

### Winter ET

- METRIC: covers growing season
- Determine winter ET with ETIdaho
- Methods: Traditional ET volume estimates using;
  - Crop Data Layer (CDL)
  - Crop mix by county
  - National Land Cover Database



### Data Sources

- Data sources
  - Crop Data Layer (CDL): 2005, 2007-2015
    - Reclassified to ET Idaho
  - NASS QuickStats
  - NLCD Reclassifieded to ET Idaho: 1992, 2001, 2006, 2011
  - ET Idaho 2017 (crop-specific actual ET [L])
- Products
  - Monthly 30m ET rasters



## ETIdaho (Allen & Robison, 2007)

- Penman-Monteith
  - Full cover, extensive, dry, well-watered reference crop (alfalfa)
  - Daily ETc for 42 crop/land-cover types using dual crop coefficient method
    - Basal and evaporative crop coefficients
    - Soil water balance to account for water stress

$$ET_{c \ act} = (K_s K_{cb} + K_e) ET_r$$



## CDL/NLCD Methods

- Reclassify CDL/NLCD to ETIdaho
  - 1992 NLCD reclassed 2x
    - NLCD 1992 > NLCD 2001 2011 > ETIdaho
- Create voronoi polygons to designate weather station footprints.
- Directly apply aggregated ETIdaho depths to CDL



# Reclassifying CDL to ETI



#### Winter Cover Types



| Cover type   | % cover |
|--------------|---------|
| Bare soil    | 22      |
| Mulched soil | 27      |
| Turf         | 49      |
| Water        | 2       |

ET Idaho Stations

- Varying records for stations in the model boundary
- Applying ETa: Designate areas with Voronoi polygons
- Similar method to Allen's designation of station footprints







### METRIC / Traditional Comparison for October 2015



#### METRIC vs Traditional ET



| Crop / Land use                        | METRIC = ETI | METRIC > ETI | METRIC < ETI |
|----------------------------------------|--------------|--------------|--------------|
| Dormant turf (winter time)             | 2.76         | 81.11        | 16.13        |
| Sweet Corn late plant                  | 2.15         | 81.05        | 16.79        |
| Mulched soil, including wheat stubble  | 2.86         | 65.96        | 31.19        |
| Bare soil                              | 5.15         | 51.23        | 43.63        |
| Grass Pasture – high management        | 1.9          | 10.74        | 87.36        |
| Alfalfa Hay peak (no cutting effects ) | 1.05         | 3.4          | 95.55        |
| Grass Turf (lawns) – Irrigated         | 0.03         | 0.05         | 99.91        |

- Developed areas are overestimated by the traditional ET method.
  - Apply a reduction factor based on density, similar to ESPAM2
- Traditional ET overestimate or underestimate not constant across crop or land-use types

## NASS Crop Mix

- Aggregate NASS data into crop mix
  - Requires mapping of various crops to ETIdaho classes
  - Used total acres harvested for crops, vs. using irrigated designation
- Designate one weather station per county
- Sum by county

$$ET = \sum ET_{a,i}K_{crop,i}$$



# County Designations

| county     | Model acres |
|------------|-------------|
| ADA        | 513,077     |
| CANYON     | 414,466     |
| PAYETTE    | 157,801     |
| GEM        | 111,415     |
| ELMORE     | 34,305      |
| WASHINGTON | 21,326      |
| TOTAL      | 1,252,390   |





Filling early alfalfa





# Filling early alfalfa



# ET method comparison



- 2005 CDL lacks crop detail and is missing for Oregon
- **2011,2012 lows** 
  - Different classification of grasslands in SE Ada (more sage and range grass)
- Crop mix data not accounting for non-irrigated rangeland.

### Monthly Means



- Winter ET/ low values follow more closely between datasets
- Crop mix method is slightly larger than CDL derived values



