AADF – Stage-Storage vs. Constant Surface Area Error Analysis and CJ Strike Storage Calculation Analysis

Swan Falls Technical Working Group Meeting 10/20/2015

Swan Falls Stage-Storage Curve

- 2012 red LiDAR and 2012/2014 multibeam bathymetry used to construct stage-storage curve
- Stage-storage curve from 2,307.2' to 2,314.2' (NGVD 29) in 1-ft increments; 2,314.2' maximum stage
- Storage linearly interpolated at 0.1-ft increments

Swan Falls

• Historically, Swan Falls has been operated in 2,313.2 to 2,314.2-ft range; since 2005 Swan Falls elevation has been between 2,313.2 to 2,314.2-ft approximately 78% of the time

Swan Falls

- Constant surface area of 870 acres assumed for AADF
- Error associated with constant surface area assumption is small in the top two feet of the reservoir (< ~5%); errors associated with the constant surface area assumption increases as headwater elevation decreases

Stage Increment	Total Storage Stage- Storage Curve (ac-ft)	Total Storage Constant Area (ac-ft)	% Difference	Flow Rate Deviation for 0.1-ft change in 1 hour (cfs/hr)
2307.2 to 2308.2 ft	674.98	870	28.89%	236
2308.2 to 2309.2 ft	710.12	870	22.51%	193
2309.2 to 2310.2 ft	743.56	870	17.00%	153
2,310.2 to 2,311.2 ft	771.40	870	12.78%	119
2,311.2 to 2,312.2 ft	798.02	870	9.02%	87
2,312.2 to 2,313.2 ft	824.65	870	5.50%	55
2,313.2 to 2,314.2 ft	857.18	870	1.50%	16

CJ Strike Stage-Storage Curve

- 1995 single beam bathymetry cross sections used to construct stagestorage curve; shoreline elevation of 2,455' assigned to the surface.
- Stage-storage curve from 2,445' to 2,455' (NGVD 29) in 0.5-ft increments;
 2,455' maximum stage
- Storage linearly interpolated at 0.1-ft increments

CJ Strike

• Historically, CJ Strike has been operated in 2,454.5 to 2,455-ft range; over 95% of historical values fall within this range

CJ Strike

- Constant surface area of 7,500 acres assumed for AADF
- Error associated with constant surface area assumption is small in the top 1.5 feet of the reservoir (< ~5%); errors associated with the constant surface area assumption increases as headwater elevation decreases

Stage Increment	Total Storage Stage Storage Curve (ac-ft)	Total Storage Constant Area (ac-ft)	% Difference	Flow Rate Deviation for 0.1-ft change in 1 hour (cfs/hr)
2,450 to 2,450.5 ft	3,157.00	3,750.00	18.78%	1435.06
2,450.5 to 2,451 ft	3,229.00	3,750.00	16.14%	1260.82
2,451 to 2,451.5 ft	3,315.00	3,750.00	13.12%	1052.7
2,451.5 to 2,452 ft	3,397.00	3,750.00	10.39%	854.26
2,452 to 2,452.5 ft	3,449.00	3,750.00	8.73%	728.42
2,452.5 to 2,453 ft	3,499.00	3,750.00	7.17%	607.42
2,453 to 2,453.5 ft	3,591.00	3,750.00	4.43%	384.78
2,453.5 to 2,454 ft	3,629.00	3,750.00	3.33%	292.82
2,454.5 to 2,455 ft	3,757.00	3,750.00	-0.19%	-16.94

Swan Falls and CJ Strike Recommendation

Although potential flow change errors are relatively small (<100 cfs) within the normal operating headwater ranges at Swan Falls and CJ Strike, it is recommended that the stage-storage curves be used instead of the constant surface area method. Using the stage-storage curves should reduce the errors present in the normal operating range, and also avoid increased errors outside of the normal headwater operating range for each reservoir.

Bliss and Lower Salmon Falls

- Detailed bathymetry for Bliss not available
- Recommend using surface area method for Bliss since storage in Bliss Reservoir is small. Surface area currently used in analysis is 255 acres.
- Recent green LiDAR obtained for Lower Salmon Falls area; stage-storage curves for Lower Salmon Falls will be updated with data obtained from the new survey
- Recommend using surface area method for Lower Salmon Falls until revised stage-storage curve is available.

CJ Strike Storage Change Calculation Options

- Two options initially investigated:
 - Method 1: apply weights to CJ Strike headwater gages (Loveridge Bridge, Cottonwood Park, CJ Strike Dam). Optimize weights to reduce variation from inflow and outflow calculation using gaged flows.
 - Method 2: calculate storage in each "arm" of the reservoir using CJ Strike headwater gages (Loveridge Bridge, Cottonwood Park, CJ Strike Dam).
- Compare the results of each method to a baseline condition (Inflows Outflows) and to the current reservoir stage method using CJ Strike Dam headwater only
- Initially, select February 2015 as analysis time period
 - Winter time period reduces uncertainty due to diversions
 - Month contains periods of calm and high wind
 - Complete hourly record for gaged flows at Loveridge Bridge, Bruneau River near Mouth, and Snake River below CJ Strike Dam

CJ Strike Bathymetry and Headwater Gages

Contours (5' Interval) IPCo Project Boundary

Headwater Gage

1995 Singlebeam Transect Bathymetry

February 2015

Results

- Method 1: used global optimization routine for entire month of February
 - Loveridge weight = 0.26
 - Cottonwood Park weight = 0.11
 - CJ Strike Dam weight = 0.64
- Method 2: used stage-storage curve for each reservoir "arm" based on initial estimate of split
- Best fit to baseline volume change obtained with Method 1 (SSE 2.4 x 10⁶); Method 2 provided next best fit (SSE 3.7 x 10⁶); current method using CJ Strike headwater gage only had least best fit (SSE 7.3 x 10⁶)

Results

Results

CHIN I

Next Steps

- Investigate additional analyses for Method 1 (HW weighting)
 - Different time steps (weekly, daily, hourly) for optimization
 - Different weighting factors for wind vs. non-wind events
 - Compare storage changes to observed outflow for validation of optimal weighting (target winter months)
- Investigate additional analyses for Method 2 (storage by arm)
 - Use temporary headwater gages (between Loveridge and main reservoir) to refine breakpoint between gages
 - Select several breakpoint locations and compare performance to identify optimal assignment of influence area for each gage