

Appendix B

Prepared by the ESHMC On-Farm Subcommittee

and

Ben Britton (IDWR IT Programmer)

Contributors in alphabetical order

Jim Brannon, Ben Britton, Willem Schreüder, Greg Sullivan, and Allan Wylie

2

Contents

Appendix B .. 1

Introduction .. 3

Description of the On-Farm Algorithm ... 4

Schreüder Overview .. 6

Introduction .. 6

mkmod operation ... 7

Calculating recharge and pumping ... 8

Calculating other recharge components .. 10

Running mkmod .. 11

mkmod parameters ... 12

mkmod output files ... 13

Programming notes ... 14

Brannon Review .. 16

Introduction .. 16

Description .. 16

Results .. 16

Britton Review .. 24

Comparison with IDWR hand calculations ... 29

Attachment A: Reviewer Comments and IDWR responses ... 33

November 28, 2012 Comments from Bryce Contor .. 33

January 12, 2013 B. Contor comments to Appendix B. ... 36

3

Introduction

This Appendix is a compilation of reviews of the mkmod code. Mkmod was written by Willem

Schreüder (Principia Mathematica) with assistance from Greg Sullivan (Spronk Water Engineers).

mkmod calculates the ESPAM2.1 water budget and produces a MODFLOW “WEL” file. During this

process it implements what is known as the “On-Farm algorithm” partitioning irrigation water

between canal seepage, satisfying the crop irrigation requirement, deep percolation, and field

runoff. The On-Farm algorithm was developed by Greg Sullivan and adopted by the Eastern Snake

Hydrologic Modeling Committee (ESHMC) for use in the Enhanced Snake Plain Aquifer Model

(ESPAM).

This document includes a description of the On-Farm algorithm by Greg Sullivan and an overview of

mkmod by Willem Schreüder. The overview is derived from a presentation to the ESHMC during the

August 2011 MKMOD/MODFLOW training. This presentation is mentioned in the Britton review and

can be found on the web at ‘http://www.idwr.idaho.gov/Browse/WaterInfo/ESPAM/meetings/

MKMOD_MODFLOWTraining/’

This document also includes three reviews of the mkmod code. The first review is by Jim Brannon

(Leonard Rice Engineers). Brannon agreed to provide a peer review and present his results to the

ESHMC. The Brannon review is focused on an analysis of the On-Farm algorithm. The second review

is by Ben Britton (Idaho Department of Water Resources, IDWR). Britton translated the program

from PERL to English. The third review is a comparison with hand calculations performed by Allan

Wylie (IDWR).

mkmod represents a paradigm shift in ESPA modeling. On mixed source lands, the ESPAM1.1

algorithm assumes that EvapoTranspiration (ET) estimates are reliable and extracted ground water if

surface water diversions do not meet the crop irrigation requirement. On the same mixed source

lands, the On-Farm algorithm assumes that the diversion data are reliable, and imposes deficit

irrigation if diversions do not meet the crop irrigation requirement. The results of this change in

philosophy are:

1) If ET estimates are too high or surface water diversions are too low, the ESPAM 1.1

algorithm overestimates ground water withdrawals and underestimates recharge. mkmod

can compensate through adjustments in some of its parameters.

2) With an underestimate of surface water irrigated land and an overestimate of ground water

irrigated land, ESPAM1.1 will allow too much deep percolation in the surface water irrigated

land and too much pumping on the ground water irrigated land, resulting in a local

distortion in the spatial distribution of recharge and pumping. The same underestimate of

surface water irrigated land with mkmod results in too much deep percolation on the

surface water irrigated land and deficit irrigation on the ground water irrigated land. This

results in changes in the consumptive use, and a distortion in the water budget for the

stress period(s) in question.

4

3) With an overestimate of canal seepage, the ESPAM1.1 algorithm will pump additional

ground water to meet the crop demand, offsetting the overestimate of canal seepage with

an overestimate of pumping, resulting in a local distortion in the water budget. The same

overestimate in mkmod results in deficit irrigation and a corresponding change in

consumptive use resulting in a distortion in the water budget.

4) In the absence of mixed source land, if surface water shortages ocur the ESPAM1.1

algorithm requires manual adjustment to avoid underestimation of recharge. Mkmod

parameters can be set so the appropriate reduction in consumptive use occurs

automatically.

5) Both algorithms redistribute recharge to the service area if canal seepage is underestimated.

6) Both algorithms will overestimate recharge if ET estimates are underestimated.

7) Imprecision in return-flow estimates similarly affect both methods.

The shortcomings associated with mkmod resulting in deficit irrigation where it did not occur, can

be compensated for by using the output files to identify the specific entities and stress periods

where deficit irrigation is occurring in the model. Once spatially and temporally identified, the

sources of most mistakes can usually be repaired.

During the March/April 2009 meeting, when mkmod was first introduced to the ESHMC, Allan Wylie

was asked by the ESHMC to compare the output of mkmod in ESPAM1.1 mode with output from

readinp (the ESPAM1.1 water budge program). Wylie reported to the committee in an e-mail dated

June 26, 2009 (this e-mail is posted in the July 2009 meeting directory) that mkmod yielded

comparable results to readimp.

Mkmod was updated many times during calibration. Most changes were minor, some required

changes to input files, some required changes to information included in one or more of the output

files, and some improved program efficiency and were transparent to the user. Brannon mentions

transitions between mkmod4, mkmod5, and mkmod8. The Britton review mentions mkmod8.1.

Most of the changes between mkmod4 and mkmod5 altered the method mkmod used to read

several of its input files. It also resulted in some minor changes in some output files. Mkmod8 fixed

a bug in soil moisture accounting. Mkmod8.1, the version used in calibration of ESPAM2.1,

optionally outputs a *.rfl file that can be used for debugging, or to assist in model calibration.

The following description of the On-Farm Algorithm was prepared by Greg Sullivan and is included

here with minor editorial changes.

Description of the On-Farm Algorithm

A portion of the irrigation water delivered to a farm is consumed by crops through

evapotranspiration. The unconsumed water will percolate below the root zone of the crop and

recharge the aquifer, and in some cases will flow off the irrigated field as surface runoff. The losses

to deep percolation and surface runoff will vary based on the amount of irrigation water applied,

the method of irrigation, irrigation management practices, and other factors.

5

All crops extract and transpire water from the soil column within a root zone that typically extends

two to five feet below the surface depending on the crop. In arid areas such as Idaho, water enters

the soil column primarily through irrigation, and to a lesser extent from precipitation. The purpose

of irrigation is to refill the soil column within the root zone of the crop after it has been depleted

over a number of days or weeks by the crop evapotranspiration processes.

Except under severe deficit irrigation, it is not physically possible to refill the root zone without loss

of water to deep percolation below the root zone, and in some cases, surface runoff. This is due to

the non-uniformity of soils, variations in root depths, and imperfect irrigation application practices.

The maximum irrigation efficiency represents the reasonable upper limit of the amount of applied

irrigation water, expressed as a percentage of farm delivery, that can be delivered to the root zone

of the crop either for immediate use, or stored for later use. The maximum irrigation efficiency will

vary depending on the method of application. The two primary methods of irrigation water

application in Idaho are gravity irrigation (flood and furrow application) and sprinkler irrigation.

Sprinkler irrigation is typically more efficient than gravity irrigation because water can be applied

more uniformly with sprinklers. Properly managed sprinkler irrigation will have minimal surface

runoff, but invariably will result in some deep percolation due to the non-uniform soils and root

depths across an irrigated field. In order to fully irrigate all portions of a field, there will be portions

of the field that are over-irrigated (e.g., in areas with shallower roots or lower water holding

capacities).

Under gravity irrigation, water is delivered to the upper end of a sloped field and left running until

the water has infiltrated the soil and filled the root zone. Due to the time that it takes for the

irrigation water to reach the lower end of the field, it is necessary to over-irrigate the upper end of

the field in order to fully refill the root zone at the lower end of the field. In addition, there typically

will be surface runoff from the lower end of a gravity irrigated field.

An On-Farm water budget algorithm was developed to compute the irrigation consumptive use,

deep percolation, and surface runoff from each model cell with surface water irrigation. The

algorithm computes the crop water consumption as the lesser of (a) the crop irrigation water

requirement, and (b) the available irrigation supply limited by a specified maximum irrigation

efficiency depending on the method of irrigation application.

The irrigation water losses to surface runoff and/or deep percolation are computed as the sum of (a)

the inefficient portion of the irrigation application, and (b) the irrigation application that is in excess

of the crop water requirement. The irrigation losses are divided between deep percolation and

surface runoff based on user specified parameters.

The following is the On-Farm water budget algorithm for computing deep percolation recharge to

the aquifer and surface runoff.

Recharge

6

Rech = Initial recharge from inefficient portion of irrigation + recharge from

excess application

Rech = (1 – OFE) x Dh x DPin + Max (Peff + OFE x Dh – ET x A –

Max(∆Sm,0), 0) x DPex

Surface Runoff

SRO = Initial runoff from inefficient portion of irrigation + runoff from excess

application

SRO = (1 – OFE) x Dh x (1 – Dpin) + Max (Peff + OFE x Dh – ET x A –

Max(∆Sm,0), 0) x (1 – DPex)

Where

 Peff = effective precipitation

 OFE = maximum On-Farm efficiency

 Dh = farm headgate delivery

 A = ET adjustment factor

 DPin = portion of initial loss to deep percolation

 DPex = portion of excess delivery to deep percolation

 ∆Sm = increase in soil moisture

Based on discussion among the ESHMC members, the maximum On-Farm irrigation efficiency was

set at 0.85 for sprinkler irrigation and 0.80 for gravity irrigation. The deep percolation factors (DPin

and DPex) were determined during model calibration.

Schreüder Overview

The following description of mkmod was prepared by Willem Schreüder and is included here with

minor editorial changes.

Introduction

The mkmod program is used to build MODFLOW input files for the ESPAM model verion 2.1. The

name is a contraction of MaKe MODflow files.

It replaces the readinp.for program used with the ESPAM1.x models. The readinp.for program

served as the tail end of the recharge tool to assemble different inputs into files that can be read by

MODFLOW. Similarly, mkmod reads various input files and produces output files in MODFLOW

format which are then used to do the actual model runs.

7

The mkmod program can be run in Version 1.1 mode where it replicates the readinp.for

functionality. However, mkmod also adds three new features not present in the readinp.for,

namely the On-Farm algorithm, soil moisture accounting, and the ability to calculate surface returns

based on the On-Farm algorithm, instead of specifying the returns. In addition, mkmod can also

calculate an initial steady-state stress period as the average of a user selected set of stress periods

and produce separate stress files for recharge, pumping and similar stresses which can be used to

calculate detailed budgets from the MODFLOW output. The mkmod program also produces

detailed summary tables of the calculated stresses by entity and other groupings.

The mkmod program operates at the entity and model-cell level. It primarily maps inputs specified

by model entity to individual cells for use in MODFLOW. Most calculations are done at the model-

cell level. The time increments by mkmod correspond to stress periods in MODFLOW. In ESPAM2.1

the time increments are calendar months.

The prime reason for creating the mkmod program was to implement the On-Farm algorithm. The

On-Farm algorithm was proposed by Greg Sullivan, a member of the Eastern Snake Hydrologic

Modeling Committee (ESHMC). The implementation of mkmod was performed by Willem

Schreüder (ESHMC member). The mkmod code was peer reviewed by Jim Brannon (ESHMC

member) and Ben Britton (an IDWR IT systems programmer). User testing was done by Allan Wylie

and Jennifer Sukow (both ESHMC members).

The mkmod program is run from the command line. Command line options are used to control

which algorithm is used, e.g. the Version 1.1 or On-Farm algorithm, whether soil moisture is

simulated, and so on. The mkmod control file (*.mdl file) controls settings such as the model

dimensions, units, stress periods, as well as definitions such as the types of off-site pumping. In

addition, mkmod reads data files from other tools that pre-process the data, as well as files

specifying data by entity such as the irrigation efficiencies required by the On-Farm algorithm.

Outputs produced by the mkmod program are primarily MODFLOW input files. This may consist of a

net recharge file, also known as the well term in ESPAM parlance, which is in the MODFLOW well file

format. Alternatively the stesses may be saved as individual budget terms in MODFLOW recharge or

well file formats. The mkmod program also produces a detailed summary of budget terms by stress

period and entity, as well as summaries for surface water, groundwater and all other entities. This

output file is saved in HTML format, and can be viewed in a web browser or spreadsheet program.

The mkmod can also produce additional diagnostic outputs, such as the acreage by cell over the

simulation. The *.mdl file also allows user specified summaries to be generated of any budget term

and saved as a text file. This is a convenient way of summarizing input budget terms as part of the

calibration process.

mkmod operation

The mkmod program operation consists of two main phases. The first phase operates on data that

do not change over the course of the simulation. This includes definitions such as active model cells

8

and soil types. The second phase operates on data that are supplied for every stress period, which

corresponds to calendar months in ESPAM2.1.

For every stress period, the mkmod program performs the following operations:

1. Read data for current period

2. Calculate irrigated recharge/pumping

3. Calculate non-irrigated recharge

4. Distribute canal seepage

5. Distribute tributary underflow and perched river seepage

6. Save data

Calculating recharge and pumping

The most complex step in this calculation is step 2, where irrigated recharge and pumping is

calculated. The algorithm for this step is as follows:

� Calculate the applied water by entity as Diversion – Canal Seepage + Off-site pumping

� Loop over entities

◦ Loop over gravity and sprinkler lands

▪ Loop over cells

� Calculate Crop Irrigation Requirement (CIR), pumping, recharge and change in

soil moisture

� Accumulate irrigated acres per cell

The key step in this algorithm is the step that calculates the CIR, pumping, recharge and change in

soil moisture for every cell. The specific algorithm applied depends on the command-line switches

selected. In addition, groundwater and surface water are treated differently. To simplify the

expressions, the calculations are done on a unit area bases, and then multiplied by the acres to get a

volume. All calculations in mkmod are based on totals for the period, typically volumes. This makes

accumulation of multiple stress periods a simple addition.

The CIR is calculated for every cell under each entity. The Adjusted ET is defined as

 Adjusted ET = ETadj * CellET

where the ETadj is the ET adjustment specified for this entity by gravity or sprinkler, and CellET is the

ET read for this cell and period from the ET input file. CIR is then calculated as

 CIR = Adjusted ET – Precip

for every cell where Precip is precipitation and is read for this cell and stress period from the precip

input file.

For groundwater entities, when the CIR is negative, pumping is set to zero. If the CIR is positive,

pumping is set to

 Pumping = CIR / Efficiency

where the efficiency is the user specified irrigation efficiency by sprinkler or gravity for this entity.

9

Finally rechage is calculated as

 Recharge = Pumping – CIR.

Note when CIR is negative, pumping will be zero, and recharge will equal -CIR. Net recharge will

always be

 Net Recharge = -CIR = Recharge – Pumping

and

 Recharge = Precip + (1-Efficiency) x Pumping.

Also note that soil moisture is never used in this calculation as it is asserted that for these

groundwater entities, pumping will be used to fully supply the CIR, and no deficit irrigation will

occur.

For surface water entities, the On-Farm algorithm is applied by default. The first step is to

determine the amount of over or under irrigation. The net application is defined as

 Net Applied = Efficiency x Applied – CIR

where Applied is diverted volume less canal loss plus off-site pumping, and Efficiency is the irrigation

efficiency by sprinkler or gravity for this entity. When the Net Applied is positive, the Excess is set

equal to the Net Applied and the Deficit is zero. When the Net Applied is negative, the Excess is set

equal to zero, and the deficit is – Net Applied.

By default, mkmod will adjust any excess or deficit for soil moisture. The capacity of the soil profile

to store water is called the soil moisture sink, while the capacity of soil moisture to supply water to

the plant is called the soil moisture source. These quantities are defined as

 Soil Moisture Sink = Depth x (Field Capacity – Previous Soil Moisture Content),

 Soil Moisture Source = Depth x (Previous Soil Moisture Content – Wilting Point).

The rooting depth, field capacity, and wilting point are specified for each entity.

When there is a deficit and the soil moisture source is positive, the deficit will be reduced by the

minimum of the deficit and the soil moisture source, and the soil moisture will be reduced by a

corresponding amount. Note that the soil moisture can never be reduced below the wilting point

using this procedure. Also note that if the soil moisture is insufficient, the deficit may remain

positive.

If there is an excess, and the soil moisture sink is positive, the excess will be reduced by the

minimum of the excess and the soil moisture sink, and the soil moisture will be increased by a

corresponding amount. Note that the soil moisture can never exceed the field capacity using this

procedure. Also note that some excess may remain if the soil moisture sink is less than the initial

excess.

After the soil moisture adjustment, recharge and runoff are calculated as

 Recharge = DPin x (1-Efficiency) x Applied + DPex x Excess

 Runoff = (1-DPin) x (1-Efficiency) x Applied + (1-DPex) x Excess.

where DPin is the initial deep percolcation fraction, and DPex is the excess deep percolation

fraction. In essence, the DPin fraction partitions the inefficient portion of the overall irrigation

10

application between recharge and runoff, while DPex partitions any excess irrigation between

recharge and runoff.

Note that when there is deficit irrigation (after soil moisture), the crop is shorted and ET is less than

that specified. Under such deficit conditions, the specified efficiency is the maximum efficiency that

can be achieved. When there is any excess, the actual efficiency would be less than this efficiency

because any additional applied water would result in recharge or runoff.

Alternatively, recharge for surface water entities may be calculated using the ESPAM 1.x algorithm.

This algorithm calculates recharge as

 Recharge = Applied – CIR.

Note that this algorithm does not calculate any runoff. Instead, the user is required to specify the

amount of runoff/returns, which is subtracted from the diversion to give the amount of applied

water. The maximum application efficiency in this algorithm can be 100%, and the recharge may be

negative in the case of deficit irrigation, which requires the user to manually zero out these values.

When the Excess is positive, the On-Farm and ESPAM 1.x algorithms would yield the same result,

except that the DPin and DPex parameters partition the overage between recharge and runoff.

In summary, for groundwater entities, mkmod uses pumping to meet the CIR. The soil moisture

remains constant, and the net pumping equals the adjusted ET minus precipitation. For surface

water entities, the mkmod default is to use the On-Farm algorithm and soil moisture. The applied

water is the surface diversion minus ditch leakage plus off-site pumping. Any excess or deficit

irrigation will be mimized by soil moisture up to the field capacity or wilting point, respectively.

Recharge is a fixed fraction of the amount of applied water and a fixed fraction of any excess.

Similarly runoff is a fixed fraction of the amount of applied water and a fixed fraction of any excess.

When deficits occur, ET is shorted.

All these recharge, pumping and runoff calculations are done cell by cell, for each entity, and for

sprinkler or gravity irrigation.

Calculating other recharge components

By comparison to the calculation of pumping, recharge and runoff for irrigated lands, the remainder

of the stresses are relatively simple. These calculations mostly just distribute volumes calculated by

other programs to individual model cells.

Non-irrigated recharge is calculated for all active model cells where irrigated lands do not cover the

entire cell. The non-irrigated acres for each cell are calculated by subtracting the acres irrigated by

various surface and groundwater entities from the total cell area. The non-irrigated acres cannot be

less than zero.

11

For each cell, the non-irrigated recharge is calculated as

 Recharge = Soil Factor x NIR x Area

where NIR is the non-irrigated recharge depth by cell for this period, Area is the area not irrigated,

and the Soil Factor is a multiplier based on the soil type which is specified by cell.

Canal seepage is specified as a volume by entity and stress period. In addition a scale factor is used

to adjust the amount for each entity. The location where the seepage should occur is specified as a

list of model cells. The entity total is distributed proportionally to the specified cells.

Tributary underflow and perched river seepage are similarly specified as volumes by reach and

stress period. In addition, a scale factor is used to adjust this amount for each reach. A list of cells

comprising the reach is specified by the user, and the scaled volume is distributed proportionally to

the cells corresponding to that reach.

The fixed point and off-site pumping terms allow additional flux to be added to the budget. Fixed

point terms include wetlands, urban, exchange and Mud Lake pumping, and the user specifies the

budget item and model cell to be adjusted. For every stress period, the corresponding budget item

is then adjusted by the specified volume in the corresponding cell. Off-site pumping always adjusts

the pumping term, and is added to the applied water for the corresponding entity.

Running mkmod

The mkmod program is written in the Perl computer programming language. This language was

chosen because of its expressive power. Features such as arrays indexed by strings allow the

mkmod program to express concepts such as loop over the following entities by using the actual

names of the entites instead of a numerical index. This simplifies the code and reduces the chance

of programming errors.

The Perl language is interpreted not compiled. It therefore needs a Perl interpreter to be installed

on the computer where mkmod is being run. On Unix, Linux and OS/X systems, Perl is part of the

standard installation, and can be run as

 mkmod <options and parameters>

On Windows based computers, Perl is typically not installed, and due to the way Windows programs

are launched, must be run as

 perl mkmod <options and parameters>

Alternatively the Perl interpreter can be compiled with the mkmod program into an executable

program using the PAR-packer utilty, in which case the resulting executable mkmod.exe can be run

just like on other systems.

A typical mkmod run would be

 mkmod -ss E110712A

This runs mkmod using files named E110712A.*. There are a number of input files with a file root of

E110712A that would be read. The -ss flag omits the steady state stress period and saves only the

12

net recharge (sometimes called the well term) in a file named E110712A.net. This run requires

about 72MB of memory and takes about 10 minutes to create the input files.

The input files are typically named with the same file root and differing extensions. An arbitrary

model input file name can be specified using the - -ext <filename> flag.

A number of files are used to specify quantities that apply to all periods of the simulation. These

files are read once when mkmod starts. The *.mdl file is used to specify the model units,

dimensions, stress period and similar data. The *.cel file specifies the active cells and cell areas. The

*.sol file specifies the soil type for non-irrigated acreage. The *.red file specifies the reduction

factors for gravity and sprinkler irrigation. The *.eff file specifies On-Farm algorithm parameters

such as the efficiency, DPin and DPex by entity.

Most of the model inputs specify a header which defines the various features and then a set of data

for each stress period. The *.ent file defines the entities ET adjustment factors, and the sprinkler

fraction by entity for each stress period. The *.iar file specifies the irrigated acres by entity. The

*.div file specifies the diversions and returns for each entity. The *.cnl file specifies the canal

leakage by entity. The *.fpt and *.off files specify the fixed point and off-site pumping by entity,

respectively. The *.pch file specifies the perch river seepage by reach. The *.trb file specifies the

tributary underflow by reach.

There are three inputs that are specified for every cell and stress period. The *.pre, *.eti and *.nir

files contain the arrays of precipitation, evapotranspiration and non-irrigated recharge, respectively.

The input files are described in design documents that can be found on the web at

http://www.idwr.idaho.gov/Browse/WaterInfo/ESPAM/ESPAM_2_Design_Docs/.

mkmod parameters

The mkmod program is typically run as

 mkmod <fileroot>

In this minimal form, the input and output names are named by appending extensions to the

specified file root. Optional parameters may be specified before the file root.

Inputs default to the file root with an extension. However, different names for individual input files

may be specified by using the extension name. So, for example, if the files are named E110712A but

the model file should be foo.mdl, the program can be run as

 mkmod - -mdl foo.mdl E110712A.

Note that there are two hyphens before the extension, to distinguish the multiple letter extension

names from single letter parameters.

The output files will use the same file root as the input files. However, a different file root can be

set using the -o parameter.

13

The -a parameter will cause mkmod to save the service areas for each entity to a file named by the

entity name and a .dat extension.

By default, mkmod will save each modeled stress to a different output file with the steady state

period as the first stress period. Calculating the steady state initial stress period requires mkmod to

maintain all stress periods in memory before writing the output files. This requires a lot of memory.

If memory is limited, mkmod can be run without the steady state initial period. The following

parameters control the output of mkmod:

-s Output a single output file (net recharge or “well term” only).

-ss Output a single output file without steady state.

-sss Output only the single output file without steady state and no other tables.

-S No steady state, but separate stress files.

The -sss option is intended for use during the PEST calibration runs where no additional output is

desirable.

The -m parameter is used to select which algorithm should be used to calculate recharge and

pumping. The -m parameter must be followed by one of the key words:

FRS On-Farm algorithm with soil moisture and calculated runoff used as returns.

FER On-Farm algorithm using calculated runoff for returns, but no soil moisture calculations.

MFE On-Farm algorithm, returns read from DIV file, no soil moisture calculations.

1 ESPAM 1.1 algorithm

mkmod output files

Files written by mkmod use the same file root as input files, or a distinct file root if the -o option is

specified.

The net recharge or “well term” file uses the net extension and is stored in the MODFLOW well file

format. Each stress period starts with the number of cells saved followed by the string STRESS

PERIOD and the stress period number. This is followed by an entry for every cell with a nonzero

stress. Note that the file uses free format for these fields.

If instead separate output files are requested (-S option), the following output files are generated:

 ppt precipitation recharge;

 can canal seepage;

14

 tri tributary underflow;

 gwr groundwater deep percolation;

 swr surface-water deep percolation;

 wel well pumping;

The wel file is in the MODFLOW well file format. The other files are in MODFLOW recharge file

format. Some versions of MODFLOW allow multiple recharge and similar stress terms to be

specified, which makes tracking the effect of different budget terms throughout the process simpler.

A summary output table is saved with the htm extension. This table summarizes stresses by

individual entities for all stress periods. In addition summaries for various groups of entries are

provided. A summary table with the dat extension is also produced. The columns in this table are

labeled in the htm table, however, the dat file is better suited for graphing and similar post-

processing.

Return flows calculated by mkmod are saved using the rfl extension. Since only surface water

entities can generate return flows, only surface water entities appear in this file.

Acreages on a cell by cell basis can also be saved by mkmod for each stress period. The extensions

used are:

 AGWgr groundwater irrigated gravity acres;

 AGWsp groundwater irrigated sprinkler acres;

 ASWgr surface-water irrigated gravity acres;

 ASWsp surface-water irrigated sprinkler acres;

Additional debuging will be produced as requested in the *.mdl file. The file extensions are

specified in the *.mdl file.

Programming notes

The mkmod program is written as a series of functions to mostly operate on a small number of

global variables. The mkmod program uses period totals for all variables, typically volumes. The

recharge and pumping calculations are done on a per unit area basis, and translated to volumes

using the acreage.

Most inputs are stored in the hash x. Only one stress period at a time is read, so x only contains

values for the current period. The primary index is the type of the data, using the file extension as

the index.

15

Outputs are stored in the hash out. The values are indexed as out{type}[period][cell] where the

type corresponds to the extension of the output file name. The periods are numbered from one.

Period zero would be the steady state, if there is one. Cells are a linear index. All values are

volumes.

Summary outputs by entity are saved in the array sum and are indexed as

sum[period]{entity}{type}. The values are typically volumes, but in a few instances are values such

as efficiencies.

The following lists the major functions used:

The Read function reads the next data line from the file. Lines beginning with a # sign are

considered to be comments and are skipped. Blank lines are also skipped. It returns the line read.

The function will return undef if an end of file is encountered, unless an optional second parameter

is specified, in which case the text of the second parameter is printed and the program will

terminate.

The ReadLine function will call Read to read the next data line, and then split the line on spaces. It

will return the fields read as an array, or an empty array on end of file.

The ReadCSV funcion will read a file of comma separated values that should provide one value for

every cell in the domain. This function is used to read the soil and ibound arrays.

The Open function is used to open input data files and read the header. The type parameter is used

to define whether the file contains entities, point, line or array data. The header and a file handle

are returned as a hash that will be used by the Next function.

The Next function is used to read the data for the next stress period. This function uses the header

information returned by the Open function to determine how many records should be read, and

maps the data to specific entities, reaches or cells, depending on the type of data read.

The Average function is used to calculate the average rates for the summary tables.

The SaveCell and SaveArea functions are used to save stresses in MODFLOW well (cell) or recharge

(array) format respectively. MODFLOW requires quantities to be stored as rates, so these functions

will convert the volumes used by mkmod into rates before writing the files.

16

Brannon Review

The following description of mkmod was prepared by Jim Brannon and is included here with minor

formatting changes.

MKMOD 5 “On-Farm Water Budget” Code Review

by Jim Brannon

Introduction

During 2010 the IDWR ESPAM2.0 model development included recommendations by ESHMC

committee members to add more complex “On-Farm water budget algorithms” to the MKMOD tool

code. These algorithms were presented and discussed (led by Greg Sullivan) at several ESHMC

meetings. Dr. Willem Schreuder implemented these algorithms into the MKMOD PERL code and ran

tests to verify they were working.

However, due to the increased complexity of the new algorithms and how critical they are to the

ESPAM 2.0 results, the ESHMC wanted an independent verification that the code correctly

implemented the exact algorithms that were designed, discussed and approved in the meetings.

 PERL code is dissimilar to the more familiar engineering programming languages like FORTRAN and

Visual Basic, so other ESHMC members were unsure of their ability to readily understand the code.

 Having significant programming experience in several languages (though not PERL) Jim Brannon

(Leonard Rice Engineers) offered to attempt to review the code on behalf of Rangen for the ESHMC.

Description

Dr. Schreuder provided the latest version of the PERL MKMOD code, both MKMOD4 and MKMOD5.

 The version changed from 4 to 5 during the review. After a short, intense tutorial session on the

basics of PERL, Jim Brannon flow charted the larger code structure in general until the sections

covering the On-Farm water budget could be confidently identified. These code sections were then

flow charted and studied in detail.

Running multiple data sets through the code was outside the scope of the effort, so in order to

verify the code, the code logic was carefully converted into diagrams that represent explicitly each

logic case encountered. These diagrams were converted into electronic documents made available

to IDWR and the ESHMC members.

Questions and comments by the reviewer were inserted into a copy of the PERL code, also made

electronic and available to the IDWR and ESHMC members.

Results

To the reviewer, Jim Brannon, each code case appeared consistent with the algorithms as described

in the ESHMC meetings. The operations in some parts of the code were uncertain during the review

and noted in the code, but further discussions with Dr. Schreuder cleared them up. These code logic

17

diagrams were then presented to the ESHMC in November 2010, to get the whole committee’s

comments and approval. During the meeting the ESHMC agreed that they represented the

algorithms that had been designed and discussed during prior meetings.

The code has been used in MKMOD5 through MKMOD8, though no additional verification of the

code has been done by Jim Brannon since November 2010 (MKMOD5).

Below are the diagrams of the logic cases encountered in the code and presented to the ESHMC.

18

19

20

21

22

23

24

Britton Review

The following outline of mkmod was prepared by Ben Britton. A few instances of mknod have been

converted to mkmod.

MKMOD v8.1

This is commentary on mkmod81.pl. A presentation containing the description of mkmod, its

command-line switches, input/output files, programming notes and flowchart/algorithms is

available at http://www.prinmath.com/eshmc/mkmod8/mkmod.pdf

The program is very well documented. As the header states, it creates MODFLOW input files for

ESPAM. It tracks total and net stresses. The numbers below refer to line numbers in mkmod81.pl.

1-52

Explanation of input-file types.

54-61

Set the allowable file-extensions used for input to MKMOD81 as:

'mdl','cel','sol','red','ent','fpt','off','div','cnl','trb','pch','pre','eti','nir','iar','eff'

Uses GetOpt to read the command-line options the user supplied.

Get the root input file-name and stores it in $INPUT. If not supplied, the program ends.

Get the root output file-name, if specified with the –o switch, and stores it in $OUTPUT.

Set the default for command-line switches (o,m, s, S and a) and then reads any switches from the

input.

64-69

Determine Surface water method (switch -m)

Defaults to FRS (""Maximum Farm Efficiency using Runoff for Returns and Soil Moisture"") if not

specified as one of the following:

FER – "Maximum Farm Efficiency using Runoff for Returns",

FRS – "Maximum Farm Efficiency using Runoff for Returns and Soil Moisture");

71-89

Set the arrays that make up net recharge, including conversion factors and output-file extensions.

91-98

Set default input file names

100-136

Define global variables and subroutines, Read and ReadLine, to read from the input files.

138-204

Open the .mdl file and read the following:

25

Title1, Title2, time unit, length unit, number of stress periods and steady state definition, stress

period lengths and descriptions, number of model rows/columns/layers, groundwater pumping

layer, adjustment factors, etc.

206-218

Set the array of periods used for steady state.

220-233

Set a variable to represent a square mile, in feet. Calculate the total number of model cells. Open

the .cel file and read CSV formatted data – one value for each row/column/layer.

235-267

Define the ReadCSV subroutine, which reads CSV-formatted data.

268-386

Define the Open subroutine, which opens and reads the header from the specified input file.

388-498

Define the Next subroutine, which reads the “next” stress period from the specified input file. It

populates an array named DATA for that period. This subroutine uses ReadCSV and ReadLine.

503-532

Open the .sol file and reads the soil types.

533-546

Open the .red file and read the reduction factors for gravity and sprinkler, adjust those factors.

548-560

Open the .eff file and read the irrigation efficiency parameters and soil properties.

562-575

Open the .ent file and read the irrigation entities. Check data and set up entities pointer.

577-588

Open the .fpt file and read the fixed point diversions.

Open the .off file and read the off-site groundwater pumping wells.

Open the .div file and read the canal diversions and returns.

Check that off-site wells are assigned to legal surface water entities.

590-595

Open the .cnl, .trb and .riv files and read the canals, tributaries and perched streams.

605-631

Open the output files, using the root output file-name specified on the command line.

633-675

Define a Save subroutine, which writes to an output file.

26

677-1082

Process data for each transient stress period.

 # Read data for this stress period

 # Check canal seepage rates in [0,1]

 # Check that precip and irrigated ET are non-negative

 # Non-irrigated recharge may be negative

 # Initialize summaries for this stress period

 # Applied, recharge, consumptive use (ET), area

 # For surface water entities, also diversion, seepage, returns, deficit irrigation and soil moisture

 # Sum total irrigated area by entity

 # Sum sprinkler and gravity areas by entity by cell

 # Sum non-irrigated areas by cell

 # Loop over cells in irrigated area list

 # Adjusted sprinkler and gravity area

 # Remove irrigated areas from non-irrigated array

 # Add irrigated area to this entity's irrigated area array

 # Add irrigated area to this entity's total area

 # Add irrigated area to list of cells irrigated by this entity

 # Add irrigated area to output array of irrigated area

 # Calculate total diversion, applied volume and seepage by surface irrigation entity

 # sum holds totals by entity

 # DIV diverions (including off-site pumping)

 # APP applied water (including off-site pumping, excluding seepage)

 # SEEP canal seepage

 #

 # Applied = Diversion - Returns

 # Add off-site pumping (Q<0)

 # Subtract canal seepage

 # Calculate application rate for surface water entities

 # Default value (Groundwater or error)

 # Surface water only (skip others)

 # Check application rate and irrigated acres

 # Application rate = Volume / Area

 # Calculate and distribute applied water and precipitation on irrigated lands

 # Loop over all irrigation entities

 # Distribute to sprinkler and gravity lands

Crop Irrigation Requirement

 # Groundwater irrigation

 # Net Recharge = Precip - Adjusted ET = -CIR = Recharge - Pumping

 # Pumping = CIR / Irrigation Efficiency

 # Recharge = Precip + (1-Irrigation Efficiency)*Pumping

 # Groundwater recharge for the cell is the rate time area

 # Groundwater pumping for the cell is the rate time area

 # Add pumping to applied water total for entity

27

 # Surface water irrigation using Maximum Farm Efficiency method

 # Net Recharge = Precip + Application - Adjusted ET = Application - CIR

 # Calculate excess irrigation or deficit

 # Initialize soil moisture to field capacity on first occurrence

 # Soil moisture source

 # Soil moisture sink

 # Deficit irrigation may take water from soil moisture

 # Irrigation excess may sink water to soil moisture

 # Adjust soil moisture array

 # Recharge is the sum of initial and excess deep percolation

 # Runoff is the sum of initial and excess surface runoff

 # Surface water recharge for the cell is the rate time area

 # Surface water irrigation using ESPAM 1.1 method

 # Net Recharge = Precip + Application - Adjusted ET = Application - CIR

 # Surface water recharge for the cell is the rate time area

 # Accumulate totals for the entity

 # Precipitation on non-irrigated lands

 # Recharge = Soil Type Adjustment * Rate * Area

 # Skip dead cells and cells fully irrigated

 # Adjust precipitation rate for soil type

 # Precipitation recharge is rate time non-irrigated area

 # Accumulate total precipitation recharge and non-irrigated area

 # Fixed point and off-site adjustments

 # Array to adjust

 # Magnitude of adjustment (WetAdj is a global and is currently 1 so this does nothing)

 # Accumulate adjustment to output array

 # Accumulate magnitude of the adjustment

 # Distribute canal seepage

 # Amount is calculated based on diversion above

 # Loop over canals

 # Distribute uniformly over cells

 # Add rate to cells

 # Distribute tributary underflow and perched river recharge

 # Distribute uniformly over cells and apply scale factor

 # Add rate to cells

 # Calculate application rate for groundwater water entities

 # Groundwater water only - skip others

 # Check irrigated acres

 # Application rate = Volume / Area

 # Summarize results by GW/SW

 # Surface water only variables

 # Sum sprinkler area

28

 # Compute sprinkler fraction by type

 # Compute average application rate

 # Calculate irrigation efficiency (CIR/Applied)

 # Calculate net recharge

 # Net = Non-irrigated precip + Surface Recharge + Groundwater Recharge + Canal Leakage +

Tributaries - Pumping

 # If immediate (no steady state) save to file an forget all arrays

 # If single stress out forget the other arrays to save memory

1084-1177

Calculate steady state totals (volumes) for each cell. Save results to output files.

1180-1195

Save service areas to file if requested (-a flag).

1197-1203

Define the date subroutine, which returns the hypertext markup for the current period.

1206-1240

Define the data subroutine, which returns the data for period and entity – SW, GW, non-irrigated

areas, etc.

1243-1285

Define the Average subroutine, which calculates average rates for summary tables.

1287-end

Define text for output-files, then write output files.

Input files with data that apply to

all periods in the simulation
.mdl Model units, dimensions, periods, ...

.cel Active cells and cell areas

.sol Soil type for non-irrigated recharge

.red Reduction factors (Gravity,Sprinkler)

.eff On-Farm parameters Eff,DPin,DPex,..

Input files with data by Entity
 (Header + data set for each stress period)

.ent Entity names; sprinkler fractions

.iar Irrigated acres by cell

.div Diversions and returns

29

.cnl Canal leakage

.fpt Fixed point pumping

.off Off-site pumping

.pch Perch river seepage

.trb Tributary underflow

Input files with cell arrays
(no header, just array of values for each stress period)

.pre Precipitation

.eti Evapotranspiration

.nir Non-irrigated recharge

Output files
Net recharge ['well term'] (.net)

– MODFLOW well file format (k,i,j,q)

Summary table (.htm)

– Summarizes input and output by groups and

by entity by stress period

Summary table (.dat)

– Main summary table for plotting

Return flows (.rfl)

Debug output (.rfx)

Output files (separate terms)
.ppt precipitation recharge

.cnl canal seepage

.tri tributary underflow

.gwr groundwater deep percolation

.swr surface water deep percolation

.wel well pumping

Output Files (acreage)
.AGWgr Groundwater Gravity Acres

.AGWsp Groundwater Sprinkler Acres

.ASWgr Surface Water Gravity Acres

.ASWsp Surface Water Sprinkler Acres

Comparison with IDWR hand calculations

The Schreüder overview, and Brannon and Britton reviews outline what MKMOD is supposed to do,

but does it perform as expected? Tables 1 and 2 below contain output from MKMOD and hand

calculations performed by Allan Wylie (IDWR) respectively. The columns in Table 2 with bold

numbers can be compared with MKMOD output in Table 1.

30

Table 2 follows the flow diagram in Brannon’s review labeled “mkmod5 code Max Farm Efficiency

Method Excess Irrigation.” Brannon’s diagram indicates that canal losses plus farm headgate

deliveries should equal diversions. The second column in Table 2 labeled diversions is the sum of

canal losses and farm headgate deliveries and can be compared with the column labeled Diverted in

Table 1.

The next ten columns in Table 2 contain calculations necessary to make more comparisons.

Brannon’s diagram shows that farm deliveries are broken into efficient and inefficient portions. As

noted above, sprinkler irrigation is assumed to have a maximum efficiency of 0.85 and gravity

irrigation is assumed to have a maximum efficiency of 0.80. The column labeled sp frac in Table 2 is

the fraction of farm deliveries delivered to sprinkler irrigated lands and the column labeled g frac is

the portion delivered to gravity irrigated lands. The columns labeled sp inef and g inef are computed

by multiplying the fraction of farm deliveries for sprinkler irrigated land and gravity irrigated land by

the quantity (1-efficiency).

Both Table 1 and Table 2 contain columns labeled Excess. This represents water delivered to the

farm headgate that is beyond what is necessary to supply the crop irrigation requirement at

maximum irrigation efficiency. The Brannon diagram indicates that this is computed by subtracting

the crop irrigation requirement from the efficient portion of the farm headgate deliveries. The

columns labeled Excess can be directly compared, and the differences are small, likely the result of

rounding errors.

The Brannon diagram indicates that the inefficient and excess fractions are then divided between

runoff and recharge. Recharge from the inefficient fraction is computed by multiplying the sprinkler

and gravity inefficient fractions by DPin. The results of these calculations are displayed in Table 2 in

the columns labeled sp rchg and g rchg. Recharge from the excess fraction is computed by

multiplying the excess fraction by DPex. The result of this calculation is displayed in Table 2 in the

column labeled ex rch. Total recharge is then the sum of the inefficient recharge from the sprinkler

and gravity fractions and from excess. The result of this calculation is displayed in Table 2 in the

column labeled Tot rch and this can be directly compared with the MKMOD output in Table 1 in the

column labeled Recharge. Again, the differences are small, perhaps the result of rounding errors.

Total runoff is the sum of runoff from the inefficient and excess fractions. Runoff from the inefficient

fraction is computed by multiplying the sprinkler and gravity fractions by (1-DPin). The results of

these calculations are displayed in Table 2 in the columns labeled sp roff and g roff. Runoff from the

excess fraction is computed by multiplying the excess fraction by (1-DPex). The result of this

calculation is displayed in Table 2 in the column labeled ex roff. Total runoff is then the sum of the

runoff from the inefficient and excess fractions. The result of this calculation is displayed in Table 2

in the column labeled Tot roff and this can be directly compared with the MKMOD output in the

column labeled Runoff in Table 1. The differences between the columns in these tables are likely

due to rounding errors.

This analysis shows that MKMOD is conducting the calculations in the On-Farm Algorithm correctly.

31

Table 1. MKMOD output for selected surface water entities.

MKMOD Output Parameters

Enitiy Name

Diverted Canal Farm CIR Sprinkler Runoff Recharge

DPin DPex (af) Seepage Delivery (af) (%) (af) (af) Excess

 (af) (af) (af)

IESW000 Null 140575 0 140575 29408 55.9 0 111167 86979 1.00 1.00

IESW011 ButteMrk 88617 13293 75324 40517 56 696 34110 21851 0.98 0.98

IESW012 Canyon 27911 2233 25678 3622 88.9 0 22055 18058 1.00 1.00

IESW018 Falls 24200 2419 21780 341 100 0 21439 18172 1.00 1.00

IESW027 Milner 59048 23619 35429 8637 27.8 969 25821 20203 0.97 0.96

IESW034 Peoples 290116 121831 168284 49036 74.5 31747 87497 91867 0.74 0.73

IESW038 Rexburg 54171 22754 31417 8204 24.9 8878 14333 17320 0.62 0.62

IESW039 Chester 18865 5660 13205 1946 26.9 4318 6940 8795 0.61 0.62

IESW044 Montview 100428 20083 80344 50697 23.9 0 29647 14546 1.00 1.00

IESW052 Small 13086 0 13086 3205 3.4 0 9881 7285 1.00 1.00

IESW055 Labelle 267251 82843 184408 51940 4.7 41757 90709 96026 0.71 0.67

IESW058 AmFalls2 146475 112786 33689 17648 24.2 0 16041 9709 1.00 1.00

32

Table 2. Hand calculations used to check MKMOD.
Hand Calculations

Name

diversions
sp

frac
sp eff sp inef sp rchg sp roff g frac g eff g inef g rchg g roff Excess ex rch ex roff Tot rch Tot roff

cnl+deliv
sp% *

deliv

sp

frac *

.85

sp frac

* .15

dpin*sp

inef

(1-

dpin)

* sp

inef

(1-

sp%) *

deliv
g frac

* .80

g frac

* .20

dpin

* g

ineff

(1-

dpin)

* g

inef

(sp eff

+ g eff)

- cir

(dpex

*

excess)

(1-

dpex) *

excess

sp rchg + g

rchg + ex

rchg

sp rof + g

rof + ex

rof

Null 140575 78581 66794 11787 11787 0 61994 49595 12399 12399 0 86981 86981 0 111167 0

ButteMrk 88617 42181 35854 6327.2 6200.7 126.54 33143 26514 6629 6496 132.57 21851 21414 437.03 34111 696

Canyon 27911 22828 19404 3424.2 3424.2 0 2850.3 2280 570.1 570.1 0 18062 18062 0 22056 0

Falls 24199 21780 18513 3267 3267 0 0 0 0 0 0 18172 18172 0 21439 0

Milner 59048 9849 8372 1477.4 1427.6 49.79 25580 20464 5116 4944 172.41 20199 19451 747.69 25822 970

Peoples 290115 1E+05 1E+05 18806 13853 4952.3 42912 34330 8582 6322 2260.1 91860 67324 24536 87500 31748

Rexburg 54171 7823 6649 1173.4 725.07 448.35 23594 18875 4719 2916 1803 17321 10693 6627.42 14334 8879

Chester 18865 3552 3019 532.82 327.38 205.44 9652.9 7722 1931 1186 744.36 8796 5427.1 3368.51 6941 4318

Montview 100427 19202 16322 2880.3 2880.3 0 61142 48913 12228 12228 0 14538 14538 0 29647 0

Small 13086 444.9 378.2 66.739 66.739 0 12641 10113 2528 2528 0 7286 7286 0 9881 0

Labelle 267251 8667 7367 1300.1 928.42 371.65 175741 1E+05 35148 25100 10048 96020 64682 31338.2 90710 41758

AmFalls2 146475 8153 6930 1222.9 1222.9 0 25536 20429 5107 5107 0 9711 9710.8 0 16041 0

33

Attachment A: Reviewer Comments and IDWR responses

November 28, 2012 Comments from Bryce Contor

Dear Rick -

The version of Appendix B which I have is a *.pdf, so I have not provided "track changes" edits. Here are

a few comments:

1) Page 3. The introduction should more explicitly point out that the On Farm algorithm is a novel

approach developed especially for ESPAM2.x.

Accept

2) Pages 9, 10, 17. There are references to MKMOD4, MKMOD5, MKMOD8 and MKMOD8.1. The

appendix should explicitly state which iteration of MKMOD was used to generate the water budget from

which ESPAM2.1 was calibrated. It should provide a summary of the differences between that version

and the versions described in the appendix. Likely only Dr. Schreuder would be able to provide that

description, though it would be best if it could be an independent explanation.

 Accept, analysis and text provided by IDWR.

3) Page 17 header. Perhaps "MKNOD" was meant to be "MKMOD" :)

 Accept

4) Page 23. Dr. Schreuder asserts that MKMOD can be run in V1.1 mode to duplicate the results of the

ESPAM1.1 calculation algorithms. ESPAM1.1 has the ability to impute groundwater pumping to satisfy

ET if needed, regardless of the nominal water source in the data. I am not convinced that

MKMOD includes this functionality, even when run in V1.1 mode.

I request that the coding of the MKMOD V1.1 option be carefully and independently reviewed, and that

Appendix B explicitly assert the preservation or acknowledge the omission of this functionality. I realize

that some consider this functionality to be a flaw, but in any case the documentation should clearly

indicate its presence or absence in MKMOD mode V1.1.

 Accept, a reference to an analysis conducted in April of 2009 was inserted into the Introduction.

5) Page 23. Either the introduction or this section of the description should explain the important

philosophical difference between the methods: ESPAM1.1 asserts that the ET estimates are more

reliable than the water-source designations and canal seepage estimates; MKMOD makes the opposite

assertion.

34

The results of this difference are:

* The ESPAM1.1 algorithm over-estimates mixed-source withdrawals and under-estimates recharge, if

ET estimates are too high relative to surface-water diversion estimates. MKMOD has robustness

through the initial loss fraction and the DPin parameter.

* ESPAM1.1 is robust to incorrect assignment of water source; its only response is local distortion in

spatial distribution of recharge. Incorrect assignment of water source can cause MKMOD to over-

estimate recharge and under-estimate mixed-source withdrawals.

* ESPAM1.1 is robust to imprecision in canal seepage; the only result is local distortion in spatial

distribution of recharge. The MKMOD response to too-high canal seepage can be over-estimation of

recharge and under-estimation of mixed-source withdrawals.

* With both algorithms, too-low canal seepage results only in local distortion in spatial distribution of

recharge.

* In either case, recharge will be over-estimated and mixed-source extraction under-estimated if ET

estimates are too low relative to surface-water diversions.

* Imprecision in return-flow estimates affect both methods. Returns estimates are applied directly in

ESPAM1.1 algorithms and are implicit in the DPin and DPex parameters in MKMOD. Under-estimating

returns causes an over-estimate of recharge, while over-estimating returns causes an under-estimate of

recharge.

 Accept, these bulleted items are added to the introduction

6) Either the introduction or the Page 23 description should point out that in cases of surface-water

shortage in the absence of supplemental wells, the ESPAM1.1 algorithm requires manual adjustment to

avoid under-estimation of recharge. MKMOD automatically makes an adjustment, to the extent allowed

by the initial loss fraction and DPin parameters.

 Accept, this is added in with the above bulleted items.

7) Except as noted in comments 4 through 6, I did not proofread the equations and figures.

35

8) Except for comment 3 I did not proofread Mr. Britton's explication of the code.

Thanks for this opportunity to provide comments. This is not a suggestion that methodology be

changed for ESPAM2.1, but only a request to clarify the documentation.

Bryce

--

Bryce A. Contor

Senior Hydrologist

482 Constitution, Idaho Falls, ID 83402

E-Mail: bcontor@rockymountainenvironmental.com

Alt. E-Mail: bcontor.rm@gmail.com

VOICE: 208-524-2353 ||| FAX: 208-524-1795 ||| CELL: 208-681-9100

CONFIDENTIALITY NOTICE: This message is intended only for the use of the individual or entity to which it is addressed and may contain
information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you

are hereby notified that any dissemination or distribution of this communication to other than the intended recipient is strictly prohibited. If you have

received this communication in error, please notify us immediately by reply email to the sender or collect telephone call to (208) 524-2353. Thank you.

36

January 12, 2013 B. Contor comments to Appendix B.

I appreciate inclusion of a comparison between the philosophy and capabilities of the
ESPAM1.1 algorithms and the MKMOD algorithms. However, I believe the draft I
provided in the last review is more accurate than has been presented in the version of
Appendix B downloaded on January 12, 2013, in three specific cases:

A. Point two on page three should more correctly represent that ESPAM1.1 algorithms

result in errors of spatial distribution in such cases but do not bias the water budget,
whereas MKMOD algorithms result in both spatial imprecision and bias.

Accept.

B. Point three on page four should more clearly point out that the result of the
ESPAM1.1 algorithm is that the net water budget honors the data and is unchanged
by the imprecision in apportioning diversion to seepage, while the MKMOD algorithm
is unable to preserve the water budget under similar errors in canal seepage. That
is, ESPAM1.1 is able to offset too-high seepage with too-high or even fictitious
pumping, where MKMOD has no automatic, internal mechanism.

Accept.

C. Point four on page four would be more accurately worded "MKMOD parameters can
be set so that the appropriate reduction in consumptive use occurs automatically;" in
this case MKMOD is more powerful than point four seems to indicate.

Accept.

Additionally, the paragraph that starts out "The shortcomings associated with..."
properly applies to both algorithms; in either case, when problems are "identified, the
sources of most mistakes can usually be repaired." The conceptual difference arises
when problems are not identified:

A. MKMOD is robust to cases where ET is too high relative to SW diversions.

B. The algorithms are equally vulnerable when ET is too low relative to diversions.

C. ESPAM1.1 is robust to imprecision in representation of mixed source lands and
groundwater contributions on mixed source lands, in terms of preserving the water
budget. MKMOD will incorrectly reduce consumptive use if data imprecision triggers
a false indication of deficit irrigation.

D. ESPAM1.1 is robust to overestimation of canal seepage, in terms of preserving the
water budget; it has an ability to create an offsetting withdrawal to compensate for
the excess recharge, and is not vulnerable to incorrectly reducing consumptive use
due to a false indication of deficit irrigation.

37

E. The algorithms are equally able to preserve the water budget when canal seepage is
too low.

Reject, we recognize that there are differences between the tools used for ESPAM1.1 and ESPAM2.1,

however, this document is about mkmod, not about the ESPAM1.1 tools. It is easier for us to identify

deficit irrigation, excess irrigation, higher or lower than expected ET, etc and map these by entity

using the output files from mkmod than with the ESPAM1.1 tools.

