Irrigated lands water budget

Stephen Hundt

Context

Where we are

The modeling process

After Reilly (2001) TWRI 3,B8

Importance

Recharge from precipitation and applied irrigation are significant portion of total inflows

Pumping is a large outflow

Outflows (Urban, 2004)

Importance

Recharge from precipitation and applied irrigation are significant portion of total inflows

Pumping is a large outflow

Groundwater budget, mean 1967-1997 conditions

	Inflows		Outflows	
		Percentage		Percentage
	Volume	of total	Volume	of total
Budget Component	(acre-ft/yr)	inflow	(acre-ft/yr)	outflow
Canal seepage	702,375	48%	-	
Total on-farm infiltration (irrigation and precipitation)	674,699	46%	-	
Tributary underflow (north of Payette River)	59,389	4.1%	-	
Direct precipitation (non-irrigated lands)	23,470	1.6%	-	
Direct precipitation (domestic, commercial, municipal,				
and industrial lands)	1,793	0.12%	_	
Groundwater discharge to drains			785,216	5 51%
Groundwater discharge to rivers			501,802	2 33%
Pumping (irrigation)			136,147	8.9%
Pumping (domestic, commercial, municipal, and				
industrial)			85,834	5.6%
Aquifer discharge to wetlands			21,339) 1.4%
Aquifer discharge to Lake Lowell			3,752	0.24%
_Totals	1,461,726	i	1,534,090)

Schmidt and others (2008) and Sukow (2012)

What we need

Groundwater fluxes due to irrigation

Deep percolation of applied irrigation water

Groundwater fluxes due to irrigation

Groundwater pumping

8

(modified from Faunt, 2009)

Related groundwater fluxes

Canal leakage

How we get there

Ideal: direct measurements of fluxes

Water budget approach

Calculate component(s) of interest as remainder of a water balance formula

Water budget approach

Calculate component(s) of interest as remainder of a water balance formula

13

Agricultural Soil (modified from Faunt, 2009)

Known and unknown quantities

science for a changing world

Unknown	~Known
Unmeasured well rates (most)	Municipal well rates (some)
Canal leakage volumes	Evapotranspiration
Deep percolation of irrigation water (incidental recharge)	Precipitation
	Surface water diversions & destinations
	Land use
	Well locations, classification, and screen depths (many)
Throughflow of canal water (tail water)	
Soil moisture storage characteristics	

Spatial scale

Distributed, district, or point

Distributed

evapotranspiration precipitation

surface water deliveries

well locations well rates

Calculations

Input Data

Estimating component volumes

Surface water system budget

modified from Faunt, 2009)

Surface water system budget

In – Out = + Storage

ln = Out

- Diversions (div)
- Precipitation (ppt)
- Evapotranspiration (et)
- Leakage (leak)
- Through flow (tail) + Ag runoff
- Net Deliveries (deliv)

div + ppt = et + leak + tail + deliv

Diversions

science for a changing world

Precipitation

Evapotranspiration

science for a changing world

Canal leakage

Through flow / tail water

science for a changing world

Deliveries

Soil water budget

Soil water budget

science for a changing world

28

$ln - Out = \pm \Delta Storage$

ln = Out

- Surface water irrigation (deliv)
- Precipitation (ppt)
- From soil moisture (soil)
- Groundwater irrigation (gw)

- Evapotranspiration (et)
- To soil moisture (soil)
- Infiltration (infil)

deliv + ppt + gw + soil = et + soil + infil

29

Surface water irrigation (deliveries)

science for a changing world

Precipitation

science for a changing world

deliv + ppt + gw + soil = et + infil + soil

Precipitation

deliv + ppt + gw + soil = et + infil + soil

Soil moisture storage decrease

Wait...

Groundwater irrigation

deliv + ppt + gw + **soil** = et + infil + soil

Wait...

Soil water budget: Outflows

Evapotranspiration

USGS

science for a changing world

deliv + ppt + gw + soil = **et** + infil + soil

Soil water budget: Outflows

Evapotranspiration

science for a changing world

Soil water budget: Outflows

Evapotranspiration

26

science for a changing world

Soil water budget: Outflows

Deep percolation of irrigation water

science for a changing world

37

Soil water budget: Outflows

Soil moisture storage increase

Wait...

38

Assuming no soil moisture storage

deliv + ppt + gw + $\rightarrow =$ et + infil + $\rightarrow =$

deliv + ppt + gw = et + infil gw = et + infil - deliv - ppt ???

Assuming no soil moisture storage

40

Assuming no soil moisture storage

if et + infil > ppt + deliv: Remainder = groundwater

if et + infil < ppt + deliv: Remainder = infiltration

41

Carrying over available soil moisture from winter to March

if et + infil > ppt + deliv: Remainder = groundwater

if et + infil < ppt + deliv: Remainder = infiltration

Science for a changing world

42

et + infil + soil - ppt - deliv - soil

Estimating volumes: summary

Quantity	Source	Estimation Method	Adjustable Parameter
SW Diversion	Data	Watermaster	No
Canal precipitation	Assumption	= 0	No
Canal evapotranspiration	Data	METRIC	No
Canal leakage	Assumption	% diversion	Yes
Tail water	Data / estimate	???	No
Delivered water	Budget residual	Budget residual	No
Field precipitation	Data	PRISM dataset	No
Deep percolation of irrigation water	Assumption	% ET + excess supply	Yes
To and from soil	Assumption	Carry excess ppt to meet March ET	No
Field evapotranspiration	Data	METRIC	No
Groundwater deliveries	Budget residual	Budget residual	No

Science for a changing world

43

Spatial distribution

Distribute proportional to district ET

- Varies monthly

April ET

June ET

September ET

Irrigated Area

Area Proportion

Canal leakage

Proportional to district irrigated area - Will change with each land use dataset

OR

Proportional to district major canal length - Invariant

Canal leakage

Proportional to district irrigated area - Will change with each land use dataset

OR

Proportional to district major canal length - Invariant

Canal leakage

Proportional to district irrigated area - Will change with each land use dataset

OR

Proportional to district major canal length - Invariant

Canal leakage

Proportional to district irrigated area - Will change with each land use dataset

OR

Proportional to district major canal length - Invariant

Pumping distribution: measured

60

Pumping distribution: unmeasured Areal distribution of wells

USGS

Pumping distribution: unmeasured Distribution of pumping in row, column

Pumping distribution: unmeasured Vertical distribution (row, column, *layer*)

One representative pumping well in each cell based upon nearby well logs

- Not all well logs checked

0	1.5	3
4	5.5	7
	5	0
	3.5	0

Pumping by Layer

Proportional to $Q_{j,i,k} = \frac{T_{j,i,k}}{\sum_{k=1}^{NL} T_{j,i,k}} Q_{TOT}$)T	Potentiometric Surface of Lower Aquifer CONFINING UNIT UPPER AQUIFER T ₁
	0	1.5	3	$\begin{array}{c} \text{LOWER} \\ \text{AQUIFER} \end{array} \longrightarrow \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] \bullet \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] T_2 = T_1 \\ \hline \end{array} \\ \hline \end{array}$
	4	5.5	7	
	10	5	0	
	7	3.5	0	

Summary

70

Summary

Flux	Adjustable Parameters Affecting Volume	Spatial Distribution	Adjustable Parameters Affecting Distribution
Canal Leakage	Leakage factor (proportion of SW delivery to district)	Proportional to area or canal length	-
Deep percolation of irrigation	Percolation factor (proportion of district ET)	Proportional to ET	-
Groundwater pumping (row, col)	Leakage factor, percolation factor	Proportional to GW right	-
Groundwater pumping (layer)	"	Proportional to layer screen length * cell hydraulic conductivity	Hydraulic conductivity (horizontal)

Thanks for listening!

