

Big Lost River Valley, Previous Work: Hydrogeologic Framework, Seepage Study, and Groundwater Synoptic

U.S. Department of the Interior U.S. Geological Survey

In cooperation with the Idaho Department of Water Resources

Lauren Zinsser Izinsser@usgs.gov "The ground water and surface water of the Big Lost River basin are so closely interrelated that they should be considered as a single resource" (Crosthwaite and others, 1970a, p. 100)

Motivation

- Water users in the Big Lost River Basin are concerned about declining groundwater levels and declining streamflows
- Last comprehensive water resources review was done in 1970

Goals

- Improve hydrologic understanding
- Inform water rights administration
- Support groundwater-flow modeling

Approach

- Additional streamgages
- Hydrogeologic framework
- Surface water-groundwater interactions (seepage) study
- Groundwater-level synoptic
- Groundwater budget

Great work by Alexis Clark at the Idaho Geological Survey – look for a future MTAC talk on this part

Hydrogeologic Framework

- What is it?
- Methods:
 - Borehole geophysics
 - Digitize well-driller reports
 - Interpret hydrogeologic units
 - Develop 3D hydrogeologic framework model
 - Describe groundwater
 occurrence and movement
- Published in: Zinsser (2021), SIR 20215078A

Previous Hydrogeologic Work

1970

Early work focused on water delivery, with some geologic interpretation:

- Debler and others, 1931
- Livingston, 1931

Last comprehensive hydrogeologic investigation:

- Crosthwaite and others, 1970a
- <u>Crosthwaite and others, 1970b</u>

Comprehensive description of groundwater resources and geology in the Eastern Snake River Plain, including tributaries like the Big Lost River Valley:

• Stearns and others, 1938

More recent evaluations of the impacts of groundwater pumping on surface water:

- Johnson and others, 1991
- Bassick and Jones, 1992
- Sukow, 2017

1931

1938

Well database

- Digitize paper logs
 - o 604 wells, IDWR and USGS
 - o Location details
 - Well construction
 - o Lithology

≥USGS

 Lithologies used to define hydrogeologic units and build 3D model

Form 238-7 STATE (9/82 DEPARTMENT OF	OF IDAHO USE TYPEWRITER OR NATER RESOURCES BALLPOINT PEN		
WELL DRILLI	R'S REPORT		
State law requires that this report be filed wi within 30 days after the compl	h the Director, Department of Water Resources ntion or abandonment of the well.		
1. WELL OWNER	7. WATER LEVEL		
Name RON LOWE	Static water level 205 feet below land surface.		
PORAX 809 ARCA TOK	Flowing? Ves Brie G.P.M. flow		
872/3	Controlled by: Valve Cap Plug	E Vitter acadad	
Owner's Permit No.	Temperature PF. Quality Describe artesian or temperature zones below.	R Lowe 390876	
2. NATURE OF WORK	8. WELL TEST DATA	0.0	
New well Deepened Replacement	D Pump D Bailer 2 Air D Other	0.0	
 Abandoned (describe abandonment procedures such as materials, plug depths, etc. in lithologic log) 	Discharge G.P.M. Pumping Level Hours Pumped		
	No RETURN		
3. PROPOSED USE			
Industrial Stock Weste Disposal or Injection	9. LITHOLOGIC LOG 86552		
Other (specify type)	Diam. From To Material Yes No		
4. METHOD DRILLED	9 0 60		
Rotary RAir D Hydraulic D Reverse rotary	6 55 GAAVEL CLAN		
Cable Dug Other	105 208 LAUR		
5. WELL CONSTRUCTION	201 214 BROKEN LAUB.	400.0	
Casing schedule: Steel Concrete Other	230 270 HERD (LIKE LAUT)	100.0	
1.50 inches 6 inches + 2 feet 105 feet	the set of the set		
inches inches feet feet	FRAN 2/8		
inches inches feet feet			
Was casing drive shoe used? 28 Yes 🛛 No Was a packer or weat used? 🖓 Yes 26 No			
Perforated? Ves PNo			
Size of perforation inches by inches			
Number From To			
perforations feet feet			
Well screen installed? Ves VerNo	2401 C1 711A		
Manufacturer's name Model No.	AUG 13 1900	5.5.5 B	
Diameter Slot size Set from feet to feet	Eastern District Office	200.0	
Diameter Slot size Set from feet to feet Gravel packed? □ Yes 22 No □ Size of gravel	DECENVED	_00.0	
Placed from feet to feet Surface seal depth Material used in real: Compatience			
Bentonite Puddling clay	AUG 1 1986		
Sealing procedure used: Slurry pit Tegap, surface casing Derbore to seal depth			
Method of joining casing: Threaded Welded Solvent Welded	Department of Water Resources		
Cemented between strata			
Describe access port	10, Work started 4/36/86 finished 5/5/86		
6. LOCATION OF WELL	11. DRILLERS CERTIFICATION (Q)-		
Sketch map location must agree with written location.	I/We certify that all minimum well construction standards were		
N Subdivision Name	complied with at the time the rig was removed.		
A	Firm Name DUBBE DKILL Firm No. 148		
W UERA	Address RQ Rox 4415 FAUTE and 5/5/86		
Lot No Block No	Disned by (Firm Official) MAND 10		
SRUTTE	and the store		
County DUTIT	Operator 12 HD alle		
194 % SE % Sec. 10, T. 3 N& R.24 E/	DEWARD THE WHITE CONV. TO THE OFFICE OFFICE		
USE ADDITIONAL SPECTS IF NEUESSARY - F	THE MALE COPY TO THE DEPARTMENT		

Hydrogeologic Units

- 1. Quaternary unconsolidated sediments
- 2. Quaternary basalt rocks
- 3. Tertiary volcanic rocks
- 4. Paleozoic sedimentary rocks
- Surface extent defined based on state-wide geologic mapping
- Used 3D hydrogeologic
 framework model to define
 cross-sectional extents

Hydrogeologic Units

Quaternary unconsolidated sediments

- Comprise the main alluvial aquifer _
- Fluvial, alluvial and glacial sediments -
- Variable depth, 200 5,000 ft -

Qa Qua

Tu

P

Hydrogeologic unit	Fault—Das	
Quaternary unconsolidated sediments	-	Movemen
Quaternary basalt rocks		High-angl
Tertiary volcanic rocks		on dov
Paleozoic sedimentary rocks		Thrust fau
Archean-Proterozoi c rocks, undivided		Detachme

ΕĂ	PLA	NA	101	N	
ed	whe	re ci	once	ealed	

- Movement in the last 15,000 years
- High-angle normal fault-Bar and bal on downthrown block
- Thrust fault-Sawteeth on upper plate
 - Detachment fault—Hachures on upper plate
- Sedimentary rocks

Basalt

Volcanic rocks

Study basin

Well-Colored by intercepted lithology

Unconsolidated sediments

Hydrogeologic Units

Quaternary basalt rocks

- South end of valley
- Interbedded with sediments
- Can be productive

≥USGS

Paleozoic sedimentary rocks

- **Range-front rocks**
- Mostly carbonate rocks
- Main bedrock aquifer

Tertiary volcanic rocks

- **Challis volcanics**
- Locally important where faulted/fractured

Hydrogeologic unit Qa Quaternary unconsolidated sediments Quaternary basalt rocks Tertiary volcanic rocks Paleozoic sedimentary rocks Archean-Proterozoi c rocks, undivideo

- EXPLANATION Fault—Dashed where concealed
- Movement in the last 15,000 years High-angle normal fault-Bar and bal
- hrust fault-Sawteeth on upper plate Detachment fault—Hachures on

inner nlate

- - Sedimentary rocks

Unconsolidated sediments

Well-Colored by intercepted lithology

- Volcanic rocks

Basalt

Study basin

3D Hydrogeologic Framework Model

- Built in RockWorks[™] 17
- Categorical lithology model, interpolates lithology between wells
- Iterative process
- Model estimation parameters:
 - Highest probability algorithm
 - o 200 m x 200 m x 15.2 m grid
 - o 2,000 m horizontal search distance
 - o 15.2 m vertical search distance
 - o Declustering
- Spatial domain:
 - Constrained to alluvial aquifer
 - Constrained to surface topography

3D Hydrogeologic Framework Model

Use model to understand:

- Occurrence,
- Connectivity, and
- Properties of water-yielding units
- Extents of confining units
- Conceptual framework for future groundwater model

Groundwater Occurrence and Movement

Substantial fluctuations in groundwater levels between Leslie and past Moore

Groundwater-Level Synoptic

- What is it?
- Methods:
 - Groundwater-level measurements
 - High-accuracy survey
 - Spring and fall 2022
 - o 177 wells
 - Develop potentiometricsurface maps
 - Describe groundwater occurrence, movement and change
- Data already in NWIS
- Maps will be published Fall 2023

Previous Groundwater-Level Synoptics

Bassick and Jones, 1992

Groundwater Levels Fall 2022

Data are preliminary and subject to revision

Groundwater Levels Change Spring 2022 to Fall 2022

tation Type: Water Levels

Time Series

Lill 800.Transducer

Documents

Water Quality

Increases in some areas, decreases in others

Data from IDWR, Groundwater Data Portal

≥USGS

Seepage Study

What is it?

- Methods:
 - Streamflow measurements on mainstem locations, tributaries/returns, and diversions
 - Four events March 2019, October 2019, October 2020, March 2021
 Pre- and post-irrigation season conditions Published in:

Dudunake and Zinsser (2021), SIR 20215078B

Previous Seepage Observations and Studies

do not return such waters to the valley. There is however much reason to believe that the waters lost in the Darlington sinks merely pass through the Antelope Creek delts and return in part to the river in the vicinity of the Moore dam. If this be true, then a by-pass Report of the Board of Engineers on Big Lost River Idaho, Debler and others, 1931, p. 4

Water Resources in the Big Lost River Basin, South-Central Idaho,

Crosthwaite and others, 1970a, p. 73

Big Lost River Darlington Sinks Geomorphology, Loss Rates and **Conceptual Alternatives Development Big Lost River** Measured Loss Rates November Septemb D July DJune May ET Andi Reach John B. Rice Jr., P.G. Prepared for: Rocky Mountain Environmental Associates, Inc. 482 Constitution Idaho Falls, ID Trout Unlimited 83402 **Big Lost River Irrigation** District Water District #34 Karin Boyd, P.G. Applied Geomorphology, In 211 N. Grand Suite C Bozeman, MT 59715 *Rice and Boyd,*

2008

Final Report

3-18-08

October 2019 Results

- Large gains and losses though Mackay
- Large losses through Darlington Sinks
- Large gains above the Moore Diversion
- Smalls gains and losses from Moore to Arco
- Overall, ~70 cfs to groundwater

≥USGS

October 2020 Results

- Smaller, uncertain gains and losses through Mackay
- Larger losses in the Darlington Sinks
- No gains at the Moore Diversion
- No water in Big Lost River below the Moore Diversion
- Overall, ~95 cfs to groundwater

≥USGS

October 2019 vs. October 2020 Results

- Spatial similarities:

 Gains and losses through Mackay
 Large losses in
 - Seasonal differences:

Darlington Sinks

- Management
- Magnitudes
- Gain (2019) vs. loss (2020) above Moore Diversion

Hydrogeologic controls on river gains and losses

- Persistent spatial pattern: losses at Darlington Sinks
 - o Wider basin

o Coarse substrate

What made October 2020 different from October 2019?

Differences in:

- Water supply
- Water management
- Timing
 - 2019 study postirrigation season
 (October 16-17)
 - 2020 at end of irrigation season (October 6-7)

Seasonal controls on river gains and losses

- Variable seasonal patterns: gains or losses at Moore Diversion
 - o Water supply
 - o Recharge
 - Fluctuating groundwater
 surface elevations from Leslie
 to past Moore

Summary

- Quaternary unconsolidated sediments comprise the main aquifer
- River gains and losses vary spatially:
 Variability in sediments
 Variability in aquifer dimensions
- River gains and losses vary seasonally:
 O Water supply and management
- Losing river reaches are an important component of groundwater recharge (see the Groundwater Budget and developing model for more on this!)

Questions?

Select Works Cited

Hydrogeologic Framework: Zinsser 2021, SIR 20215078A Database and model in ScienceBase

Surface Water-Groundwater Interactions: Dudunake and Zinsser, SIR 20215078B Data in NWIS

Groundwater-Level Synoptic: Ducar and Zinsser, SIM (coming Fall 2023) Data in NWIS

Water Budget:

Clark, SIR 20215078C Data in report and on IDWR project site

In cooperation with the Idaho Department of Water Resources

Lauren Zinsser Izinsser@usgs.gov