How to Choose a Cell Size?

Stephen Hundt

What do we consider?

Resolution of input and calibration data

How does grid size affect the precision & accuracy of outputs identified in our model objectives?

Solution Accuracy

Process Representation

Do long runtimes restrict parameterization, calibration, & uncertainty analysis?

Runtime

Are we inviting misuse?

Implied precision of model

Is it practical to change model to fit new purposes?

Flexibility for future uses

Context

	1 mi	½ mi
Cell size (square miles)	1	0.25
Cell size (acres)	640	160
(acres)		

(acres)		
Cells in Layer 1	1,857	7,351
Cells in Layer 2	788	3,113
Cells in Layer 3	1,356	5,229
Cells in Layer 4	1,747	6,908
Cells in Layer 5	1,504	5,911
Total Cells	7,252	28,482

"Model is no better than the data you have to put into it."

Precipitation

Precipitation

River Location

River Location

River Seepage

River Seepage

Lake Lowell

Water Levels

Observation Wells: Layer 1

Water Levels

Observation Wells per Cell:

Layer 1

Pumping Wells

Pumping Wells

Irrigation Wells per Cell:

All Layers

1

2

Drain Locations

Drain Flows

Canal Locations

Canal Leakage

Only one seepage run exists – on NY Canal

No other direct information on leakage distribution or quantities

Irrigation entity deliveries

SW Irrigation Distribution

Municipal Deliveries

Summary

Canal Leakage, Incidental Recharge, & Pumping

n -

_

Out

±∆Storage

Δ instream volume (negligible)

upstream inflow tributary inflow runoff treated wastewater precipitation

gain from groundwater

downstream outflow diversions (ag, urban) transpiration from riparian vegetation evaporation

loss to groundwater

(Rivers &) Canals

(modified from Faunt, 2009)

In –

surface water supplies precipitation groundwater supplies

Out

treated wastewater evaporation transpiration runoff

deep percolation to groundwater

(modified from Faunt, 2009)

±ΔStorage

Δ soil moisture

n –

Out

±∆Storage

Δ soil moisture

precipitation surface water deliveries groundwater deliveries groundwater uptake evaporation (irrigation and bare soil) transpiration runoff

deep percolation to groundwater

(modified from Faunt, 2009)

Canal Leakage, Incidental Recharge, & Pumping

irrig status

Irrigated Areas

Canal Leakage, Incidental Recharge, & Pumping

irrig status

canals

Canal Locations

Canal Leakage, Incidental Recharge, & Pumping

irrig status canals wells

Pumping Wells

Canal Leakage, Incidental Recharge, & Pumping

SW Irrigation Distribution

Municipal Deliveries

Canal Leakage,
Incidental PPT
Recharge,
& Pumping

Precipitation

Canal Leakage,
Incidental Recharge,
& Pumping

Evapotranspiration

Canal Leakage,
Incidental
Recharge,
& Pumping

irrig

SW Irrigation Distribution

Canal Leakage,
Incidental
Recharge,
& Pumping

irrig

Canal Leakage, Incidental PPT Recharge, & Pumping SW irrig municipal service area irrigation_I district irrig status canals wells 50

science for a changing world

Canal Leakage, Incidental PPT Recharge, & Pumping SW irrig municipal service area irrigation, district irrig status canals wells 52 science for a changing world

Solution Accuracy

Resolution of model output?

"Model is no better than the data you have to put into it."

Resolution of model output?

How to evaluate?

- Select specific model outputs of interest.
 - For example, seepage along specific reach of river.

- Sensitivity analysis
 - Possible
 - Need those *specific* outputs of interest

Process Representation

Wells & Rivers

- Boundaries with concentrated stresses

GAINING STREAM

LOSING STREAM THAT IS DISCONNECTED

Wells & Rivers

- Boundaries with concentrated stresses
- Effect is spread with greater cell size

Wells & Rivers

- Boundaries with concentrated stresses
- Effect is spread with greater cell size
- Does this matter for regional questions and combined with important datasets that are regional in scale?

Incidental Recharge

Runtime

Affects how you can perform important steps:

- Parameterization
- Calibration
- Uncertainty Analysis

MODFLOW-2000

U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL Version 1.17.01 09/22/2006

Using NAME file: ..\data\tc1.nam

Run start date and time (yyyy/mm/dd hh:mm:ss): 2007/01/25 13:58:01

STARTING VALUES OF REGRESSION PARAMETERS:

WELLS TR HK_1 RCH_ZONE_1 RCH_ZONE_2 RIVERS SS_1 VERT_K_CB SS 2 HK 2 -1.10063.07 31.54 1.2000E-03 1.3000E-03 3.0000E 2.0000E-04 1.0000E-07 4.0000E-05

TOTAL SUM OF SQUARED, WEIGHTED RESIDUALS: 0.268E+06

MODIFIED GAUSS-NEWTON PROCEDURE FOR PARAMETER-ESTIMATION ITERATION NO. =

VALUES FROM SOLVING THE NORMAL EQUATION:
MARQUARDT PARAMETER ----- = 0.0000
MAX. FRAC. PAR. CHANGE (TOL= 0.100E-01) = 0.86566
OCCURRED FOR PARAMETER "VERT_K_CB" TYPE P

CALCULATION OF DAMPING PARAMETER
MAX-CHANGE SPECIFIED: 2.0 USED: 2.0
OSCILL. CONTROL FACTOR (1, NO EFFECT)-- = 1.0000
DAMPING PARAMETER (RANGE 0 TO 1) ---- = 1.0000
CONTROLLED BY PARAMETER "VERT_K_CB" TYPE P

TOTAL CHM OF COHADED HEIGHTED DECIDIALS - G 112F+GA

UPDATED ESTIMATES OF REGRESSION PARAMETERS :

WELLS TR RCH ZONE 1 RCH ZONE 2 RIVERS SS 1 HK 1 VERT_K_CB SS_2 HK_2 -1.00139.23 43.71 2.1128E-04 1.2206E-03 3.9334E 1.8657E-07 8.7307E-05 4.2769E-05

Implied Precision

- Some fields are more disciplined

Future Changes

Modflow 6 allows child models or local refinement

Cell size can be changed in future

What do we consider?

These are individually difficult to measure

How to weigh tradeoffs without being arbitrary

We are trained to lean towards simplicity

How does grid size affect the precision & accuracy of outputs identified in our model objectives? Resolution of input and calibration data

Solution Accuracy

Process Representation

Do long runtimes restrict parameterization, calibration, & uncertainty analysis?

Runtime

Are we inviting misuse?

Implied precision of model

Flexibility for future uses

Proposal:

Prepare model to allow for different grid sizes

Develop in 1 mile

Test ½ mile

Compare and present to group

How does grid size affect the precision & accuracy of outputs identified in our model objectives? Resolution of input and calibration data

Solution Accuracy

Process Representation

Do long runtimes restrict parameterization, calibration, & uncertainty analysis?

Runtime

Are we inviting misuse?

Implied precision of model

Is it practical to change model to fit new purposes?

Flexibility for future uses

Thanks for listening!

