SN 025 | 433351116005701 | 43.56417 | -116.1658 | 2815 U 37-51 51 X X X X X

03N 02E

SAIISs | 433351116100201 | 43.56417 | -116.1672 | 2813 U 35.47 47 X X X X X

g"g’;gi'f IDWR-S2000-08 | 435675 | -116.1778 | 2800 P 355-644 | 663 X X X

03N 02E | 433353116115201 | 43.56472 | -116.1978 | 2871 PIP | 365455 | 455 X X X X X X X
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Well Ste 1D Well Well Surface | Open Well | 1996 | 1996 | 1998 | 1998 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

27DBD1

03N 02E

Do | 433417116133001 | 43.57139 | -116.225 2830 N 275280 | 280 X X X X X X

gg'é Aoé'f 433359116160301 | 43.56667 | -116.2681 2765 H 100-103 103 X X X X X X X
ggggé'f 433350116152201 | 43.56389 | -116.2561 2785 H ; 212 X X X X X
g‘;"/‘i /Sé'f 433332116152301 | 43.55889 | -116.2564 | 2682 H 136-143 | 143 X X X X X
03N 02E

Aok | 433334116110601 | 43.55944 | -116.185 2892 p ; 944 X
g‘zxé’éf 433328116094201 | 43.55833 | -116.1611 2890 P 342-642 642 X X X
03N 02E

Ay IDWR303824 435475 | -116.1633 | 2930 | 517566 | 570 X X

%%"é)f\i\qv 433735116331101 | 43.62639 | -116.5531 2470 H 229-234 | 234 X X X X X X X
%ﬁg%\q\’ 433741116342201 | 43.62806 | -116.5728 | 2460 H 310-314 319 X X X X X X X
%?éNAg%\qV 433737116370701 | 43.62694 | -116.6186 | 2441 | 80-87 87 X X X X X X X
%%"5820\’1\’ 433714116371901 | 43.62055 | -116.6219 | 2430 P 380-510 | 550 X X X X X X X
03N 02W

o2l | 433645116364001 | 43.6125 | -116.6111 2445 c ; 94 X X X X X X X
03N O2W 1 433690116342101 | 43.60555 | -116.5725 | 2470 UN 58-289 202 X X

09DDDD1 : :

01?(’)'18%\’1‘/ 433645116334301 | 43.6125 | -116.562 2460 D 84-138 138 X X X X

ogggé\qv 433708116315401 | 43.61889 | -116.5317 | 2488 H 58-60 61 X X X X X X X
03N 32W | 433552116321501 | 43.59778 | -116.5375 | 2540 P 400-605 | 700 X X X X X X X
03N 02W

oD | 433532116332901 | 43.59222 | -116.5581 2485 D | 114-131 131 X X X

?;’X‘COS\B’X 433558116355401 | 43.50944 | -116.5983 | 2460 U 123-300 300 X X X X X X

ﬂ?;“égé\’zv 433537116364301 | 43.59361 | -116.6119 | 2450 H 73-76 104 X X X X X X

03N 02W

Nzl | 433516116312701 | 43.58694 | -116.5231 2544 H ; 71 X X X X X X X
0236';‘32%\/ 433433116323001 | 43.57583 | -116.5417 | 2505 H 34-83 83 X X X X X X X
%%I\ég%\qv 433410116362601 | 43.56944 | -116.6072 | 2467 H ; 116 X X X X X X X
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Well Site 1D Well Well Surface | ,__ | Open | Well 1996 | 1998 | 1998 | 2000 | 2000 | 2001

Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall
R | 433317116375401 | 43.55416 | -116.6314 | 2590 | 1524172 | 172 X X X X X X X
e | 433335116341501 | 43.55972 | -116.5708 | 2490 | 165-200 | 210 X X X X X X X
03N 02W

DGy | 4333116321901 | 4355305 | 1165386 | 2503 | 67117 | 17 X X X X X X X
03N 03E

SN | 433636116000201 | 4361 | -116.1506 | 3160 U | 120200 | 290 X X

O as | 4334491608201 | 43.58028 | -116.1389 | 2800 H 75-80 80 X X X X X X X
OO oS | 433408116065202 | 43.56889 | -116.1144 | 2810 P 81-101 106 X X X X X X X
03N 03E

ooty | 433343116074301 | 4356194 | -116.1286 | 2820 H | 140100 | 100 X X X X X
03N 03E

sLOSE | 433413116000401 | 4357028 | -116.1508 | 2762 H - 48 X X X X X X X
03N 03E

o | 433406116080101 | 43.56694 | -116.1333 | 2750 P/l - 60 X X X X X X X
03N 03E

ey | 4333516380301 | 4356417 | -116.1342 | 2800 U | 246940 | 940 X X X X X X X
oSy | IDWR-S2000-09 | 4355361 | -116.1444 | 2045 P | s27-818 | 838 X X X
03N 03E

OON NS | 433313116083001 | 43.55416 | -116.1444 | 2945 P - 0 X X

oBoa- | 433337116075001 | 43.56028 | -116.1306 | 2823 | U/C | 232260 | 280 X X X X X X X
ONSSE | 433247116072601 | 4354639 | -116.1239 | 2065 | ziZ | 560731 | 802 X X X X X X X
oDASs | 433310116054201 | 4356278 | -116.005 | 2862 Ho| 1201127 | 127 X X X X X X X
ot | 433745116412501 | 43.62917 | -116.6903 | 2429 u 22-94 95 X X X X X X
0O O | 4337101644101 | 43.61944 | 1167361 | 2560 | 131137 | 255 X X X X X X X
O oy | 433704116421901 | 4361777 | 1167053 | 2500 H 98122 | 122 X X X X X X
03N 03W

ooyl | 433636116411901 | 4361 | -116.6886 | 2560 T | 70300 | 300 X X

OO | 433630116392401 | 43.60833 | -116.6567 | 2441 VD - 90 X X X X

03N OSW | 433531116394601 | 4359194 | -116.6628 | 2480 H 69-79 80 X X

14CDA1

ey | 433517116401801 | 4358805 | 1166717 | 2540 un | 118190 | 250 X X X X X X X
03N 03W | 433433116392701 | 43.57583 | -116.6575 | _ 2490 | 50-80 o7 X X X X X X X
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Well Site 1D Well Well Surface | ,__ | Open | Well 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

23DCD1
03N 03W
Ao | 433427116405001 | 4357417 | -116.6805 | 2450 ! 19122 | 122 X X X X X X X
oo | 433321116435601 | 4355583 | -116.7322 | 2630 H | 159-260 | 260 X X X X
O anmy | 433746116473101 | 43.62944 | -116.7919 | 2487 P 70-75 78 X X X X X X
O amy | 433755116500001 | 4363194 | -116.8358 | 2618 | 140-325 | 325 X X
03N 04W

433703116513001 | 436175 | -116.8583 | 2462 ! 208503 | 503 X X X X X
07ABAT
O oA | 433646116461801 | 43.61278 | -116.7717 | 2497 u 94-175 | 175 X X X X X X X
O on | 433655116451001 | 4361528 | -116.7528 | 2492 H | 283270 | 270 X X X X X
O ey | 4336016461001 | 43.60028 | -116.7694 | 2535 H | 205295 | 295 X X X X X
ol | 433517116475501 | 43.58805 | -116.7986 | 2378 H 79-80 80 X X X X X X X
O as | 433740116544201 | 43.62778 | -116.9117 | 2285 c 40-55 55 X X X X
O oW | 433723116550201 | 43.62305 | -116.9172 | 2250 P | 456533 | 533 X X X X X
O aon | 433627116532701 | 436075 | -116.8908 | 2280 | HIS | 8586 86 X X X X X
DA | 434243116185001 | 4371194 | 1163139 | 2700 U | 100-140 | 250 X X X X X X X
04N O1E
aBCeDy | 434250116210401 | 43.71389 | -116.3511 | 2600 H | 387-465 | 470 X X X X X X X
oAt | IDWR347115 | 4370694 | -116.3428 | 2632 U | 276285 | 285 X X X X
04N O1E
ooBaby | 434245116221701 | 437125 | 1163714 | 2590 H - 30 X X X X X X X
oo | 434206116192001 | 43.70167 | -116.3222 | 2636 H | 289-308 | 308 X X X X X X
O Baa: | 434216116183501 | 43705 | -116.3039 | 2800 H | 290-300 | 335 X X X X X X X
O Bony | 434223116183001 | 4370639 | -116.3108 | 2690 H | 120203 | 203 X X X X X X X
04N O1E
LDE; | 434109116170701 | 4368583 | -116.2853 | 2620 H 70-78 78 X X X
o | 434048116184401 | 4368 | -1163122 | 2582 U | 300340 | 357 X X X
04NOTE | 434048116184402 | 4368 | -1163122 | 2582 U | 270290 | 295 X X X
14CCB2
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Well Site 1D Well Well Surface | ,__ | Open | Well 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall
S ochs | 434048116184403 | 4368 | -1163122 | 2582 U | 21025 | 250 X X X
O ons | 434048116184404 | 4368 | 1163122 | 2582 u | 130170 | 177 X X X
SIS | 4341216192001 | 43.68917 | 1163247 | 2575 P 1-18 103 X X
O an- | 434120116200301 | 4369139 | -116.3342 | 2565 | HiS | 87-88 88 X X X X X X
DOUE, | 434042116215001 | 43.67833 | 1163639 | 2546 H - 115 X X X X X X X
DU | 433048116203401 | 43.66333 | -116.3428 | 2605 H 99-104 | 106 X X X X X X X
SODUE | 433950116200401 | 4366389 | -116.3344 | 2630 u 93102 | 102 X X X X X X X
e | 433957116173601 | 43.66833 | -116.2061 | 2698 P | 327403 | 403 X X X X
ABoa. | 434020116171901 | 43.67222 | -116.2886 | 2602 H 50-70 71 X X X X
JANoIE | 433856116181501 | 43.64889 | -116.3042 | 2660 H 96-105 | 105 X X X X X X X
DINDIE | 433039116184801 | 43.66084 | 1163133 | 2613 | UL | 620868 | 892 X X X X X X X
St TE | 433856116221601 | 43.64889 | -116.3711 | 2605 H 84-89 90 X X X X X X X
DG | 433843116200701 | 4364528 | -116.3353 | 2637 H 96-101 103 X X X X X X X
s | 433838116192301 | 4364389 | -116.3231 | 2643 H | 145150 | 160 X
nCoG | 433837116192301 | 4364361 | -116.3231 | 2644 H | 476481 | 481 X X X X X X
TCAns | 433819116192501 | 436375 | -116.3247 | 2650 P | 671752 | 755 X X
SINOAE | 433813116183201 | 4363695 | -116.3089 | 2660 pn | 90108 | 109 X X X X X X X
S AAs | 4338216174101 | 4363045 | 1162047 | 2675 H | 175205 | 205 X X X X X X X
S BA; | 433843116171601 | 43645 | -116.2875 | 2673 U | 760-1005 | 1005 X X X X
O Ras | 433842116171601 | 43645 | -116.2875 | 2673 P | 474545 | 551 X X X X X
QIO | 434244116241101 | 4371222 | 1164031 | 2552 H | 239260 | 260 X X X X X X X
QoSN | 434228116263401 | 43.70778 | -116.4428 | 2502 H 51-57 57 X X X X X X X
04N 01W | 434243116284501 | 43.71194 | -116.4792 | 2520 182142 | 142 X X X X X X
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Well Ste 1D Well Well Surface | Open well 1996 | 1998 | 1998 | 2000 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

05DBD1

0aNOTW 1 434919116293401 | 43.70528 | -116.4928 | 2465 H 162-172 172 X X X X X X X
07AAAD1 : :

8;'3 m 434156116293301 | 43.69889 | -116.4925 | 2465 UP | 420440 | 440 X X X X X X X
?;X‘A(gg 434106116240301 | 43.68861 | -116.3972 | 2525 | 240-320 332 X X X X X X X
%r\[l)gg\qv 434048116235101 | 43.68 | -116.3975 | 2525 | ; 130 X X X X X

OANOTW 1 434104116274701 | 43.68444 | -116.4631 2482 H 150-152 160 X X

16CAAAT : :

?;"B"B(Sg"ﬁ 434124116292101 | 4369 | -116.4892 | 2470 H 140-149 149 X X X X X X
f;‘g‘;gg 434120116292101 | 43.68889 | -116.4892 | 2468 H 381-424 | 424 X X X X X X X
04N 01W

OONaI N | 434059116202101 | 43.68306 | -116.4892 | 2465 H 113-118 118 X

04N 01W

LAY | 434007116203501 | 43.66861 | -116.4931 2495 H 161-170 170 X X X X X X

02"'2%33?/ 434013116262801 | 43.67028 | -116.4411 2545 H 80-93 93 X X X X X X

04N 01W

Aoy | 434013116252201 | 43.67028 | -116.4228 | 2560 H 150-155 155 X X X X X
04N 01W

ANt | 434026116235601 | 43.67389 | -116.3989 | 2570 H 109-120 120 X X X X X
04N 01W

S NORBy | 434025116235901 | 4367361 | -116.3997 | 2570 Q 300-313 | 313 X X X X

04N 01W

DB | 434020116243401 | 4367222 | -116.4094 | 2575 H 230-235 | 235 X X X X X
02‘:3'\/'\83’1\’ 433923116271001 | 43.65639 | -116.4528 | 2535 H 72-80 80 X X X X X X X
ggk‘;gg 433942116300901 | 43.66167 | -116.5025 | 2500 H 230237 | 237 X X X X X
04N 01W

SoNDany | 433934116203602 | 4365917 | -116.493 2505 H 89-99 99 X X X X X X
0341"‘5 0 1!\?/ 433852116293401 | 43.64778 | -116.4928 | 2508 | 455-462 | 462 X X X X X X X
ggg‘;gg 433849116293201 | 43.64695 | -116.4922 | 2510 H 60-65 65 X X X X X X X
04N 01W

SAADALY | 433835116271201 | 4364306 | -116.4533 | 2530 H 67-77 77 X X X X X X X
04N 01W

s | 433828116281701 | 4364111 | 1164714 | 2525 H ; 400 X X

04N 01W

433852116244801 | 43.64778 | -116.4133 | 2571 HIU ; 44 X X X X X X X

35AAAT
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Well Site 1D Well Well | Surface | | Open | Well 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

04N 02E

04N 02 | 4341316134201 | 43.60194 | -116.2283 | 3200 H i 0 <

04N 02E | 434103116143601 | 43.68278 | -116.2467 | 3020 H | 110525 | 525 X X X

17CABCH : :

oo | 434035116154401 | 43.67639 | 1162622 | 2680 H : 98 X X X X X X X

04N 02E

DANOZE | 434003116125701 | 436675 | -116.2158 | 2890 A | e4a880 | 880 X X

04N 02E

DANOZE | 433001116093001 | 43.65139 | -116.1614 | 3490 H | 339340 | 340 X X

04N 02E

DONOZE | 433030116141901 | 43.65833 | -116.2386 | 2670 H 43-48 85 X

N | 4339216143401 | 43.65583 | 1162428 | 2663 ! : 45 X X X X X X X

04N 02E

DINOZE | 433025116141901 | 43.65694 | -116.2386 | 2670 | VA . 1195 | X X X X X X X

04N 02E

SN O2E | 433020116153701 | 43.65778 | -116.2504 | 2630 | i 0 " N

04N 02E

SN O3E | 433928116153801 | 436575 | -116.2507 | 2630 H : 41 X X X X X X X

O mar | 433850116151701 | 43.64722 | 1162547 | 2630 H . 60 X X X X X X X

04N 02E

JUNO2E | 433838116153601 | 43.64380 | -116.26 | 2632 u - 0 X "

04N 02E

AN O2E | 433836116132701 | 43.64333 | 1162194 | 2695 | UH |  47-62 53 X X X X X X X

04N 02E

SN 02T | 4338216121701 | 4363017 | -116.2047 | 2728 | M | 69-100 | 100 X X X X X X X

04N 02E

JaN 02 | 4338241612501 | 43.63072 | -116.1894 | 2850 u | 7ar7mt | 78t X X

04N 02W

DANOZW | 434310116304501 | 43.71944 | -116.5125 | 2480 H : 0 X X X X X

04N 02W

DANOZW | 4343016304401 | 43.71695 | -116.5122 | 2480 H 74-84 84 X X X X X

D02 | 434225116310301 | 43.70694 | 1165175 | 2450 H | 530675 | 675 X X X " <

0N 2W | 434226116315701 | 43.70722 | 1165325 | 2445 H 31-50 50 X X X X X X X

04N 02W

JINO2W | 434314116360401 | 43.72085 | -116.6011 | 2497 P - 475 X X

MM 02V | 434228116372701 | 4370778 | 1166242 | 2404 P | 404420 | 420 X X X X X X X

O oW | 434214116365001 | 4370380 | -116.6164 | 2395 H 40-42 42 X X X X X X X

04N 02W | 434200116353201 | 437 | -116.5022 | 2407 60-80 80 X X X X X X
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Well Site 1D Well Well Surface | ,__ | Open | Well 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

0BADD1

04N 02W

BBy | 434217116341801 | 43.70472 | 1165717 | 2420 H | 1284133 | 133 X X X X X X X

OO | 434014116353201 | 43.67056 | -116.5922 | 2432 H 79-90 90 X X X X X X X

e | 433948116333201 | 43.66333 | -116.5589 | 2458 H | 237262 | 262 X X X X

GIRSZW | 433951116315401 | 43.66417 | -116.5317 | 2479 | 5377 77 X X X X X X X

oy | 433910116323301 | 4365278 | -116.5425 | 2472 | 140-152 | 152 X X X X

O aaan | 433852116364501 | 43.64778 | -116.6125 | 2438 H - 150 X X X X X X X

O Aan | 433844116345401 | 43.64556 | -116.5817 | 2455 | 123-148 | 148 X X X X

YLzl | 433757116320101 | 4363472 | 1165317 | 2480 H | 106-108 | 108 X X X X X

DTNy | 434248116385901 | 43.71333 | 1166497 | 2420 H | 213218 | 218 X X X X X

04N 03W

AW | 434249116390901 | 4371361 | -116.6525 | 2430 H 07135 | 135 X X X X X

VNS | 434233116420201 | 4370917 | 1167006 | 2430 HI | 259203 | 296 X X X X X X X

SOSW | 434224116414401 | 43.70667 | -116.6956 | 2465 H | 199227 | 227 X X X X X X X

ey | 434312116435501 | 4372 | 1167319 | 2372 ! 31160 | 160 X X X X X X X

04N 03W

Ao | 4342016381701 | 437 | 1166381 | 2387 un 10-35 40 X X X X X X X

O oy | 434128116383601 | 4369111 | -116.6433 | 2370 s | 181185 | 185 X X X X X X X

Aoy | 434105116402701 | 43.68472 | -116.6742 | 2440 U | 875-1010 | 1010 X X X

04N 03W

Dol | 434105116402702 | 43.68472 | 1166742 | 2440 u | 579725 | 725 X X X

ooy | 434105116402703 | 43.68472 | -116.6742 | 2440 U | 430550 | 550 X X X

ooy | 434105116402704 | 43.68472 | -116.6742 | 2440 u | 270407 | 407 X X X

Aoy | 434105116402705 | 43.68472 | -116.6742 | 2440 U | 208270 | 270 X X X

oo | 434105116402706 | 43.68472 | -116.6742 | 2440 U | 166208 | 208 X X X

04N O3SW' | 434105116402707 | 43.68472 | -116.6742 | 2440 U | 122166 | 166 X X X
15ADC7

February 2004 Page 100 IWRRI




Well Ste 1D Well Well Uee Open Well | 1996 | 1996 | 1998 | 1998 | 2000 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

01"'5'1836\23‘/ 434105116402708 | 43.68472 | -116.6742 | 2440 U 110-120 122 X X X

fggggg 434038116413801 | 43.67722 | -116.6939 | 2348 ull 57-75 80 X X X X X X X

%ﬂgg\?’ 434024116382901 | 43.67334 | -116.6414 | 2412 H ; 92 X X X X X X X

04N 03W

Yol | 433919116375701 | 43.65528 | -116.6325 | 2424 U 62-68 80 X X X X

04N 03W

S| 433935116394301 | 43.65073 | -116.6619 | 2412 p 286-503 | 515 X X

04N 03W

S AASDY | 433934116403201 | 4365945 | -116.6756 | 2380 P 175320 | 330 X X X X X X X

04N 03W

DI | 433915116411701 | 43.65417 | -116.6881 2380 | 7697 97 X X X X X X X

04N 03W

SIS | 4339216413501 | 43.65583 | -116.6931 2378 P 150-200 | 395 X X X X X X X

%"E)NAB%V 433935116441001 | 43.65806 | -116.7322 | 2353 H 160-192 192 X X X X X X X

%ﬂ%gi\’z\’ 433825116445702 | 43.64028 | -116.7492 | 2467 H ; 0 X X X X X

04N O3W | 433015116413801 | 43.6375 | -116.6939 | 2440 H 348357 | 357 X X X X X

33DADC1 ' :

%i'ég‘(‘:\qv 434225116493101 | 43.70694 | -116.8253 | 2285 HIS | 387-420 | 420 X X X X X X X

%"’5'\&2‘8’1‘/ 434234116504601 | 43.70945 | -116.8461 2280 H 168-224 224 X X X X X X

032'80;1\’\’ IDWR297941 | 43.70383 | -116.8492 | 2280 H 210230 | 230 X

04N 04W

St | 434128116504401 | 4369111 | -116.8456 | 2350 H 58-70 70 X X X X X

04N 04W

N onay | 434138116481201 | 4369389 | -116.8033 | 2300 WS | 97-116 116 X X X X X

04N 04W

Aoy | 434108116480402 | 43.68555 | -116.8011 2304 H 68-74 74 X X X X

04N 04W

sl | 434107116480501 | 43.68528 | -116.8014 | 2304 H 215220 | 220 X X X X X

02"'1%21\?’ 434008116492001 | 43.66889 | -116.8222 | 2440 H 35-36 36 X X X X X X

02"'1'\(':21\’2‘/ 432835116492501 | 43.66945 | -116.8225 | 2420 H 3536 36 X X X X X

%‘;'\58‘8’1\’ 433945116473201 | 43.6625 | -116.7922 | 2353 | 72-132 137 X X X

04N 04W

LD | 433919116454903 | 4365528 | -116.7636 | 2368 W | 138175 175 X X X X

04N 04W | 433929116491501 | 43.65806 | -116.8208 | 2470 /s 5456 56 X X X X X X X
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Well Site 1D Well Well Surface | ,__ | Open | Well 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

28ACB1

04N 04W

BB, | 433942116520101 | 4366167 | -116.8669 | 2461 | UH | 7685 85 X X X X X X

O aamy | 433941116521301 | 43.66130 | -116.8703 | 2480 H 34-71 71 X X X X X X X

eaey | 433800116493001 | 43.63334 | -116.825 | 2525 u/ 50-63 72 X X X X X X X

Oy’ | IDWR297845.X | 4363867 | -116.7695 | 2494 H | 564586 | 586 X

04N 05W

ooy | 434132116584001 | 43.69222 | -116.9778 | 2292 ! 64-131 131 X X X X X X X

OO0 | 434128116551601 | 4369111 | 1169211 | 2423 | WS | 287306 | 306 X X X X X X X

0RO | 434040116543502 | 43.67778 | -116.9097 | 2424 P | 500910 | 910 X X X

O aon | 434053116532001 | 4368139 | -116.8914 | 2421 H 56-65 65 X X X X X X X

O oot | 434033116560501 | 43.67583 | -116.9347 | 2440 H | 178220 | 220 X X X X X X X

S aon | 434009116543701 | 43.66917 | -116.9103 | 2465 P | 285515 | 525 X X

ooy | 434006116543701 | 43.66833 | -116.9103 | 2467 H 68-80 80 X X X X

O ooy | 434234117004501 | 43.70045 | 117.0125 | 2420 H | 123280 | 280 X X X X X

WOV | 434138117010101 | 4360389 | -117.0169 | 2240 | HIS | 3031 31 X X X X X

ool | 434141117002001 | 43.69473 | -117.0056 | 2275 H 83123 | 123 X X X X X

05N 01E

SoabbG | 434409116182101 | 4373583 | -116.3058 | 2715 H - 61 X X X X X X X

o ons | 434412116175801 | 4373972 | 1162002 | 2750 Hi | 633688 | 688 X X X X X X X

o ons | 434415116213401 | 437375 | 1163504 | 2740 | HIS | 244246 | 247 X X X X X X X

o on: | 434349116224101 | 43.73028 | -116.3781 | 2655 H 90-99 99 X X X X X X

05N 01E

sanCeD | 434316116210501 | 4372111 | -116.3514 | 2632 H | 168190 | 190 X X X X X X X

ooy | 4343416192001 | 43.72805 | 1163222 | 2680 ! - 175 X X X X X X X

05N O1E

oAy | 434350116175701 | 43.73056 | 1162992 | 2720 s - 0 X X X X X X X

A | 4344041616401 | 43.73444 | -116.2778 | 2780 | 144-230 | 230 X X X X X X X
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Well Ste 1D Well Well Use | OPen | Well | 1996 | 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall

O aas | 434700116274501 | 43.78333 | -116.4625 | 2688 Wi | 390-450 | 450 X X X X X

Ol | 434650116280802 | 43.78056 | -116.4689 | 2680 || 285415 | 425 X X X X X X

ooy | 434615116275801 | 43.77083 | -116.4656 | 2715 H | 492628 | 628 X X X X

O | 434628116292101 | 43.77444 | -116.4802 | 2630 Wi | 222237 | 237 X X X X X X

oy | 434433116201601 | 43.74167 | -116.4889 | 2630 ! 272332 | 332 X X X X X X X

Aoy | 434344116285401 | 43.72889 | -116.4817 | 2595 H - 280 X X X X X X X

oAy | 434344116273301 | 43.72889 | 1164502 | 2590 H | 106-108 | 108 X X X X X X

05N 01W

Sooa Y | 434336116280301 | 43.72667 | -116.4675 | 2560 H | 185188 | 188 X X X X X

05N 01W

DAL | 434335116261501 | 43.72639 | -116.4375 | 2585 H . 74 X X X X X X X

ORI | 4343211162565301 | 437225 | 1164314 | 2582 ! 44-84 84 X X X X X X X

O aumy | 434406116240801 | 43735 | 1164022 | 2618 HI | 204-208 | 208 X X X X X X X

05N 02E

o BaZt | 4343316150401 | 43.7425 | 1162511 | 2990 H 14-68 68 X X

05N 02E

oo ot | 4343416160201 | 43.72806 | 1162672 | 2815 | 48254 | 254 X X

ooy | 434525116373601 | 43.75604 | -116.6267 | 2482 U | 254260 | 261 X X X X X X X

O Ay | 434525116373602 | 4375694 | -116.6267 | 2482 H - 0 X X X X X X

05N 02W

o inan | 434551116362801 | 43.76417 | -116.6078 | 2500 s | 71 | 17 X X X X X X X

OS2l | 434514116334501 | 43.75389 | -116.5625 | 2605 || 279403 | 450 X X X X X X X

ezt | 434525116305101 | 43.75694 | -116.5142 | 2595 s | 280320 | 330 X X X X X X

05N 02W

A2l | 434436116313601 | 43.74333 | -116.5267 | 2632 | . 448 X X

05N 02W

N2 | 434413116334201 | 43.73695 | -116.5617 | 2565 H | 213218 | 218 X X X X X X X

O Anan | 434452116364101 | 43.74778 | 1166114 | 2505 H | 164180 | 180 X X X X X X X

R aan | 434356116375201 | 4373222 | 1166311 | 2472 Ho| 102132 | 133 X X X X X X

05N 02W | 434331116362501 | 43.72528 | -116.6069 | 2500 H | 230233 | 233 X X X X X X
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Well Site 1D Well Well Use | OPen | Well | 1996 | 1996 | 1998 | 1998 | 2000 | 2000 | 2001
Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall
32CBD1
SRSl | 434738116400501 | 43.79389 | -116.6681 | 2560 H | 380-384 | 386 X X X X X X X
oo | 434815116423001 | 43.80416 | -116.7108 | 2460 Ho | 140143 | 143 X X X X X X
oo | 434646116425401 | 4377917 | -116.7153 | 2450 H | 197208 | 203 X X X X X X X
ooV | 434652116385201 | 43.78111 | -116.6478 | 2560 H 60-314 | 314 X X X X X X X
OO | 434554116403101 | 43765 | 1166753 | 2495 | HIS | 147-152 | 152 X X X X X X X
O oy | 434545116435701 | 43.7625 | -116.7325 | 2440 Ho| 1314143 | 143 X X X X X X X
OO | 434517116421101 | 4375472 | 116703 | 2480 H | 177200 | 200 X X X X X X X
O, | IDWR297637 | 4375023 | -116.6693 | 2500 H | 345-352 | 352 X
oy | 434432116405801 | 4374222 | -116.6828 | 2450 H | 236287 | 287 X X
oo | 434430116435601 | 43.74306 | -116.7322 | 2475 H | 158180 | 180 X X X X X X X
O o | 434716116505401 | 43.78667 | -116.8519 | 2430 H | 196202 | 202 X X X X X X X
O ot | 434651116490501 | 43.78083 | -116.8181 | 2460 H | 274279 | 281 X X X X X X X
O on, | 434640116490301 | 4377778 | 1168175 | 2430 H | 261333 | 333 X X X X X X
DAY | 434510116495501 | 4375278 | -116.8319 | 2350 H 99-102 | 102 X X X X X X
DoN WY | 434522116493201 | 43.75611 | -116.8256 | 2350 H | 180-203 | 203 X X X X X X
oAy | 434543116453301 | 43.76194 | -116.7502 | 2510 ! 264-415 | 448 X X X X X X X
oo | 434346116484101 | 4372045 | -116.8114 | 2300 | WS | 115190 | 190 X X X X X X X
O aomy | 434359116472801 | 43.73306 | -116.7911 | 2330 H 74-75 75 X X X X X X X
o | 434339116461201 | 437275 | -116.77 2345 | 135-146 | 146 X X X X X X X
ooy | 434759116570201 | 43.79972 | -116.9506 | 2285 sl 45-46 46 X X X X X X X
0NN | 434733116561501 | 437925 | -116.9375 | 2281 P | 245477 | 505 X X X X X X X
O aoay | 434714116564201 | 437875 | -116.9444 | 2225 | UP | 245440 | 450 X X X X X
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Well Site 1D Well Well Use | OPen | Well | 1996 | 1996 | 1998 | 1998 | 2000 | 2000 | 2001

Name Latitude | Longitude | Elevation Interval Depth | Spring Fall Spring Fall Spring Fall Fall
O aoN! | 434724116555001 | 4379 | -116.9305 | 2275 H | 100122 | 123 X X X X X
ool | 434605116532601 | 43.76805 | -116.8906 | 2311 un | 3e142 | 142 X X X X X X X
ool | 434603116590001 | 437675 | -116.9858 | 2225 H - 250 X X X X X X X
TN | 434450116575001 | 43.74972 | -116.9639 | 2255 H 36-37 37 X X X X X X X
e | 434411116545301 | 43.73639 | -116.9147 | 2260 H 60-61 61 X X X X X
SOl | 434409116574101 | 43.73583 | -116.9614 | 2375 Ho | 199222 | 222 X X X X X
ggR‘A(fX‘{ 434402116570501 | 43.73389 | -116.9514 | 2378 | 210380 | 385 X X X X X
NI | 434313116574901 | 43.72028 | -116.9636 | 2312 | HIS | 5758 58 X X X X X X X
Ao | 434349116562401 | 43.7275 | -116.9408 | 2380 | 198-348 | 368 X X X X
0RO | 434735117000801 | 43.79306 | -117.0022 | 2200 s 40-47 47 X X X X X
0N OOW | 434725117004101 | 43.79028 | -117.0114 | 2195 H 76-82 82 X X X X X X X
0T o0W | 434430117012301 | 4374167 | -117.0231 | 2210 | UM - 34 X X X X X X X
T oW | 434310117011201 | 43725 | -117.0217 | 2275 H 42-43 43 X X X X X X X
O enay | 435032116412801 | 4384222 | 1166911 | 2570 H - 235 X X X X X X X
ool | 434920116442701 | 4382222 | -116.7408 | 2440 H | 206216 | 216 X X X X X X X
ol | 434845116422001 | 438125 | -116.7081 | 2480 H - 152 X X X X X X
OOMIN | 434922116493301 | 43.82278 | -116.8258 | 2630 ! 369-705 | 705 X X
oot | 434835116474301 | 43.80972 | -116.7953 | 2480 Ho| 144147 | 147 X X X X X X X
e | 433858116463401 | 4381611 | -116.7761 | 2620 H | 352362 | 362 X X X X X X X
oo | 434920116591701 | 43.82222 | -116.9881 | 2335 H 60-62 62 X X X X X
O aon | 434910116542701 | 4381944 | -116.9075 | 2520 H | 208322 | 322 X X X X X X X
o oon | 434836116531201 | 4381 | -116.8867 | 2500 ! 308-385 | 385 X X X X X X X

SUMMARY: Number of Wells 343 | 343 | 383 | 372 | 392 390 341
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Appendix E. POTENTIOMETRIC SURFACE MAPS

Figure E-1: Spring 1996, shallow zone (240 wells).
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Figure E-3: Spring 1996, deep zone (45 wells).
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Figure E-5: Fall 1996, intermediate zone (49 wells).
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Figure E-7: Spring 1998, shallow zone (259 wells).
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Figure E-9: Spring 1998, deep zone (38 wells).
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Figure E-11: Fall 1998, intermediate zone (44 wells).
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Figure E-13: Spring 2000, shallow zone (238 wells).
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Figure E-15: Spring 2000, deep zone (27 wells).
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Figure E-17: Fall 2000, intermediate zone (34 wells).
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Figure E-19: Fall 2001, shallow zone (212 wells).
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Figure E-21: Fall 2001, deep zone (27 wells).
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Appendix F. HYDROGRAPHS
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Appendix G. SELECTED HYDROGRAPHS SHOWING CHANGES

This section repeats selected hydrographs that were shown in the previous appendices,
but the discussion regarding water level has changed. Locations of the hydrographs
included in this appendix are shown below.
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NORTHEAST OF EAGLE, Jeker geothermal well. Per Ken Neely, the increasing
shut-in pressures are a result of decreasing production within the geothermal aquifer
during the period between 1995 and 1999.
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NORTHEAST OF EAGLE (no well log available). Geothermal well showed rises in
the shut-in pressuring during the period 1994-1999. From 2000 to present, slight
declines have been shown.
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NORTHWEST OF NOTUS, NORTH OF GREENLEAF. Decline from 1985 to 1993—
1994, which coincides with below normal precipitation. Increases from 1995 to
present coincide with increased precipitation. Hydrograph curves prior to 1985
generally correspond with the precipitation curve.
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SOUTH OF STAR. Flowing well, apparent decrease in pressure from early 1970s to
1990. Water levels from 1990 to 1998 appear stable to increasing. Well is 5 miles
down gradient from Meridian, 2 miles north of 1-84 corridor. Land use change map
does not indicate major decrease in irrigated lands, but some changes have occurred
locally. Water levels may have come to equilibrium. Five-foot decline over past 3
years beginning in 1999 may indicate a renewed period of decline.
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WEST OF GARDEN CITY, 3 miles. Vicinity of Ustick & Five Mile Road. Suburban

development since late 1980s or early 1990s. Formerly irrigated farmlands. Leveled

off 1996-1998. Has been declining since 1998.
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NORTH OF EAGLE. Suburban development since late 1980s to present. Formerly
irrigated farmland. Slight declines continue.
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Field visit shows current high density housing construction surrounded by flood-
irrigated lands and older residential tracts. Long-term decline probably resulting from
gradual increase in housing throughout this area.
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EAST BOISE TEST WELL. Water levels are indicative of the declining water levels
and subsequent increasing trends since 1999 in the southeast Boise area surrounding

the Micron facility.
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BOISE, NEAR HILLCREST GOLF COURSE. The golf course was built around
1962; the neighborhood looks to be 1945+ era. Water level increased until 1955, when
a steady decline of 1-2° per year began and has continued. Also, New York Canal is
within 1 mile south of the site but has been lined since approx 1907 (D. Dyke, pers.
comm.). Decline may be result of nearby (?) residential well use.
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BLM GEOTHERMAL WELL. Declines in pressures correspond to other wells in the
geothermal aquifer. Declines appear to have stabilized through the aquifer. Increasing
water levels since 1999 may be influenced by the injection of spent geothermal water
from the Boise City geothermal system. Injection began in 1999.
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FAIRVIEW. Reduction in flood irrigation

combined with increased urbanization is most likely cause of water level decline.
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SOUTH OF LAKE LOWELL. Sprinkle irrigated farmland; mostly with ground water
(per land use mapping). Fallow land to north and west, no flood irrigation available.
Decline from mid-1960s to mid-1990s probably resulting from steady ground water
over use coupled with low recharge rates. Water levels stabilized since mid-1990s.
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SOUTH OF BOISE, SOUTH OF FIVE MILE CREEK. Knox well, located on hill
near Micron. Limited data, and no new data since 1998. Declines possibly resulting
from increased water use in Micron vicinity or use at the well site itself.
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GOWEN ROAD & FEDERAL WAY, KOA well. Located near SE Boise GWMA.
Major declines have been observed throughout this area. This decline probably
resulted from major increase in water use in the Micron vicinity. Water levels have
stabilized since 1996.
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NORTHWEST OF KUNA, WEST OF ROBINSON ROAD. This section is mostly
flood-irrigated farmland with houses along the perimeter. Age of houses range from
pre-1940 to present. Gradual decline of water level probably result of gradual increase
in residential construction. Sharp declines in 1990 and 2001, probably drought related.
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EAST OF KUNA 6 MILES, SOUTH OF NEW YORK CANAL. General long-term
decline, punctuated by period of recovery that coincide with years of above normal

precipitation.
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SOUTHEAST OF KUNA. Fairly stable from 1996 through 2000. Data are too limited
to determine cause of declines prior to 1996.
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NEAR SNAKE RIVER, WEST OF MORA CANAL. Unclear reason for sharp
increase in water level. Several injection wells (total depths approximately 100-150")
are used for disposal of field runoff nearby.
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NORTH OF MELBA, NEXT TO MORA CANAL. Short record of data. Relative to
1980 USGS measurement, current water levels have not changed substantially.
Continued increases may be due to above average precipitation during mid- to late-
1990s. Recent levels appear to reflect drier-than-normal conditions.
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