Swan Falls Agreement AADF Travel Time Analysis

Presented to the Swan Falls Technical Working Group

By Dan Stanaway

Date: October 20, 2015
Methods

• Date ranges were selected based on
 – Flow variation
 – Milner flow range 200 – 2800 cfs

• 4 reaches upstream of CJ Strike were analyzed
 – Milner to Buhl
 – Buhl to Bliss
 – Bliss to King Hill
 – King Hill to Loveridge

• Best fit travel time was determined statistically and visually
Snake River at Loveridge

- Milner to Buhl ≈ 40 miles
- Buhl to Bliss ≈ 36 miles
- Bliss to King Hill ≈ 12 miles
- King Hill to Loveridge Bridge ≈ 33 miles
Milner Flow approx 1500 cfs
Travel Time approx 22 hrs

Milner Flow approx 2800 cfs
Travel Time approx 15 hrs
Milner to Buhl

Milner Flow approx 600 cfs
Travel Time approx 28 hrs

Milner Flow approx 200 cfs
Travel Time approx 34 hrs
Buhl to Bliss

- Milner Flow approx 1500 cfs
- Travel Time approx 10 hrs

- Milner Flow approx 2800 cfs
- Travel Time approx 8 hrs
Buhl to Bliss

Milner Flow approx 600 cfs
Travel Time approx 14 hrs

Milner Flow approx 600 cfs
Travel Time approx 17 hrs
Bliss to King Hill

Milner Flow approx 1500 cfs
Travel Time approx 3 hrs

Milner Flow approx 2800 cfs
Travel Time approx 2 hrs
Bliss to King Hill

Milner Flow approx 600 cfs
Travel Time approx 4 hrs

Milner Flow approx 200 cfs
Travel Time approx 5 hrs
King Hill to Loveridge

Milner Flow approx 1500 cfs
Travel Time approx 10 hrs

Milner Flow approx 2800 cfs
Travel Time approx 7 hrs
King Hill to Loveridge

Milner Flow approx 600 cfs
Travel Time approx 15 hrs
<table>
<thead>
<tr>
<th>Reach</th>
<th>Date</th>
<th>Milner Flow</th>
<th>Distance (miles, est)</th>
<th>Estimated Lag</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milner-Buhl</td>
<td>1/11 - 1/21</td>
<td>1500</td>
<td>40</td>
<td>22</td>
<td>0.97</td>
</tr>
<tr>
<td>Milner-Buhl</td>
<td>2/15 - 2/25</td>
<td>2800</td>
<td>40</td>
<td>15</td>
<td>0.93</td>
</tr>
<tr>
<td>Milner-Buhl</td>
<td>7/25 - 8/2</td>
<td>600</td>
<td>40</td>
<td>28</td>
<td>0.92</td>
</tr>
<tr>
<td>Milner-Buhl</td>
<td>8/10-8/15</td>
<td>200</td>
<td>40</td>
<td>34</td>
<td>0.92</td>
</tr>
<tr>
<td>Buhl - Bliss</td>
<td>2/11 - 2/13</td>
<td>1500</td>
<td>36</td>
<td>10</td>
<td>0.88</td>
</tr>
<tr>
<td>Buhl - Bliss</td>
<td>2/14 - 2/25</td>
<td>2800</td>
<td>36</td>
<td>8</td>
<td>0.92</td>
</tr>
<tr>
<td>Buhl - Bliss</td>
<td>7/25 - 7/31</td>
<td>600</td>
<td>36</td>
<td>14</td>
<td>0.97</td>
</tr>
<tr>
<td>Buhl - Bliss</td>
<td>8/10 - 8/13</td>
<td>200</td>
<td>36</td>
<td>17</td>
<td>0.92</td>
</tr>
<tr>
<td>Bliss - King Hill</td>
<td>1/11 - 1/18</td>
<td>1500</td>
<td>12</td>
<td>3</td>
<td>0.95</td>
</tr>
<tr>
<td>Bliss - King Hill</td>
<td>2/14 - 2/25</td>
<td>2800</td>
<td>12</td>
<td>2</td>
<td>0.98</td>
</tr>
<tr>
<td>Bliss - King Hill</td>
<td>7/25 - 8/2</td>
<td>600</td>
<td>12</td>
<td>4</td>
<td>0.98</td>
</tr>
<tr>
<td>Bliss - King Hill</td>
<td>8/10 - 8/13</td>
<td>200</td>
<td>12</td>
<td>5</td>
<td>0.93</td>
</tr>
<tr>
<td>King Hill to Loveridge</td>
<td>1/11 - 1/17</td>
<td>1500</td>
<td>33</td>
<td>10</td>
<td>0.73</td>
</tr>
<tr>
<td>King Hill to Loveridge</td>
<td>2/14 - 2/25</td>
<td>2800</td>
<td>33</td>
<td>7</td>
<td>0.83</td>
</tr>
<tr>
<td>King Hill to Loveridge</td>
<td>7/25 - 8/2</td>
<td>600</td>
<td>33</td>
<td>15</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Travel Time Plots

1. **Milner to Buhl Travel Time**
 - Equation: $y = 34.913e^{-3E-04x}$
 - $R^2 = 0.9927$

2. **Buhl to Bliss Travel Time**
 - Equation: $y = 16.901e^{-3E-04x}$
 - $R^2 = 0.9524$

3. **Bliss to King Hill Travel Time**
 - Equation: $y = 5.1154e^{-3E-04x}$
 - $R^2 = 0.9904$

4. **King Hill to Loveridge Travel Time**
 - Equation: $y = 17.749e^{-3E-04x}$
 - $R^2 = 0.9801$
Travel Time Comparison

<table>
<thead>
<tr>
<th>Milner Flow (cfs)</th>
<th>Current Method (hrs)*</th>
<th>Updated Calculation (hrs)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>1500</td>
<td>48</td>
<td>57</td>
</tr>
</tbody>
</table>

*assumes 10 hrs from CJ Strike

y = 74.936e^{-3E-04x}

R² = 0.99