

BLRM Scenarios Framework

MTAC #7 Status Update 2025.02.19

BLRM Scenario Framework Discussion

- Revisit Service Area Calculator
- Inputs and outputs
- Assumptions and limitations
- Hypothetical pumping and canal lining scenarios
- Inputs and outputs
- Assumptions and limitations

Service Area Calculator checkup

MTAC #7 Status Update 2024.05.15

Service Area Calculator Discussion

- Purpose and scope
- Service areas defined
- Inputs and outputs
- Request for stakeholder feedback

Purpose and Scope

- Agriculture is a major component of the groundwater budget, but we do not have the data or computational ability to simulate individual fields
- By combining irrigated lands into groups, we can make reasonable calculations of supply and demand based on available data
- Supply and demand calculations are performed before running the groundwater model simulation. The results of the calculator are "hard wired" into the simulation.

Service Areas Defined

- Service areas are artificial groupings \bullet of irrigated lands, used to simulate spatially-averaged fluxes into and out of the groundwater system
- BLRM service areas were identified as areas containing clustered or overlapping Points of Use (POU) polygons that are all linked to one or more surface water Point of Diversion (POD).
- Demand and supply is calculated for \bullet each service area individually. Shortages or excesses of water are not spread over multiple service areas
- Calculations are performed for each \bullet month Apr-Oct, 2003-2022

Calculator inputs

- IDWR Irrigated Lands shapefiles are used to mask out non-irrigated land each year of the simulation
- METRIC ET gridded monthly data is used to calculate average ET rates for the irrigated lands in each service area
- WD34 diversion data for the POD(s) of each service area is used to calculate monthly supply of surface water.
- PRISM gridded monthly precipitation data is used to calculate average rainfall on irrigated lands

Calculator outputs

- ET demand is reduced by precip, then increased by a factor to account for on-farm irrigation efficiency
- Resulting Total Farm Delivery Requirement (TFDR) is satisfied by available surface water diversions and supplemented as needed with groundwater pumping
- Surface water and groundwater deliveries are reduced by a canal loss factor before being applied to satisfy TFDR

Calculator outputs

science for a changing work

Calculator outputs

- Canal losses are applied evenly among model cells crossed by canals
- Incidental recharge is applied evenly among model cells underlying irrigated lands
- Supplemental pumping is extracted from model cells containing wells linked to POU in the service area

Calculator outputs

 Supplemental pumping is extracted from model cells containing wells linked to POU in the service area

Hypothetical Scenarios Discussion

- Pumping scenario and Canal loss scenario
- Modification of Service Area Calculator
- Assumptions and Limitations

Example:

- Sharp/Swauger service area
- Historical scenario
- No pumping scenario
- No canal loss scenario

Example:

- Sharp/Swauger service area
- Historical scenario
- No pumping scenario
- No canal loss scenario

science for a changing world

Example:

- Sharp/Swauger service area
- Historical scenario
- No pumping scenario
- No canal loss scenario

Calculator inputs Historical (monthly)

Calculator inputs No Canal Loss (monthly)

Calculator inputs No GW Pumping (monthly)

Calculator outputs Historical (monthly)

science for a changing world

Calculator outputs No Canal Loss (monthly)

Calculator outputs No GW Pumping (monthly)

Calculator inputs Historical (annual)

Calculator inputs No Canal Loss (annual)

Calculator inputs No GW Pumping (annual)

Calculator inputs Historical (annual)

Calculator inputs No Canal Loss (annual)

Calculator inputs No GW Pumping (annual)

science for a changing world

Calculator outputs = MODFLOW inputs

- Boundary conditions modified in hypothetical scenario simulations:
 - Canal Loss Recharge
 - On-Farm Recharge
 - GW pumping

- Arco and Munsey areas are partly supplied by Eastside return flows
- Eastside return flow is a combination of excess surface water passing through Eastside and supplemental pumping into eastside canal
- In a no pumping scenario, need to account for reduced availability of surface water to divert into Munsey and Arco
- Calculator is rerun with reduced SW supply to Munsey and Arco

Thanks!

jknight@usgs.gov

