Idaho Geological Survey Big Lost River Basin Groundwater budget (2000-19)

Big Lost Modeling Technical Advisory Committee Mackay, Idaho May 17, 2023

Alexis Clark, P.G. #1533 Hydrogeologist Idaho Geological Survey University of Idaho Boise, Idaho

www.idahogeology.org

Big Lost River Basin– Hydrogeologic investigation publications

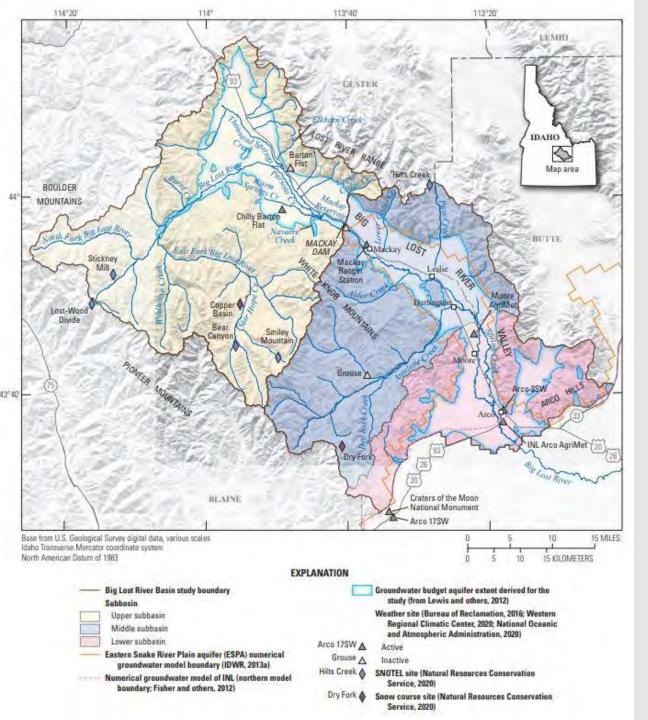
<u>Report links</u>

- USGS hydrogeologic framework: <u>https://pubs.er.usgs.gov/publica</u> <u>tion/sir20215078A</u>
- USGS seepage study: <u>https://pubs.er.usgs.gov/publica</u> <u>tion/sir20215078B</u>
- IGS groundwater budget: <u>https://pubs.er.usgs.gov/publica</u> <u>tion/sir20215078C</u>
- IDWR reports: <u>https://idwr.idaho.gov/water-</u> <u>data/projects/big-</u> <u>lost/hydrologic-investigation/</u>

Prepared in cooperation with the Idaho Department of Water Resources

Groundwater Budgets for the Big Lost River Basin, South-Central Idaho, 2000–19

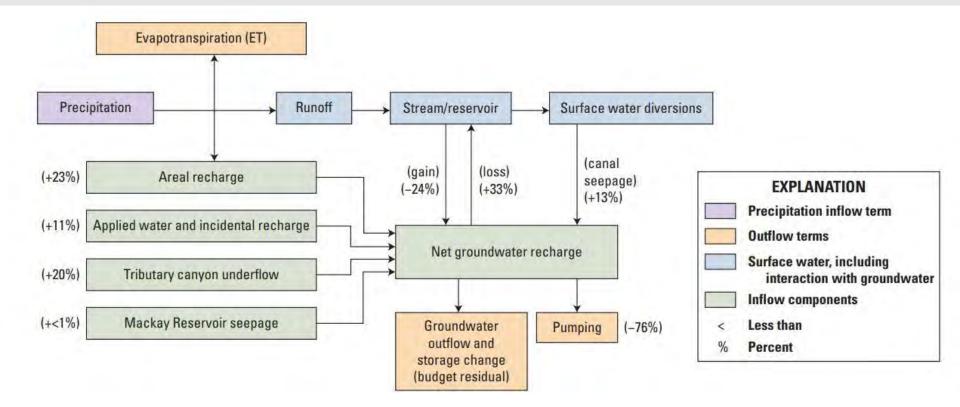
Chapter C of


Characterization of Water Resources in the Big Lost River Basin, South-Central Idaho

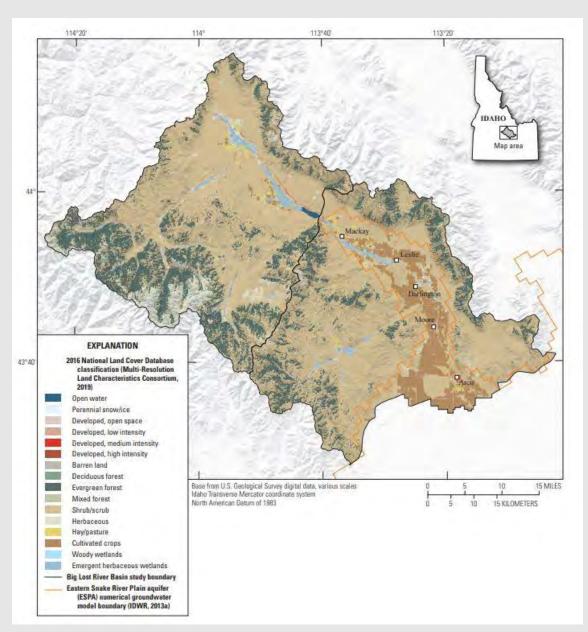
Scientific Investigations Report 2021–5078–C

U.S. Department of the Interior U.S. Geological Survey Groundwater budget considerations

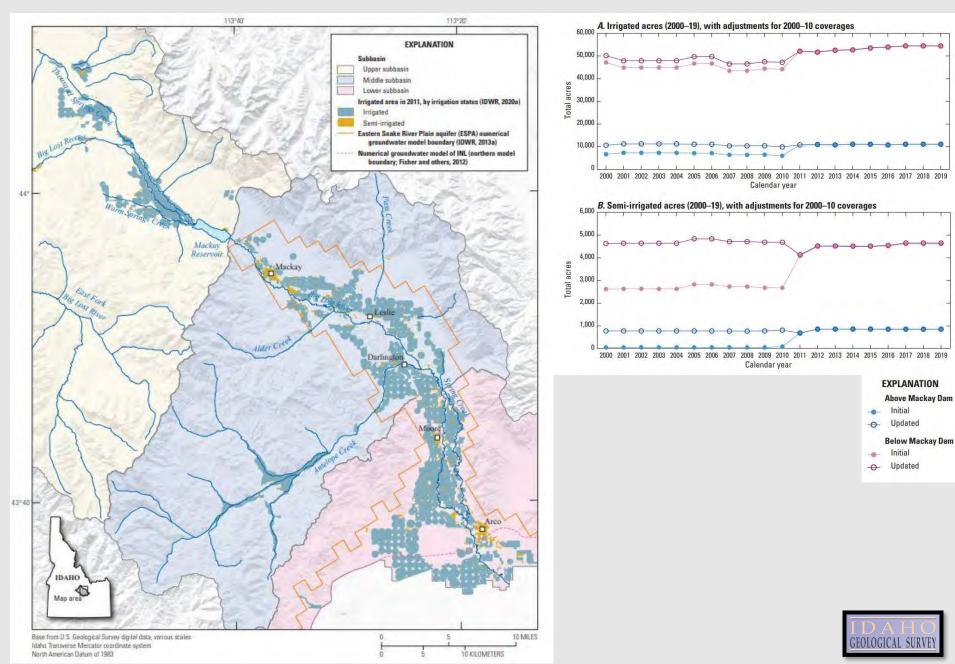
- Purpose:
 - Provides a framework for subsequent numerical modeling
 - Supports decision making
- Process:
 - Identify predominant inflow and outflow components
 - Compile available datasets and quantify volumetric estimates
 - Evaluate the resulting budget adequacy
- Limitations:
 - Data gaps, requiring estimation
 - Neglects certain processes (i.e., sublimation, soil-moisture storage, transient stresses)
 - Results are not calibrated or verified

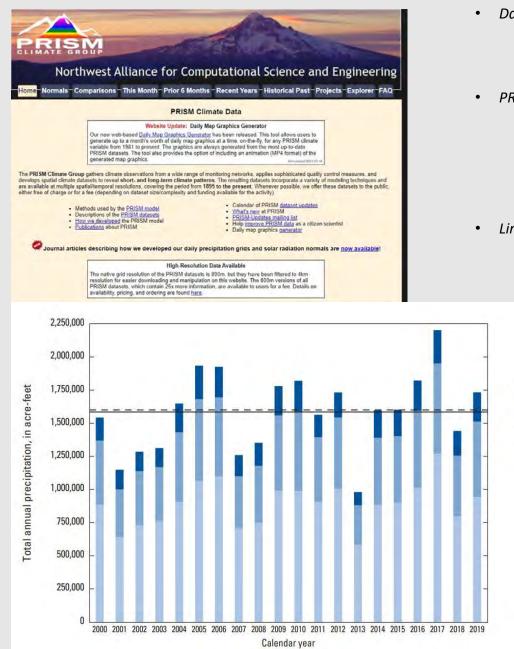


- Watershed scale separate budgets above and below Mackay Dam
- 3 subbasins considered:
 - Upper (509,800 acres)
 - Middle (335,930 acres)
 - Lower (183,600 acres)
- 20-year groundwater budget (2000-19)
- Emphasis on dry (2014), wet (2017), and average annual conditions



Groundwater budget components


Land coverage


- Data sources:
 - NLCD National Land Cover Database
 - CDL CropScape Data Layer
- Applications:
 - Evapotranspiration
 - Areal recharge
 - Irrigation recharge
- Limitations:
 - Missing years
 - Assumed translation to ETIdaho categories

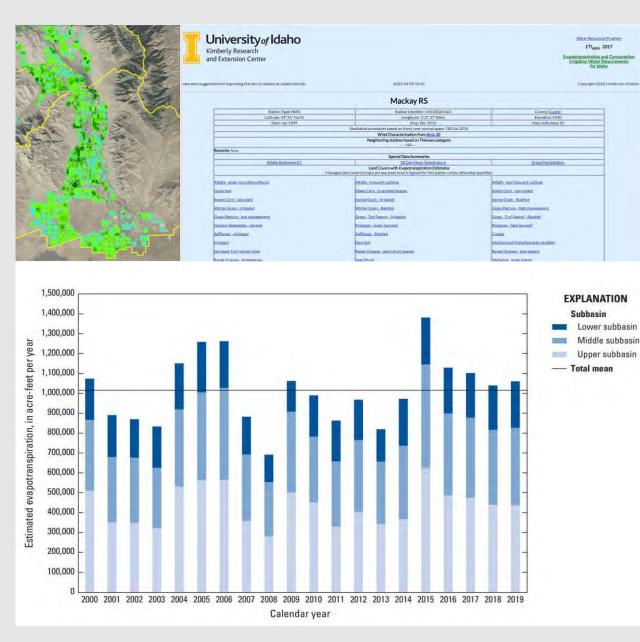
Irrigated lands

Precipitation

- Data sources:
 - Weather station datasets
 - PRISM Climate Group (4 km)
 - ETIdaho stations (areal recharge)
- PRISM Results:
 - Upper subbasin highest precip
 - Lower subbasin lowest precip
 - 2017 highest year
 - 2013 lowest year
- Limitations:
 - Neglects sublimation

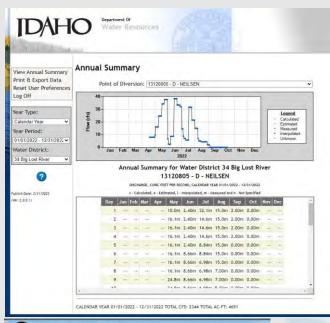
EXPLANATION

– Median (2000–19)
— Mean (2000–19)


Middle subbasin Upper subbasin

Subbasin Lower subbasin

• Unmeasured precipitation (interpolated, estimated)


Evapotranspiration

- Data sources:
 - METRIC (IDWR)
 - ETIdaho (UI)
- Results:
 - Mean 1,015,200 ac-ft
 - Lowest (in 2008) 692,000 ac-ft
 - Highest (in 2015) 1,381,700 ac-ft
 - 0.9 ac-ft/ac upper basin
 - 1.1 ac-ft/ac middle/lower basins
- Limitations:
 - Interpolation effects
 - Surrogate year assumptions
 - Assigned land category and crop type

GEOLOGICAL SURVE

Surface-water diversions and return surface-water flows

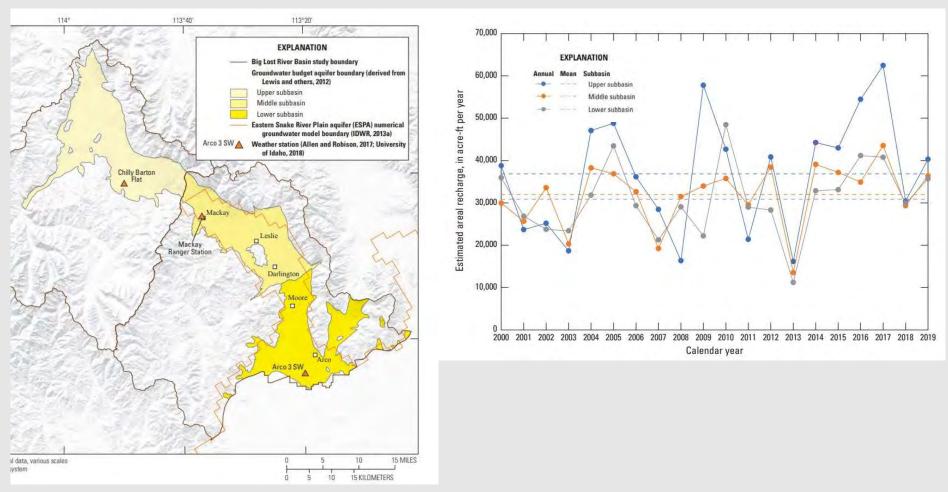
PivoTrac Monitoring

summary map oil pumps reports my profile farm notes my profile contact rain page logo

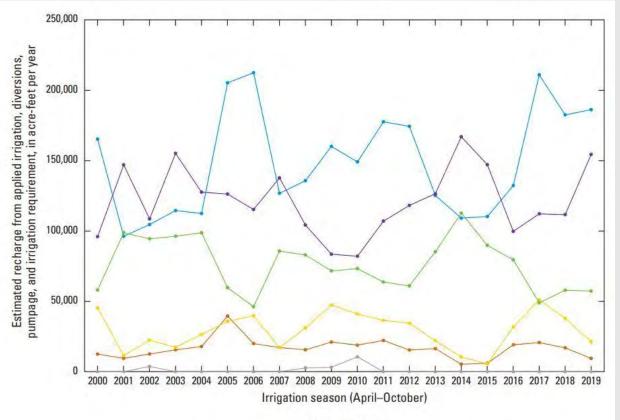
summary for Water District 34

site	status	mode	level	CF/S		Avg CF/S Yesterday	type
Antelope Hwy	normal	-	-	65.0	0.00	0.0	Rectangular Wei
Arco	normal	-	-	32.7	0.00	0.0	Rectangular Wei
Arco T.E.	high	-	-	-			-
Burnett	normal	-	6.22 ft	531,3	45.91	533.0	Trapazoid Weir
Burnett T.E.	normal	-	-	61.2	0.00	0.0	Cippoleti Weir
Darlington T.E.	normal	-	2.27 ft	51.8	4.41	54.0	Rectangular Wei
East Side In	normal	-	-	424.5	36.28	1654.1	Trapazoid Weir
East Side Out	normal	-	-	138.5	0.00	0.0	Rectangular Wei
Moore-backup	normal	-	-	-	-		-
Moore T.E.	normal		-	-	2	5	
Neilson	normal	-	0.0 ft	0.0	0.00	0.0	Rated Section
Munsy	normal	£1.	1.70 ft	86.0	7.84	91.2	Rectangular Wei
Munsy T.E.	normal	-	1.63 ft	32.5	2.79	40.0	Rectangular Wei
Swauger	normal		2.05 ft	62.7	5.35	56.7	Parshall Flume
Swauger T.E.	high	-	1.94 ft	23.6	2.04	23,4	Rectangular Wei
Sharp	normal		1.47 ft	37.0	3.20	37.2	Parshall Flume
Beck	normal	-	-	-	-	-	-
Island	normal		5	48.4	0.00	0.0	Rectangular Wei
Chilly	normal	-	0.68 ft	28.9	2.64	38.9	Rectangular Wei
Felton	normal		-	12.6	0.00	0.0	Rectangular Wei
Jenson	normal	-	1.20 ft	29.6	2.69	31.3	Rectangular Wei
West Side Moore	normal		0.17 ft	2.9	7.97	238.5	Rectangular Wei
West Side W	normal	-	1.41 ft	34:6	3.76	45.7	Parshall Flume
West Side E	normal		1.62 ft	43.0	3.72	42.3	Parshall Flume
Codon Spgs	normal	-	-	2.2	0.00	0.0	Parshall Flume
Moore	high	outo	-	-	-		
Darlington A manual override	normal	auto 1.72*	7	7.6	0.00	0.0	Trapazoid Weir

site	function	last value	units	lowest v	value highest v	alue rain
Moore D.W.	Static Water Level	47.51	Feet	47.51	47.51	0.00
Chilly D.W.	Static Water Level	51.89	Feet	30.67	52.14	0.03
E. Mackay	Static Water Level	-340282000000000014192072600942972764160.00	Feet	77.08	85.61	0.00
W. Mackay	Static Water Level	12.77	Feet	10.69	12.70	~


- Data sources:
 - IDWR surface-water diversion database (115 locations)
 - WD34 (Pivotrac) surface-water return flows (East Side Ditch and Burnett Canal)
- Methods:
 - Data compilation
 - Linear regression unmeasured surface-water diversions
- Results:
 - Higher utilization of surface water above Mackay Dam compared to below (90% in upper subbasin; 65% in middle subbasin; 55% in lower subbasin)
 - Highest diversions in wettest years
- Limitations:
 - No SW div records above Mackay Dam or Antelope Creek (2000-02)
 - Limited return flow datasets

Sharp Canal (IGS, 2019)


Inflow – Areal recharge

- Data sources: ETIdaho (UI), modified aquifer extent (IGS)
- Methods: (Precip) (ET) (Surface runoff)
- Results:
 - ~ 100,000 acre-ft/yr (2000-19)
 - 4.4 in/yr above Mackay Dam; 4.9 in/yr below Mackay Dam
- Limitations: 2017- 2019 terms estimated from linear regression; neglects soil moisture

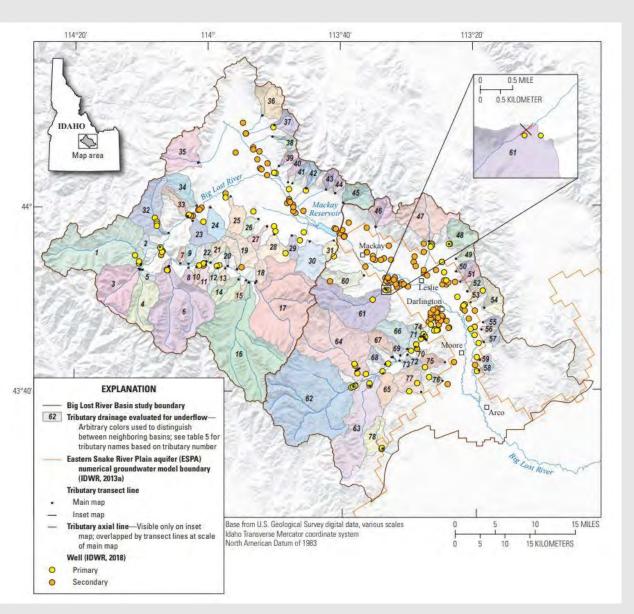
Inflow – Applied irrigation recharge

EXPLANATION

Subbasin

- --- Total surface water diversions
- Upper subbasin recharge
- Middle subbasin recharge
- Lower subbasin recharge
- ---- Total groundwater pumpage
- --- Total crop irrigation requirement

- Data sources:
 - IDWR: (Divsw, GW pumpage, irrigated lands, METRIC, ditch rider logs, storage balance spreadsheets)
 - UI: ETIdaho
 - Pivotrac: return flows
 - PRISM Climate Group: precip
- Methods:

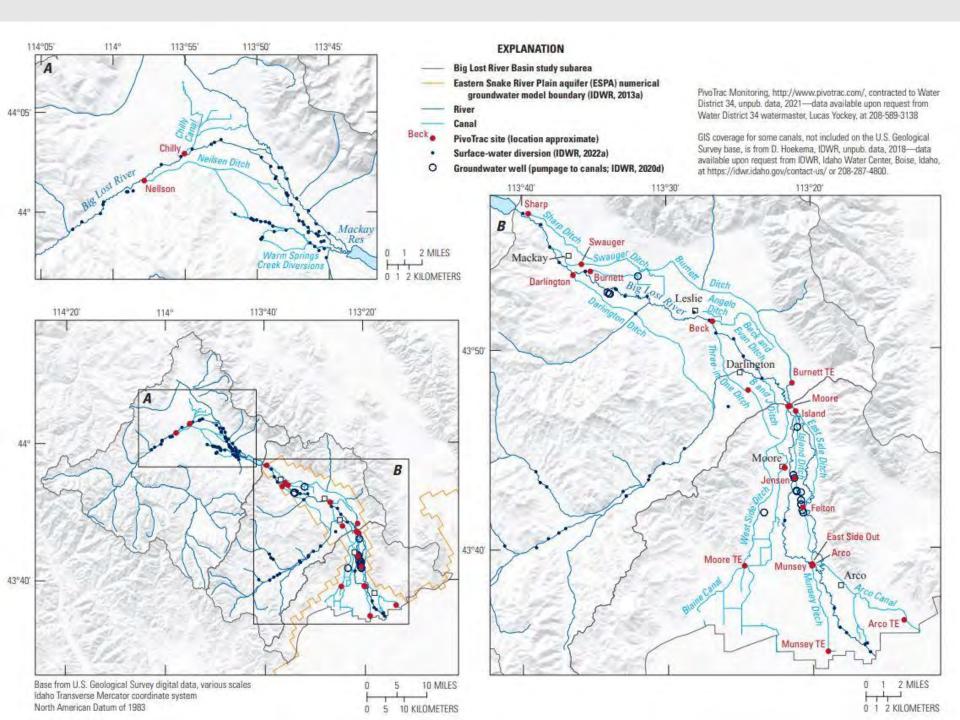

Q = Divsw + Divgw - Retsw -Canalseep - CIR

[Irr and semi-irr lands] (Apr – Oct)

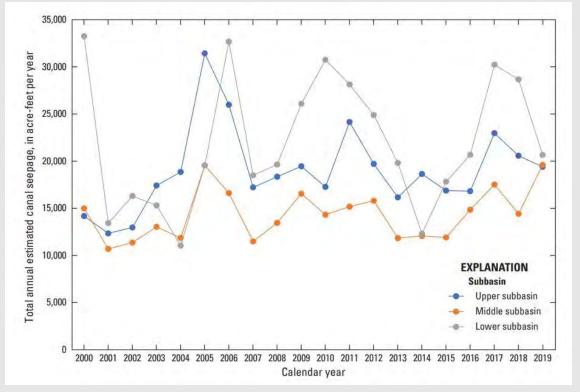
- Results:
 - 16,600 ac-ft/yr (above Dam)
 - 30,300 ac-ft/yr (below Dam)
- Limitations:
 - Uncertainty due to unmeasured parameters

Inflow – Tributary canyon underflow

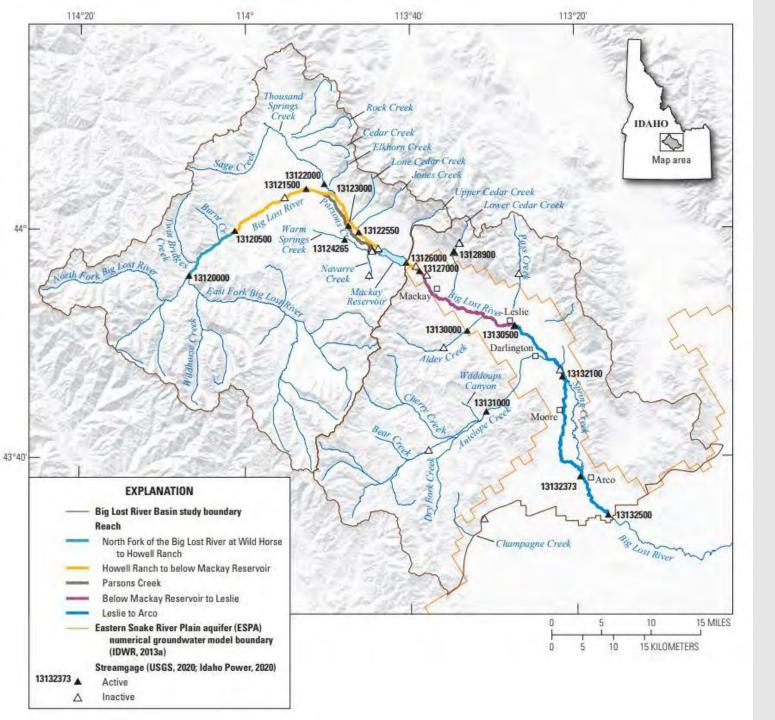
- Data sources:
 - Tributary delineation (USGS StreamStats)
 - Precipitation (PRISM)
 - Well lithology (IDWR)
 - 1 aquifer test (USGS)


• Methods:

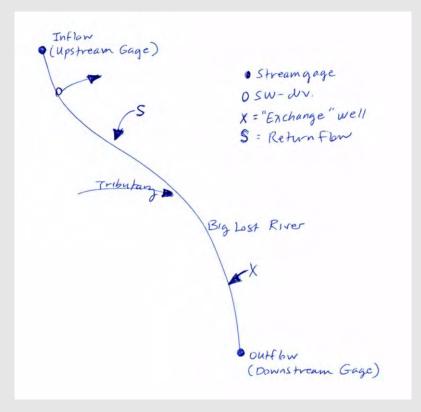
Tributary delineation

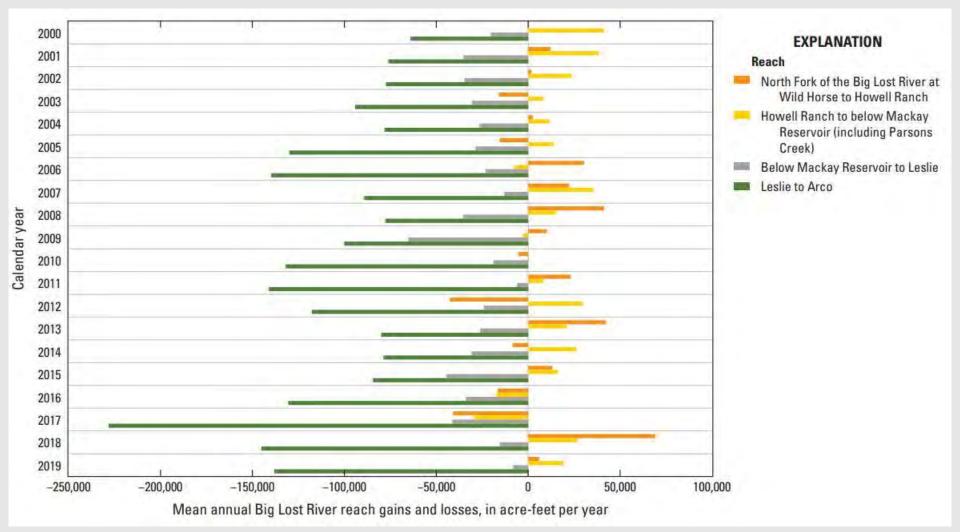

• Darcy's Law (
$$Q = KA \frac{dh}{dz}$$
)

- Annual precipitation adjustment (all canyons)
- Small canyon scaling-factor adjustment
- Results (mean annual, acre-ft/yr):
 - Upper = 50,900
 - Middle = 34,700
 - Lower = 3,000
- Limitations:
 - Results highly sensitive to estimated input terms

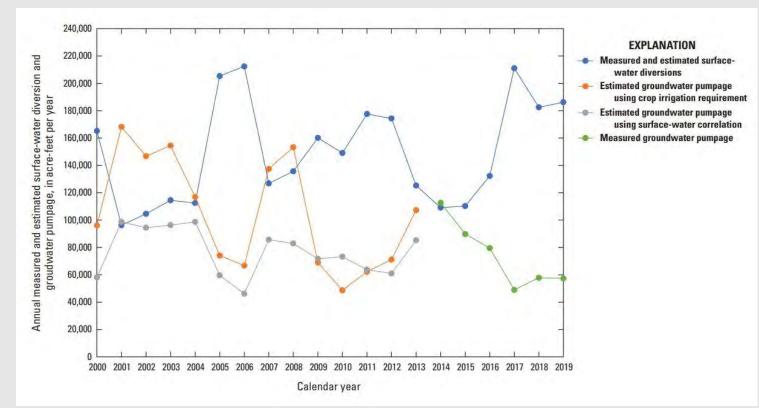


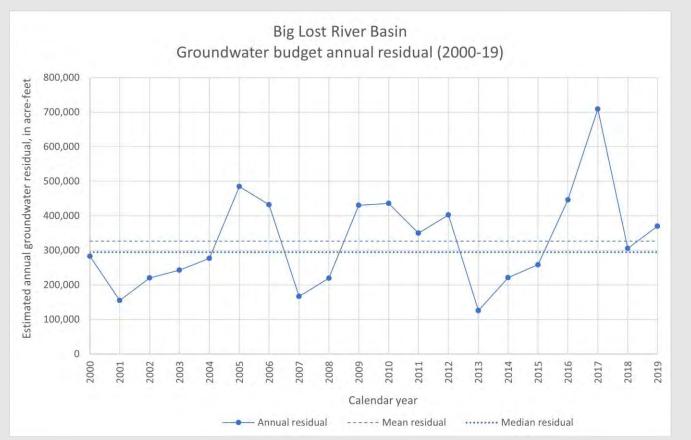
Inflow – Canal seepage


- Data sources:
 - WD34: Ditch rider logs
 - IDWR: Storage balance (2015-19); surface-water diversion database
- Methods:
 - Delivery factors (DF)
 - Diversion volume / Headgate volume
 - Seepage volume =
 - (1-DF)*Swdiv volume
 - Below Mackay Dam
 - 2015-19: DF (0.73-0.77)
 - 2000-14: Linear regression DF (0.71, Middle; 0.62 Lower)
 - Above Mackay Dam, assumed DF (0.6)
 - Unmeasured canal diversions above Mackay Dam: linear regression with diversion volumes below Dam
- Results (mean, acre-ft/yr):
 - 19,000 (Upper); 14,400 (Middle); 22,000 (Lower)
- Limitations:
 - Assumed DF above Mackay Dam
 - Estimated surface-water diversions (2000-02) above Dam
 - Extrapolating 2015-19 DF to prior years below Mackay Dam

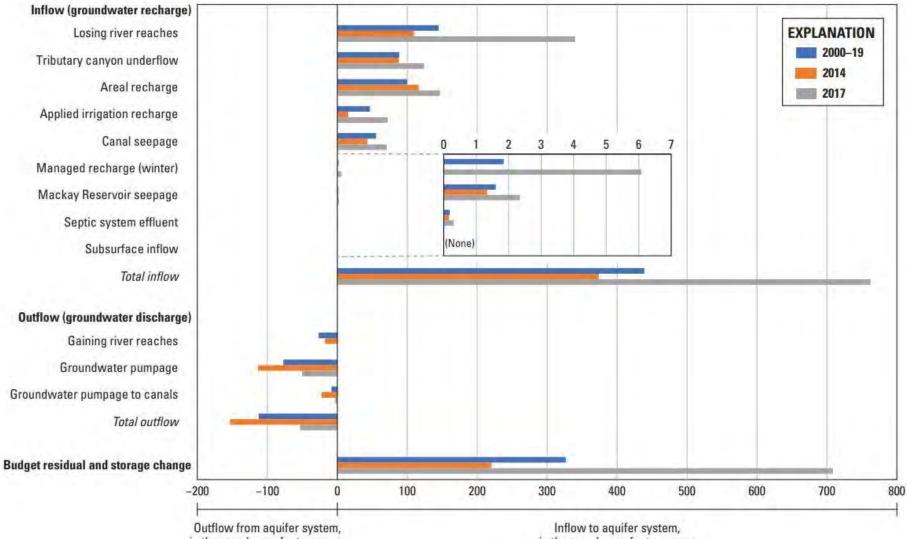

Inflow and outflow – Big Lost River gains and losses

- Data sources:
 - IDWR: surface-water diversion database, including groundwater pumpage to canals ("exchange wells")
 - USGS: streamgage mean annual streamflow
 - Pivotrac: return surface water flows
- Methods:
 - Gain/loss = Outflow Inflow Tributary inflow +Swdiv – Gwpump to canals – Return flow
- Results: Next slide
- Limitations:
 - Tributary stream seepage neglected
 - Unmeasured tributary streamflow


Inflow and outflow – Big Lost River gains (outflow) and losses (inflow)


Outflow – Groundwater pumpage

- Data sources:
 - IDWR: WMIS database annual flowmeter records (2014-19) and power consumption records (2010-13)
 - IDWR: surface-water diversion database
- Methods:
 - Unmeasured pumpage (2000-13): Linear regression with annual surface-water diversion volumes (2014-19)
- Results (mean annual in ac-ft/yr):
 - Irrigation: Upper subbasin (4,250); Middle subbasin (34,000); Lower subbasin (37,800)
- Limitations:
 - Unmeasured pumpage estimates (2000-13)


Groundwater budget residuals

- Groundwater underflow leaving the basin
- Annual changes in aquifer storage
- Errors

Groundwater budget results

in thousand acre-feet per year

in thousand acre-feet per year

Prior groundwater budgets

Source	Time period of study	Study extent	Basin discharge (acre-ft/yr)	Comments	
Stearns and others, 1938	11920–27	Above and below Mackay Dam	226,000		
Mundorff and others, 1964	1921–50	Above Mackay Dam	280,000	Surface water and groundwate	
		Below Mackay Dam	60,000		
Crosthwaite and others, 1970a 1944–68		Above and below Mackay Dam	307,700	Groundwater underflow above gauge near Arco	
Said and others, 2005 2000		Above and below Mackay Dam	267,000	Surface water and groundwater	
Sukow, 2017	1985–2010	ESPA model below Mackay Dam	204,000	Groundwater	
Ackerman and others, 2010 1966-90		INL site northern model boundary	261,400	Steady state numerical groundwater-flow model input	

¹Water years (October 1–September 30)

Clark, 2022 2000 - 19	Above and below Mackay Dam	326,700	Groundwater (underflow and storage change)
-----------------------	-------------------------------	---------	--

Groundwater budget key findings

- Above Mackay Dam
 - Combined surface water and groundwater provide for irrigation needs and Mackay Reservoir storage
 - Higher precipitation due to snowmelt provides for appreciable tributary canyon underflow and areal recharge
 - Additional recharge to the aquifer from applied irrigation and canal seepage
 - Overall positive groundwater residual above Mackay Dam

- Below Mackay Dam
 - Highest recharge sources include losing river reaches and groundwater inflow from above Mackay Dam
 - Less additional recharge provided from areal recharge, tributary canyon underflow, canal seepage, and applied irrigation
 - Surface-water diversions and groundwater pumping account for most of the net withdrawals of water
 - More variable surface-water and groundwater supplies due to less precipitation and less flow in the Big Lost River

Questions?

Thank you!

Alexis Clark, P.G. Idaho Geological Survey 322 E. Front Street, Suite 201 Boise, ID 83702 208-364-4599 aclark@uidaho.edu www.idahogeology.org

Big Lost River Basin project field trip (IGS, 2018)

