Model Status and Calibration

Stephen Hundt
Context
The modeling process

- **Define problem**
 - Literature review
 - Preliminary analyses
 - Data collection

- **Develop conceptual model**
 - Processes/budget
 - Boundary conditions
 - Hydrogeologic framework
 - Data collection

- **Develop mathematical model**
 - Choose model code
 - Choose how to represent processes and boundary conditions
 - Construct the model

- **Calibration**
 - History matching
 - Sensitivity analysis
 - Data collection

- **Assessment of problem using model**

- **Project completion**
 - Results based on simulation results

After Reilly (2001) TWRI 3,B8
Work since last meeting
Reminder: Diagnostic (Monte Carlo) Plots

Parameter value

![Diagram showing parameter value with lower and upper bounds and a 'best guess'.]
Reminder:
Diagnostic (Monte Carlo) Plots
Troubleshooting: Model Structure

- 7.5
- 1989
- 2004
- 2009
- 2014

- From Lake Lowell
- To Lake Lowell
- From River
- To Lower Ny Carlin
- From other zones
- To other zones
Troubleshooting:
Model Structure
Troubleshooting: PEST ‘mechanics’

- **MODEL**: MODFLOW (solving flow equations)
 - **INPUT**: (adjustable and non-adjustable properties and boundaries)
 - **OUTPUT**: (heads and flows at grid cells)

- **PEST**: Write input files with calculated parameters
 - Calculate new parameter values
 - Objective function too high
 - Objective function good

- **DATA**: Observation Data

PEST
Model Independent Parameter Estimation
(Version: 9.43, 2014-09-21)

Troubleshooting: PEST ‘mechanics’

- **Model**
 - **Input**: (adjustable and non-adjustable properties and boundaries)
 - **Output**: (heads and flows at grid cells)

- **PEST**
 - Write input files with calculated parameters
 - Calculate new parameter values
 - Objective function too high
 - Objective function good

- **Data**: Observation Data

PEST
Model Independent Parameter Estimation
(Version: 9.43, 2014-09-21)

Troubleshooting: PEST ‘mechanics’

- **Model**
 - **Input**: (adjustable and non-adjustable properties and boundaries)
 - **Output**: (heads and flows at grid cells)

- **PEST**
 - Write input files with calculated parameters
 - Calculate new parameter values
 - Objective function too high
 - Objective function good

- **Data**: Observation Data
Troubleshooting: PEST ‘mechanics’

Writing MODFLOW input files

MODFLOW

- HK, VK, SS value grids
- Pilot point parameter files
- Interpolation routines
- Template Files
- Parameter replacement routine
- Irrigation Parameter Files
- Irrigation Supply and Demand Data
- Irrigation Demand Supply Routine
- Boundary Stress Time Series Files
- Parameter replacement routine
- Template Files
- Modflow Package Files
- PEST Algorithm: Parameter Adjustment
Troubleshooting: PEST ‘mechanics’

PEST

Model Independent Parameter Estimation

For Manual Part 3:
PEST, SENSI, and Global Optimization

Import for documentation of USGS programs and manuals

MODEL

MODFLOW
(solving flow equations)

INPUT
(adjustable and non-adjustable properties and boundaries)

OUTPUT
(heads and flows at grid cells)

PEST

Write input files with calculated parameters

Calculate new parameter values

Calculate Objective Function

objective function too high

Objective function good

DATA

Observation Data

Troubleshooting: PEST ‘mechanics’

Write input files with calculated parameters

Calculate new parameter values

Calculate Objective Function

Objective function too high

Objective function good
Troubleshooting: PEST ‘mechanics’

Reading MODFLOW Output Files

- MODFLOW
- Drain boundary fluxes
- Lowell boundary fluxes
- River boundary fluxes
- Setting files
- Cell-by-cell head files
- Head processing routine
- Setting files
- Processed heads
- Vertical and temporal difference calculation
- Processed Head Difference Files
- Output extraction routine
- Instruction file

Output extraction routine

Output extraction routine

Instruction Files

PEST Algorithm: Calculate Objective Function
Manual Adjustments

East - West

North - South
Manual Adjustments
<table>
<thead>
<tr>
<th>Observation Type</th>
<th>Approximate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Levels</td>
<td>10,000 's</td>
</tr>
<tr>
<td>Drain Flows</td>
<td>100's</td>
</tr>
<tr>
<td>Lower Seepage</td>
<td>100's</td>
</tr>
<tr>
<td>River Seepage</td>
<td>100's</td>
</tr>
<tr>
<td>Temporal Differences</td>
<td>10,000</td>
</tr>
<tr>
<td>Vertical Water Level Differences</td>
<td></td>
</tr>
<tr>
<td>Net Water Budget Values*</td>
<td><10</td>
</tr>
<tr>
<td>Preferred Parameters*</td>
<td>--</td>
</tr>
</tbody>
</table>

- Number of measurements at location
- Spatial density
- Temporality
- “Events”
- Structural error
- Overall budget
- Others???
Observation Type vs. Approximate Number

<table>
<thead>
<tr>
<th>Observation Type</th>
<th>Approximate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Levels</td>
<td>10,000’s</td>
</tr>
<tr>
<td>Drain Flows</td>
<td>100’s</td>
</tr>
<tr>
<td>Lowell Seepage</td>
<td>100’s</td>
</tr>
<tr>
<td>River Seepage</td>
<td>100’s</td>
</tr>
<tr>
<td>Temporal Differences</td>
<td>10,000</td>
</tr>
<tr>
<td>Vertical Water Level Differences</td>
<td>1,000’s</td>
</tr>
<tr>
<td>Net Water Budget Values*</td>
<td><10</td>
</tr>
<tr>
<td>Preferred Parameters*</td>
<td>--</td>
</tr>
</tbody>
</table>

- Number of measurements at location
- Spatial density
- Temporal density
- “Events”
- Structural error
- Overall budget
- Others???
Current calibration status*

*ugly, but preliminary
Residual Summary

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

measured

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

residual, in cubic feet per month

1e7 1e6

drn drn

~ 1 cfs

modelled, in cubic feet per month
Residual Maps

Drain flux residuals

USGS
science for a changing world
Residual Maps

hd residuals in layer 4
Residual Maps

hd residuals in layer 5
Phi Proportion Maps

$r_i = \text{observed}_i - \text{simulated}_i$

$w_i = \text{weight}$

objective function: $\Phi = \sum w_i r_i^2$
Phi Proportion Maps

hd phi in layer 1

Proportion of group phi

USGS science for a changing world
Phi Proportion Maps

hd phi in layer 3

proportion of group phi
Phi Proportion Maps

hd phi in layer 4

hd in layer 4 proportion of group phi
Phi Proportion Maps

hd phi in layer 5

proportion of group phi

USGS
Phi Proportion Maps

hd phi in layer 6

hd in layer 6 proportion of group phi

USGS science for a changing world
Causes?
Causes?
Causes?

Layer 1
wel-infil_irr
Causes?

Layer 1
wel-ny_canal

USGS
science for a changing world
Causes?
Causes?
Causes?
Upcoming efforts
Troubleshoot Model Structure
Layer 3
wel-pump_1rr
Troubleshoot Model Structure

Layer 4
wel-pump_irr
Adjust Weighting

hd phi in layer 4

hd in layer 4
proportion of group phi
<table>
<thead>
<tr>
<th>Observation Type</th>
<th>Approximate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Levels</td>
<td>10,000 ‘s</td>
</tr>
<tr>
<td>Drain Flows</td>
<td>100’s</td>
</tr>
<tr>
<td>Lowell Seepage</td>
<td>100’s</td>
</tr>
<tr>
<td>River Seepage</td>
<td>100’s</td>
</tr>
<tr>
<td>Temporal Differences</td>
<td>10,000</td>
</tr>
<tr>
<td>Vertical Water Level Differences</td>
<td>1,000’s</td>
</tr>
<tr>
<td>Net Water Budget Values*</td>
<td><10</td>
</tr>
<tr>
<td>Preferred Parameters*</td>
<td>--</td>
</tr>
</tbody>
</table>

- Number of measurements at location
- Spatial density
- Temporal density
- “Events”
- Structural error
- Overall budget
- Others???
Thanks for listening!