

Service Area Calculator checkup

MTAC #7 Status Update 2024.05.15

Service Area Calculator Discussion

- Purpose and scope
- Service areas defined
- Inputs and outputs
- Request for stakeholder feedback

Purpose and Scope

- Agriculture is a major component of the groundwater budget, but we do not have the data or computational ability to simulate each individual fields
- By combining irrigated lands into groups, we can make reasonable calculations of supply and demand based on available data
- Supply and demand calculations are performed before running the groundwater model simulation. The results of the calculator are "hard wired" into the simulation.

Service Areas Defined

- Service areas are artificial groupings of irrigated lands, used to simulate spatially-averaged fluxes into and out of the groundwater system
- BLRM service areas were identified as areas containing clustered or overlapping Points of Use (POU) polygons that are all linked to one or more surface water Point of Diversion (POD).
- Demand and supply is calculated for each service area individually.
 Shortages or excesses of water are not spread over multiple service areas
- Calculations are performed for each month Apr-Oct, 2003-2022

Calculator inputs

- IDWR Irrigated Lands shapefiles are used to mask out non-irrigated land each year of the simulation
- METRIC ET gridded monthly data is used to calculate average ET rates for the irrigated lands in each service area
- WD34 diversion data for the POD(s)
 of each service area is used to
 calculate monthly supply of surface
 water.
- PRISM gridded monthly precipitation data is used to calculate average rainfall on irrigated lands

Calculator outputs

- Resulting Total Farm Delivery
 Requirement (TFDR) is satisfied by
 available surface water diversions
 and supplemented as needed with
 groundwater pumping
- Surface water and groundwater deliveries are reduced by a canal loss factor

Calculator outputs

canal loss incidental recharge April 2005 May 2005

Calculator outputs

- Canal losses are applied evenly among model cells crossed by canals
- Incidental recharge is applied evenly among model cells underlying irrigated lands
- Supplemental pumping is extracted from model cells containing wells linked to POU in the service area

Calculator outputs

 Supplemental pumping is extracted from model cells containing wells linked to POU in the service area

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

service area 13: zollinger year: 2011 (920 acres)

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

service area 13: zollinger year: 2012 (8422 acres)

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?
- Potential issue with irrigated lands shapefile pre-2012?

service area 13: zollinger MONTHLY

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?
- Potential issue with irrigated lands shapefile pre-2012?

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

service area 14: neilsen year: 2011 (8601 acres)

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

service area 14: neilsen year: 2012 (11631 acres)

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?
- Potential issue with irrigated lands shapefile pre-2012?

service area 14: neilsen MONTHLY

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?
- Potential issue with irrigated lands shapefile pre-2012?

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?
- Potential issue with irrigated lands shapefile pre-2012?

service area 16: chilly MONTHLY

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?
- Potential issue with irrigated lands shapefile pre-2012?

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

service area 15: howell MONTHLY

- SW diversions associated with water rights grouped into the upper basin service areas appear high compared to the mapped irrigated areas
- Are we under-counting irrigated lands, or mis-allocating SW diversions that are not used for irrigation?

Thanks!

jknight@usgs.gov

