Surface water in the groundwater model

Stephen Hundt USGS May 15, 2024

Goals

Help with understanding of how a groundwater model works

Describe sim plifications we made to surface water system

Discuss how this impacts what model can and cannot "say" about surface water

Outline

Outline:

- 1. Brief overview of groundwater modelling & boundaries
- 2. Survey of surface water features and how we are modelling them

Groundwater modelling & "boundaries"

Modelling steps

Streamflow Depletion by Wells-Understanding and Managing the Effects of Groundwater Pumping on Streamflow (p. 60)
Paul M. Barlow and Stanley A. Leake 2012

Figure 42. A, Part of a hypothetical stream-aquifer system. B, Representation of that system with a finite-difference model grid consisting of 26 rows, 22 columns, and 2 layers of rectangular finite-difference blocks.

Internal to aquifer

- Water levels in each cell are calculated
- Flow between cells is proportional to water level 'slope' between cells Also:
 - Hydraulic conductivity
 Shared area
 Distance

between cells

Math

EXPLANATION

Aquifer boundary
 Active cell
 Inactive cell

Figure 2–6. Diagram showing flow into cell n from cell m. Figure modified from Harbaugh (2005).

$$\frac{\partial}{\partial x} \bigg(K_{xx} \, \frac{\partial h}{\partial x} \bigg) + \frac{\partial}{\partial y} \bigg(K_{yy} \, \frac{\partial h}{\partial y} \bigg) + \frac{\partial}{\partial z} \bigg(K_{zz} \, \frac{\partial h}{\partial z} \bigg) - W = S_s \, \frac{\partial h}{\partial t},$$

where

$$\begin{split} K_{xx}, K_{yy}, \\ &\text{and } K_{zz} \quad \text{are values of hydraulic conductivity} \\ &\text{in the } x, y, \text{and } z \text{ directions along} \\ &\text{Cartesian coordinate axes, which} \\ &\text{are assumed to align with principal} \\ &\text{directions of hydraulic conductivity} \\ &\text{(LT}^{-1}), \end{split}$$

h is hydraulic head (L),

W is a volumetric flux per unit volume and represents sinks and/or sources (T⁻¹),

 S_s is the specific storage of the porous material (L^{-1}) , and

t is time (T).

External interactions with aquifer

What about the boundaries?

Figure 6-3. Diagram illustrating principle of the General-Head Boundary Package. Figure modified from Harbaugh (2005).

Figure 2-7. Diagram showing conceptual representation of leakage through a riverbed into a model cell. Figure modified from

.Conductance used t interconnection, CRIV.

 $K_{xx}, K_{yy},$

and K_{zz} are values of hydraulic conductivity in the x, y, and z directions along Cartesian coordinate axes, which are assumed to align with principal directions of hydraulic conductivity $(LT^{-1}),$

h is hydraulic head (L),

W is a volumetric flux per unit volume and represents sinks and/or sources (T-1),

Se is the specific storage of the porous material (L-1), and

t is time (T).

Big Lost surface water system

Surface water in Big Lost River Valley

- · Large streams
- Sm all stream s
- Springs
- Wetlands / marshes
 - (Riparian areas)
- Mackay reservoir
- Irrigation system
 - Diversions
 - Canals
 - (Irrigation)
- Intentional recharge
- Sm all storage ponds

Surface water

Streamflow Depletion by Wells-Understanding and Managing the Effects of Groundwater Pumping on Streamflow (p. 7) Paul M. Barlow and Stanley A. Leake 2012

Large streams

Large streams

Big Lost River & Antelope Creek

Head-dependent flux

Stream flow routing (SFR) package

- Stream flow is calculated at each cell
- Stage is calculated from flow
- Seepage loss and gains are calculated at each cell

Stream flow is specified at:

- Howell
- Mackay dam
- Antelope gage

Small streams over alluvial fans

Small streams over alluvial fans

Specified recharge

Recharge where stream intersects basin boundary

No recharge elsewhere

Only indirectly contributes to Big Lost River or irrigation water supply

Other small streams

Springs

Not directly "in" model

Three options:

1. Added as supply for irrigation calculator
2. Lumped in with tributary recharge
3. Ignored (not known or understood enough to be in model)

Wetlands

Wetlands

Wetlands

Thousand Springs and above Mackay

Head-dependent flux

Drain (DRN) package

- Discharge from aquifer when water levels above ground surface
- No flow when water level below
- Flow contributes to Big Lost or Mackay calculations

Several places near Big Lost River

- Never present where land is classified as agricultural

Specified flux

Well (WEL) package

- A 'well' in each cell of the riparian areas - Discharge (flux) is
- Discharge (flux) is equal to the monthly ET

Som etim es coincident with drains / wetlands

Mackay reservoir

Mackay reservoir

Stage calculated from water budget

- In flows from Big Lost
- In flows from wetland area
- Outflow from releases
- Evaporation & precipitation
- Interaction with aquifer

Head-dependent flux

- For aquifer interactions

Lake (LAK) package

Never coincident with wetlands / drains or riparian

Irrigation system

Irrigation system: diversion

Indirectly interacts with aquifer

Part of Big Lost River calculations

- Removes water from river

Part of irrigation 'service area' calculations

- Provides surface water to meet farm ET

Irrigation system: canals

Irrigation system: canals

Estimated as percent of irrigation deliveries

- Diversions into canals
- Well pum ping into canals (estimated)

Specified flux

Well (WEL) package

- Located along canals
- "Loss" rates are estimated and will be adjusted

Irrigation system: deliveries

Irrigation system: deliveries

Recharge from irrigation "in efficiency"

- Crop ET x factor
- Delivered across service area

Specified flux

Well (WEL) package

Intentional recharge

Not directly in model

- We have dates, names, and volumes, but no location in formation
- Indirectly applied because diverted water is applied to service areas

Spread broadly to service areas

Small storage ponds

Not directly in model

- Indirectly applied because diverted water is applied to service areas

Spread broadly to service areas

Summary

Features	Type of boundary	Package
Big Lost & Antelope	Head-dependent flux (+ surface flow calculation)	SFR
Streams on alluvial fans	Specified flux	WEL
Other small streams	-	-
Springs	None: indirect	-
Wetlands	Head-dependent flux	DRN
Riparian ET	Specified flux	WEL
Mackay Reservoir	Head-dependent flux (+ volume calculation)	LAK
Irrigation: Diversions	Part of Big Lost & Antelope	(SFR)
Irrigation: Canals	Specified flux	WEL
Irrigation: Deliveries / inefficiency	Specified flux	WEL
Intentional recharge	None: indirect	-
Small ponds	-	- 34

Summary

Thanks!

Stephen Hundt shundt@usgs.gov 208-387-1390

Jacob Knight jknight@usgs.gov 520-670-3336

