

In –

recharge from precipitation seepage from streams seepage from lakes underflow mountain front recharge seepage from canals recharge from irrigation managed recharge

discharge to streams & springs transpiration from phreatophytes discharge to lakes & wetlands discharge to agricultural drains pumping

Incidental

Recharge

(modified from Faunt, 2009)

- Recharge lag time for infiltration of precipitation and irrigation is proportional to the thickness of the vadose zone.
 - Thicker vadose zone yields longer recharge lags.
- How much does the vadose (unsaturated) zone influence recharge rates.
 - Do we need to have a delay for recharge?
 - Does the delay vary spatially?
 - Are delays for incidental recharge and precip the same?
 - Are recharge signals attenuated?
- Do we see a need to include vadose zone influence in the model?
 - Scenarios (artificial recharge...)
 - monthly stress periods

Previous Approaches

- 1. Lindgren, 1982 (SE Boise)
 - 5% annual precip in non-irrigated areas
 - 100% in irrigated areas
 - No delays
- 2. TVHP
 - No delays
 - Spatially variable
- 3. USBR Transient Model
 - Shifted forward two months
 - Chosen by visual inspection of hydrograph and recharge parameter
 - Applied uniformly
 - Accounts for inter-bedding and confining layers

Figure 2-8: Map of average recharge for January.

Johnson, 2013, Development of Transient GW Model of Treasure Valley, USBR

Vadose zone thickness

Depth to water/ thickness of vadose zone varies across the Treasure Valley

Where does recharge occur?

- Recharge amounts vary across the valley
- Combined effects of all inputs

Where does recharge occur?

 Precipitation is higher in the mountains, lower in the SW portion of the valley

Precip 30-year normals

Where does recharge occur?

• Irrigated lands, 2015

Dataset

- Recharge inputs
 - New York Canal diversions
 - USBR
 - Boise Airport Precip
 - ETIdaho
- Response variable
 - Groundwater hydrographs
 - IDWR
 - N = 244
 - Detrended
 - Has at least 12 months of overlapping consecutive monthly values with inputs
 - Use water level change
 - Correlates peak recharge to largest increase in water level

Determining the delay

- Diversion and water level signals are offset.
- Water level appears to increase one month ahead of water level

Shift by 1 month

Shift by 2 months

- We can define the goodness-of-fit for these lags
- Shifting diversions forward one month gives the largest correlation coefficients
 - R = .74
 - Xcorr = .864

Cross-correlation

- Repeat for multiple lags
 - This is the essence of cross-correlation
 - Mathematically occurs for all number of overlapping shifts, even for 1 point
 - Physically meaningful lags in this case are just a few months

Results: Frequencies of lags in dataset

Frequency of max lags weighted by cross-correlation coefficient

 Darker colors are more frequent maximum-valued lags (most significant)

Results: Frequencies of lags in dataset

Two groups

- Low level lags relative to diversion typically lag precip by 3-5 months
- 2. Wells responding to precip in the same month lag diversions by 4-6 months

Monthly mean water levels grouped by max lag

Diversion signals are stronger

 At lags of 0-3 months, recharge from diversion correlates better with water levels

- Shallow wells in areas with irrigation are typically responding during the same month with a few that lag by a few months
- Spread of significant lags across valley is sparse
- Response to irrigation/canal seepage is stronger than responses to precip.
- A majority of diversion lags in irrigated lands are 0.
- Where there are diversion lags > 0 in irrigated areas, there is not enough data to support applying the lags to other wells.
- Caveats
 - New York canal is only a proxy for when irrigation occurs across the valley
 - Precipitation varies widely around the valley

Well screens – mean water level < 100 ft

Groups: Precip lags Variable:Water level change

Groups: DIV Variable:Water level change

