BEFORE THE DEPARTMENT OF WATER RESOURCES

OF THE STATE OF IDAHO

IN THE MATTER OF DISTRIBUTION OF WATER)
TO VARIOUS WATER RIGHTS HELD BY OR FOR)
THE BENEFIT OF A&B IRRIGATION DISTRICT,)
AMERICAN FALLS RESERVOIR DISTRICT #2,)
BURLEY IRRIGATION DISTRICT, MILNER)
IRRIGATION DISTRICT, MINIDOKA IRRIGATION)
DISTRICT, NORTH SIDE CANAL COMPANY,)
AND TWIN FALLS CANAL COMPANY

Docket No. CM-DC-2010-001

ORDER REGARDING IGWA MITIGATION OBLIGATION

FINDINGS OF FACT

- 1. On April 7, 2010, the Director of the Idaho Department of Water Resources ("Director" or "Department") issued his *Final Order Regarding Methodology for Determining Material Injury to Reasonable In-Season Demand and Reasonable Carryover* ("Methodology Order"). The Methodology Order established 10 steps for determining material injury to members of the Surface Water Coalition ("SWC").
- 2. On April 29, 2010, the Director issued his *Order Regarding April 2010 Forecast Supply (Methodology Steps 3 & 4)* ("April Forecast Supply Order"). In the April Forecast Supply Order, the Director predicted the following shortfalls:

	Predicted Natural	Predicted Storage		BLY	
	Flow Supply	Allocation	Total Supply	2006/2008	Shortfall
A&B	0	135,371	135,371	58,492	0
AFRD2	1,256	387,102	388,358	415,730	27,400
BID	65,123	222,507	287,630	250,977	0
Milner	0	89,107	89,107	46,332	0
Minidoka	94,486	358,438	452,924	362,884	0
NSCC	233,145	843,169	1,076,314	965,536	0
TFCC	747,391	241,078	988,469	1,045,382	56,900
				Total	84,300

April Forecast Supply Order at 2.

3. According to the April Forecast Supply Order:

[I]f junior ground water users provide no water for purposes of mitigation, the Director shall issue an order curtailing ground water rights junior to April 5, 1982. The curtailment shall affect 73,782 acres within the area of common ground water supply in Water District Nos. 34, 110, 120, 130, and 140, and will increase reach gains by 77,985 acre-feet. If junior ground water users secure a volume of water less than 84,300 acre-feet, the Director will redetermine the extent of curtailment, as simulated by the ESPA Model. Curtailment shall apply to consumptive ground water rights for agricultural, commercial, industrial, and municipal uses, excluding ground water rights used for *de minimis* domestic purposes where such domestic use is within the limits of the definition set forth in Idaho Code § 42-111 and ground water rights used for *de minimis* stock watering where such stock watering use is within the limits of the definitions set forth in Idaho Code § 42-1401A(12), pursuant to IDAPA 37.03.11.020.11.

Id. at 4.

- 4. The April Forecast Supply Order provided for petitions for reconsideration and a hearing if so requested.
- 5. On May 6, 2010, the Idaho Ground Water Appropriators, Inc. ("IGWA") filed a petition for reconsideration and hearing ("IGWA Reconsideration"), which was granted by the Director on May 10, 2010. On May 13, 2010, the City of Pocatello joined in the IGWA Reconsideration. On May 14, 2010, the SWC filed a request for hearing. A hearing in this matter is scheduled to occur on or about May 24, 2010.
- 6. One aspect of the IGWA Reconsideration is a request that the Director reconsider his determination that IGWA must provide 84,300 acre-feet, as opposed to 77,985 acre-feet that would result from curtailment within the area of common ground water supply. *Affidavit of Charles Brendecke* at 3. *See also* IDAPA 37.03.11.050.01 ("CM Rule 50.01").
- 7. Since issuance of the April Forecast Supply Order, water has been diverted by members of the SWC for beneficial use. According to the NRCS, precipitation in the Upper Snake during the month of April was 140% of average. *Idaho Water Supply Outlook Report May 1, 2010*. The cool, wet weather pattern has continued into the first part of May, delaying snowmelt and irrigation demand.
- 8. In the April Forecast Supply Order, the Director predicted that AFRD2 would receive 1,256 acre-feet in natural flow, and would have a demand shortfall of 27,400 acre-feet.

¹ Slight data errors in the Department's regression analysis for AFRD2 were found in the April Forecast Supply Order and have been corrected. Based upon the corrected regression, the Director would have predicted a natural flow supply of 513 acre-feet in the April Forecast Supply Order. AFRD2's corrected regression is attached hereto as Attachment A.

Due to the cool and wet spring, AFRD2 diverted natural flow in excess of the Director's prediction in the April Forecast Supply Order. Water District 01's preliminary accounting for May 17, 2010 shows that AFRD2 has diverted 16,874 acre-feet of natural flow. Since May 10, 2010, AFRD2 has been diverting only storage water. Based upon AFRD2's actual natural flow diversions, the Director predicts the following demand shortfalls for the 2010 irrigation season:

	Predicted Natural Flow Supply ²	Predicted Storage Allocation	Total Supply	BLY 2006/2008	Shortfall
A&B	0	135,371	135,371	58,492	0
AFRD2	16,874	387,102	403,976	415,730	11,800
BID	65,123	222,507	287,630	250,977	0
Milner	924	89,107	90,031	46,332	0
Minidoka	94,486	358,438	452,924	362,884	0
NSCC	243,403	843,169	1,086,572	965,536	0
TFCC	747,672	241,078	988,750	1,045,382	56,600 ³
	_			Total	68,400

- 9. The Director knows with certainty that AFRD2 diverted more natural flow than it was predicted to receive during the 2010 irrigation season. Based on that certainty, it is appropriate for the Director to find that AFRD2's predicted remaining shortfall for the 2010 irrigation season is 11,800 acre-feet. The Director will not adjust the predicted shortfall for TFCC because TFCC has not diverted in excess of its predicted natural flow supply. The Director's projection in his April Forecast Supply Order for TFCC still controls.
- 10. Based on the table above, it is predicted, at this time, that AFRD2 and TFCC will suffer a combined demand shortfall in the amount of 68,400 acre-feet (11,800 + 56,600).
- Using the ESPA Model, curtailment of ground water rights junior to June 28, 1983 is simulated to increase gains between the Near Blackfoot and Minidoka gages by 68,426 acre-feet. Curtailment of ground water rights located only within the area of common ground water supply, CM Rule 50.01, is simulated to increase gains between the Near Blackfoot and Minidoka gages by 62,232 acre-feet. For purposes of the 2010 irrigation season, the mitigation obligation for junior ground water users is 62,232 acre-feet. Attached hereto as Attachment B is this modeling analysis.

² Similarly with AFRD2, slight data errors in the Department's regression analysis in the April Forecast Supply Order for A&B, Milner, NSCC, and TFCC. The corrected values are shown in the table and the regressions attached hereto. The regressions for BID and MID were correct in the April Forecast Supply Order. The Department will attach BID and MID's regressions for purposes of convenience. All regressions are attached hereto as Attachment A.

³ Based on the corrected regression, TFCC's predicted shortfall is 56,600 acre-feet.

12. On May 14, 2010, the Director approved IGWA's *Mitigation Plan for Conversions, Dry-Ups and Recharge* ("Recharge Plan"). *Order Approving Mitigation Plan*. IGWA's Recharge Plan was not protested. On May 12, 2010, the Department received *IGWA's Request for Mitigation Credit* ("Credit Request"). The Credit Request was filed in order to provide IGWA with mitigation credit for material injury that was predicted by the Director to occur to certain members of the SWC during the 2010 irrigation season. On May 17, 2010, the Director approved IGWA's Credit Request. *Order Approving Mitigation Credits Regarding SWC Delivery Call* ("Order Approving Credit Request"). Using the ESPA Model, the Director simulated the benefits that would accrue to the Near Blackfoot and Minidoka gage during the 2010 irrigation season, in acre-feet:

W.D. 130		2007 & 2009	
Conversions	CREP	Recharge	Total
220	5,390	97	5,707

Order Approving Credit Request at 2.

- 13. As stated in the Order Approving Credit Request, "Because water should be provided during the time in which it can be put to beneficial use, which for the SWC is the irrigation season (April through October), the Director calculates transient mitigation credit for these activities." *Id.* at 2.
- 14. The April Forecast Supply Order required that, by May 13, 2010, IGWA "must establish, to the satisfaction of the Director," the amount of water secured to mitigate for material injury. *April Forecast Supply Order* at 3.
- 15. On May 13, 2010, IGWA filed its *Notice of Water Secured and Renewed Request for Stay* ("Notice"). The Notice stated that IGWA has "secured a total of 68,000 acre-feet of water[]" to pledge towards its total mitigation obligation of approximately 109,300 acre-feet. *Notice* at 2. The total mitigation obligation includes mitigation for Clear Springs Foods, Inc. and the SWC. The Notice did not state how much of IGWA's secured water was pledged to the SWC delivery call. Nor did the Notice include contracts, agreements, or options for the Director to evaluate the secured water. On May 14, 2010, the Director informed IGWA that it would have until the end of the May 14th business day to provide the requested information. *Order Regarding Filing Deficiency of IGWA's Notice of Secured Water*. The Notice also sought a stay in order to conclude proceedings on IGWA's mitigation plan for the SWC, which is scheduled for hearing during the last week of May, 2010.
- 16. On May 14, 2010, IGWA filed a Supplement to Notice of Secured Water ("Supplement"). The Supplement stated that IGWA had secured 68,000 acre-feet of water, of which "a minimum of 53,000 acre-feet . . . is pledged to the SWC delivery call." Supplement at 1. Attached to the Supplement are copies of executed agreements between IGWA and other entities to provide IGWA with storage water.

17. Based on the foregoing findings, and as outlined in the table below, in acre-feet, IGWA has not met its obligation to mitigate for predicted shortfalls to the SWC for the 2010 irrigation season:

Common Ground Water Supply Obligation	62,232	
Secured Water Total	- 53,000	
Credit Request Total	- 5,707	
Shortfall	- 3,525	

18. Using the ESPA Model, curtailment of ground water rights within the area of common ground water supply junior to April 12, 1994 will increase gains between the Near Blackfoot and Minidoka gages by 1,310 acre-feet and would affect 1,578 acres. Attached hereto as Attachment C is this modeling analysis. Because 1,310 acre-feet is insufficient to meet the shortfall of 3,525 acre-feet, the next priority date that the Department could select for simulated curtailment was April 11, 1994. Using the ESPA Model, curtailment of ground water rights within the area of common ground water supply junior to April 11, 1994 will increase reach gains between the Near Blackfoot and Minidoka gages by 13,035 acre-feet and would affect 13,208 acres. Attached hereto as Attachment D is this modeling analysis.

CONCLUSIONS OF LAW

- 1. Idaho Code § 42-602 states that, "The director of the department of water resources shall have discretion and control of the distribution of water from all natural sources . . . The director of the department of water resources shall distribute water . . . in accordance with the prior appropriation doctrine." The Idaho Supreme Court has recently stated, "Given the nature of the decisions which must be made in determining how to respond to a delivery call, there must be some exercise of discretion by the Director." *American Falls Res. Dist. No. 2 v. Idaho Dept. Water Resources*, 143 Idaho 862, 875, 154 P.3d 433, 446 (2007). The CM Rules incorporate all principles of the prior appropriation doctrine as established by Idaho law. CM Rule 20.03.
- 2. The Director knows with certainty that AFRD2 diverted more natural flow than it was predicted to receive during the 2010 irrigation season. Based on that certainty, the Director concludes that AFRD2's predicted remaining shortfall for the 2010 irrigation season is 11,800

⁴ The 11,898 acre-feet difference between the simulated curtailment dates (junior to April 12, 1994 and junior to April 11, 1994) is attributable to the effective priority date of enlargement rights. Idaho's enlargement statute became effective April 12, 1994. H.B. 969 (Act *Relating to the Snake River Basin Adjudication*, ch. 454, § 32, 1994 *Idaho Sess. Laws 1475*) *now codified as* Idaho Code § 42-1427. All enlargement rights are subordinated to non-enlargement rights with priority dates earlier than April 12, 1994. As between enlargement rights, the earlier the priority date, the more senior the right. The Department is in the process of identifying which enlargement rights would be subject to curtailment if IGWA cannot meet the 3,525 acre-feet shortfall for the 2010 irrigation season. As soon as the Department has this information, the Department will provide it to the parties.

acre-feet. The Director will not adjust the predicted shortfall for TFCC because TFCC has not diverted in excess of its predicted natural flow supply. The Director's projection in his April Forecast Supply Order for TFCC still controls.

- 3. For the 2010 irrigation season, it is predicted, at this time, that AFRD2 and TFCC will suffer a combined demand shortfall in the amount of 68,400 acre-feet (11,800 + 56,600).
- 4. The ESPA Model represents the best available science for determining the effects of ground water diversions and surface water uses on the ESPA and hydraulically-connected reaches of the Snake River and its tributaries. There currently is no other technical basis as reliable as the simulations from the ESPA Model that can be used to determine the effects of ground water diversions and surface water uses on the ESPA and hydraulically-connected reaches of the Snake River and its tributaries. The degree of uncertainty associated with application of the ESPA Model is 10 percent.
- 5. Using the ESPA Model, curtailment of ground water rights junior to June 29, 1983 is simulated to increase gains between the Near Blackfoot and Minidoka gages by 68,426 acre-feet. Curtailment of ground water rights located only within the area of common ground water supply, CM Rule 50.01, is simulated to increase gains between the Near Blackfoot and Minidoka gages by 62,232 acre-feet. For purposes of the 2010 irrigation season, the mitigation obligation for junior ground water users is 62,232 acre-feet. By rule, the Director can only curtail rights within the area of common ground water supply; therefore, the Director can only require that junior ground water users provide mitigation in the amount that curtailment within the area of common ground water supply would realize. CM Rule 20.10; CM Rule 40.01; CM Rule 50.01.
- 6. As stated in the Order Approving Credit Request and the above Findings of Fact, the IGWA Recharge Plan will provide 5,707 acre-feet benefit to the Near Blackfoot and Minidoka gages during 2010. As stated in the Findings of Fact, on May 14, 2010, IGWA provided information, to the satisfaction of the Director, that it has secured 53,000 acre-feet of storage water that is pledged to the SWC. The total amount of water that is secured for benefit of the SWC during the 2010 irrigation season is 58,707 acre-feet. Therefore, a shortfall of 3,525 acre-feet exists.
- 7. Using the ESPA Model, and taking into account 10% model uncertainty and only those rights located within the area of common ground water supply, curtailment of ground water rights junior to April 12, 1994 will increase gains between the Near Blackfoot and Minidoka gages by 1,310 acre-feet and would affect 1,578 acres. Because 1,310 acre-feet is insufficient to meet the shortfall of 3,525 acre-feet, the next priority date that the Department could select for simulated curtailment was April 11, 1994. Using the ESPA Model, curtailment of ground water rights within the area of common ground water supply junior to April 11, 1994 will increase reach gains between the Near Blackfoot and Minidoka gages by 13,035 acre-feet and would affect 13,208 acres.
- 8. IGWA has requested a stay of proceedings pending the outcome of hearing on its previously filed mitigation plan (CM-MP-2009-007). Hearings are also pending on the April

Forecast Supply Order and the Methodology Order. All of these hearings are scheduled to occur during the last week of May, 2010. The Director agrees with the reasoning articulated by the Honorable John M. Melanson in his June 19, 2009 *Order on Petition for Judicial Review* (Case No. 2008-444) regarding the procedure to follow when a finding of material injury has been made and a mitigation plan has been filed. The Director will therefore stay curtailment pending the outcome of proceedings on IGWA's mitigation plan. Given that a hearing has been set on IGWA's mitigation plan, staying this proceeding until proceedings have concluded on the plan will not result in untimely administration. *American Falls Reservoir Dist. No. 2 v. Idaho Dept. of Water Resources*, 143 Idaho 862, 875, 154 P.3d 433, 446 (2007).

ORDER

IT IS HEREBY ORDERED as follows:

Pursuant to Department Rule of Procedure 710, IDAPA 37.01.01.710, this is an interlocutory order and is not subject to review by reconsideration or appeal. The Director may review this interlocutory order pursuant to Rule 711, IDAPA 37.01.01.711.

Dated this 17 day of May, 2010.

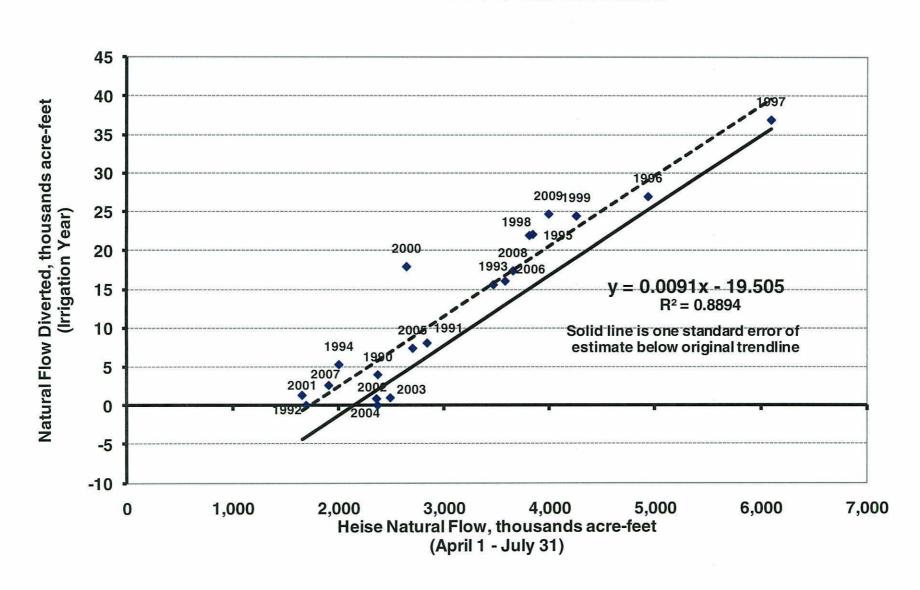
GARY SPACKMAN

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that on this ______ day of May, 2010, the above and foregoing, was served by the method indicated below, and addressed to the following:

John K. Simpson BARKER ROSHOLT & SIMPSON, LLP P.O. Box 2139 Boise, ID 83701 jks@idahowaters.com	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☒ Email
Travis L. Thompson Paul L. Arrington BARKER ROSHOLT & SIMPSON, LLP P.O. Box 485 Twin Falls, ID 83303 tlt@idahowaters.com pla@idahowaters.com	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☑ Email
C. Thomas Arkoosh CAPITOL LAW GROUP, PLLC P.O. Box 32 Gooding, ID 83339 tarkoosh@capitollawgroup.net	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☒ Email
W. Kent Fletcher FLETCHER LAW OFFICE P.O. Box 248 Burley, ID 83318 wkf@pmt.org	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☑ Email
Candice M. McHugh RACINE OLSON 101 Capitol Blvd., Ste. 208 Boise, ID 83702 cmm@racinelaw.net	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☑ Email
Randall C. Budge Thomas J. Budge RACINE OLSON P.O. Box 1391 Pocatello, ID 83204-1391 rcb@racinelaw.net tjb@racinelaw.net	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☒ Email
Kathleen M. Carr US Dept. Interior 960 Broadway Ste 400 Boise, ID 83706 kathleenmarion.carr@sol.doi.gov	□ U.S. Mail, postage prepaid □ Hand Delivery □ Overnight Mail □ Facsimile □ Email

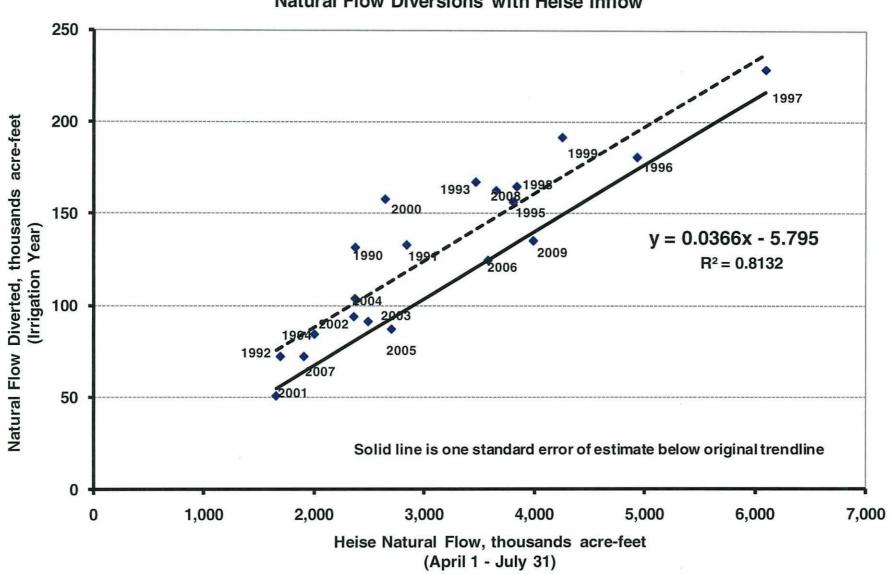
David W. Gehlert Natural Resources Section Environment and Natural Resources Division U.S. Department of Justice 1961 Stout Street, 8 th Floor Denver, CO 80294 david.gehlert@usdoj.gov	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☒ Email
Matt Howard US Bureau of Reclamation 1150 N Curtis Road Boise, ID 83706-1234 mhoward@pn.usbr.gov	 ✓ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ✓ Email
Sarah A. Klahn Mitra Pemberton WHITE JANKOWSKI 511 16 th St., Ste. 500 Denver, CO 80202 sarahk@white-jankowski.com mitrap@white-jankowski.com	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☒ Email
Dean A. Tranmer City of Pocatello P.O. Box 4169 Pocatello, ID 83205 dtranmer@pocatello.us	 ✓ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☒ Email
William A. Parsons Parsons, Smith & Stone, LLP P.O. Box 910 Burley, ID 83318 wparsons@pmt.org	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☒ Email
Michael C. Creamer Jeffrey C. Fereday GIVENS PURSLEY LLP P.O. Box 2720 Boise, ID 83701-2720 mcc@givenspursley.com jcf@givenspursley.com	 ☑ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☒ Email
Lyle Swank IDWR—Eastern Region 900 N. Skyline Drive Idaho Falls, ID 83402-6105 lyle.swank@idwr.idaho.gov	☐ U.S. Mail, postage prepaid ☐ Hand Delivery ☐ Overnight Mail ☐ Facsimile ☑ Email

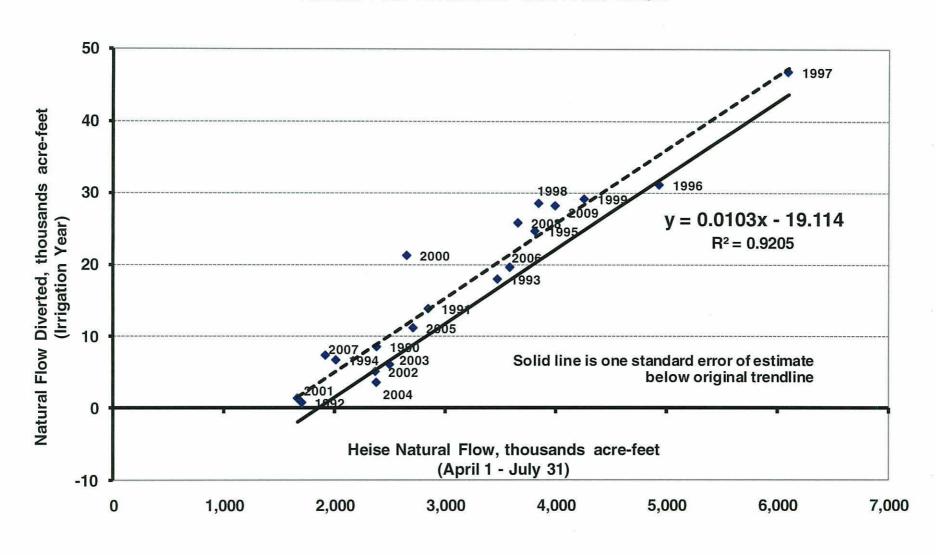

Allen Merritt	U.S. Mail, postage prepaid
Cindy Yenter	☐ Hand Delivery
IDWR—Southern Region	Overnight Mail
1341 Fillmore St., Ste. 200	☐ Facsimile
Twin Falls, ID 83301-3033	⊠ Email
allen.merritt@idwr.idaho.gov	
cindy.yenter@idwr.idaho.gov	

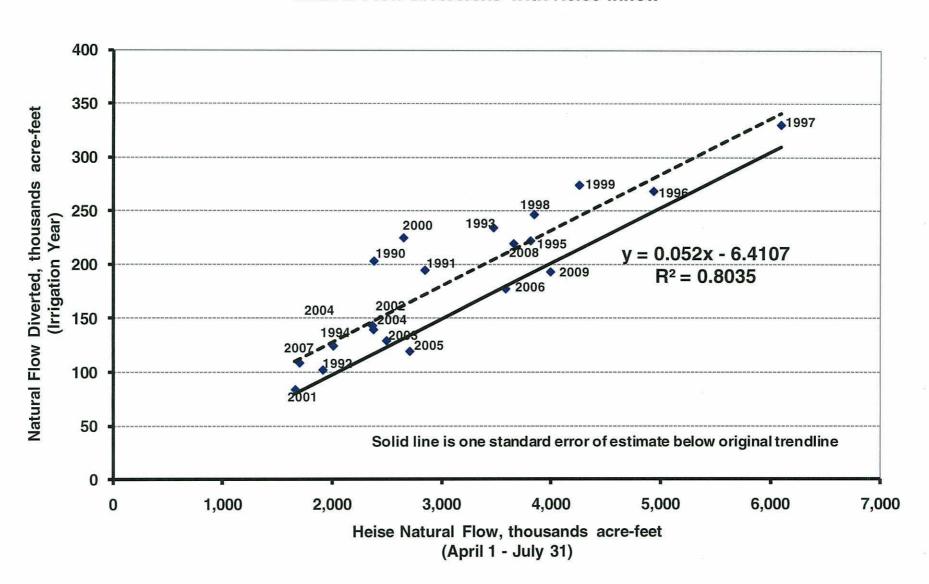
Deborah Gibson

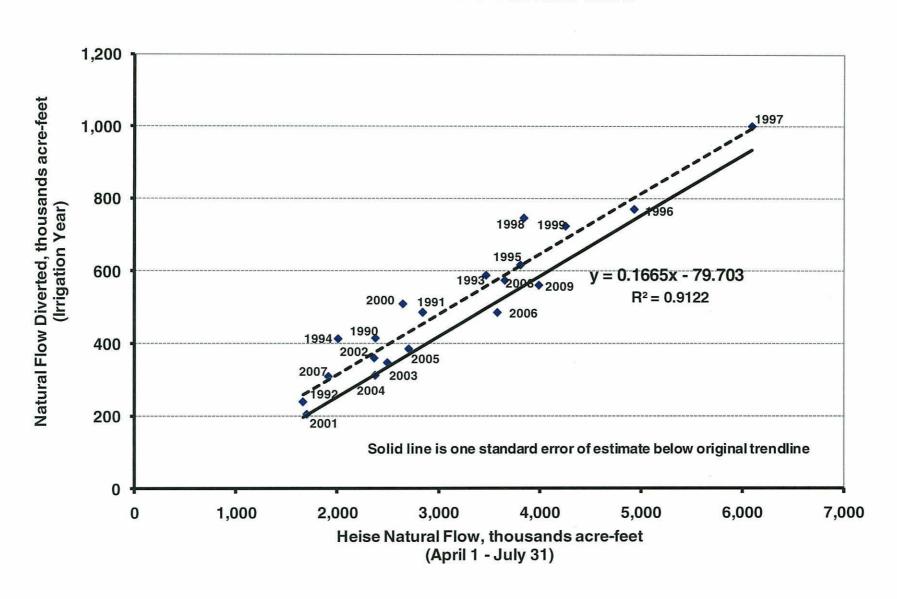

Administrative Assistant to the Director

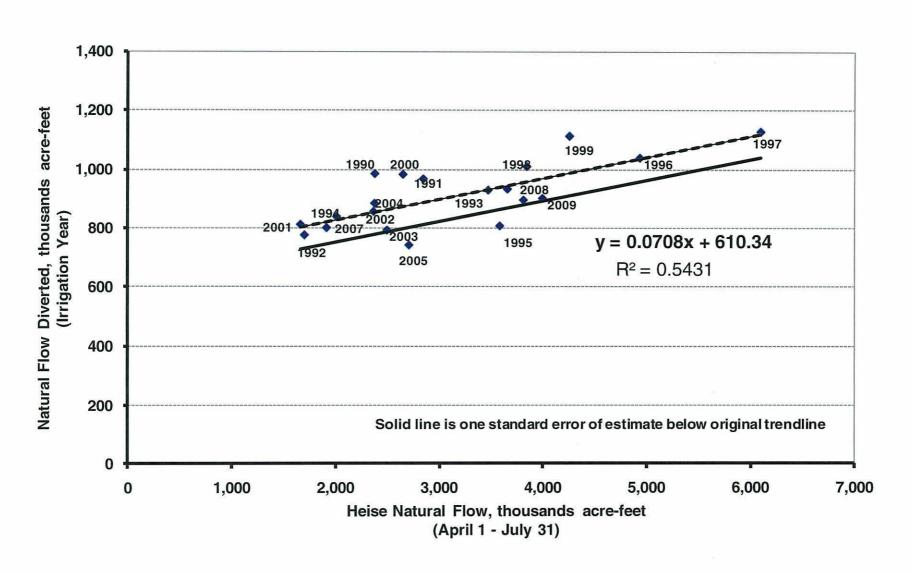
ATTACHMENT A

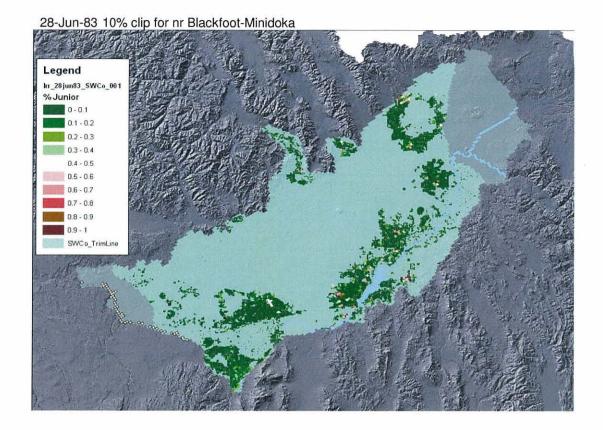

A & B IRRIGATION DISTRICT Natural Flow Diversions with Heise Inflow


AMERICAN FALLS RESERVOIR DISTRICT #2 Natural Flow Diversions with Heise Inflow


BURLEY IRRIGATION DISTRICT Natural Flow Diversions with Heise Inflow

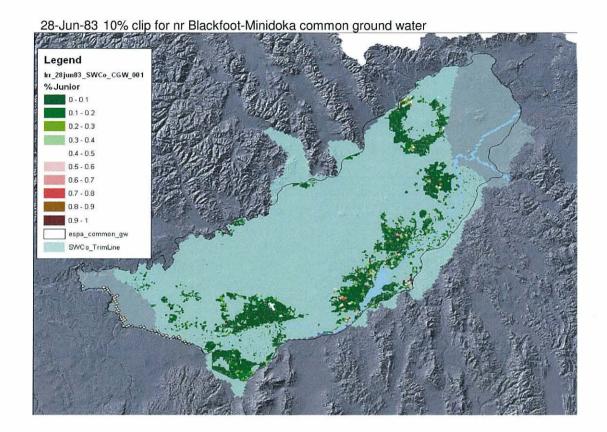

MILNER IRRIGATION DISTRICT Natural Flow Diversions with Heise Inflow


MINIDOKA IRRIGATION DISTRICT Natural Flow Diversions with Heise Inflow


NORTH SIDE CANAL COMPANY Natural Flow Diversions with Heise Inflow

TWIN FALLS CANAL COMPANY Natural Flow Diversions with Heise Inflow

ATTACHMENT B



254,749,010 m^2		15,391,982 ft^3/d		2.050228		
62,950 ac		129,061 ac-ft/y				
reach	cf/d gain	cfs gain	ac-ft/y			
MLD-BAN	11171.58	0.1	94			
MLD	293455	3.4	2,461			
KSP-MLD	35125.81	0.4	295			
KSP	325792.6	3.8	2,732			
BUL-KSP	520642.2	6.0	4,366			
DWB-BUL	1442663	16.7	12,097			
A-R	1246526	14.4	10,452			
H-S	775284.5	9.0	6,501			
S-B	2580700	29.9	21,639			
N-M	1159116	13.4	9,719			
B-N	7001506	81.0	58,707	68,426		
sum	15,391,983	178	129,061			
	2 2					
Global senio	Global senior fraction = 0.93					
	[발발하기: 1861] : 1861] : 1861] : 1862 [1862]					

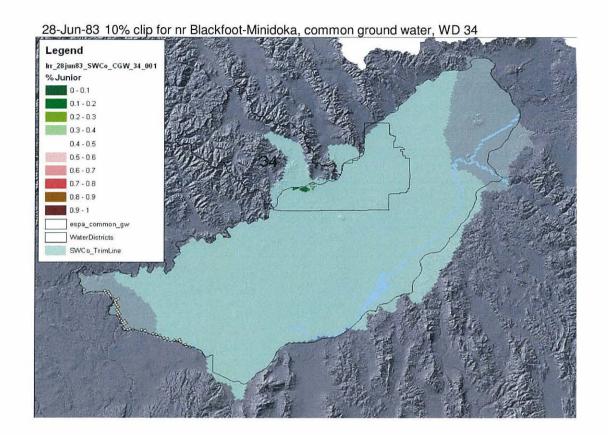
Depletions

ft/ac/yr

irr_area

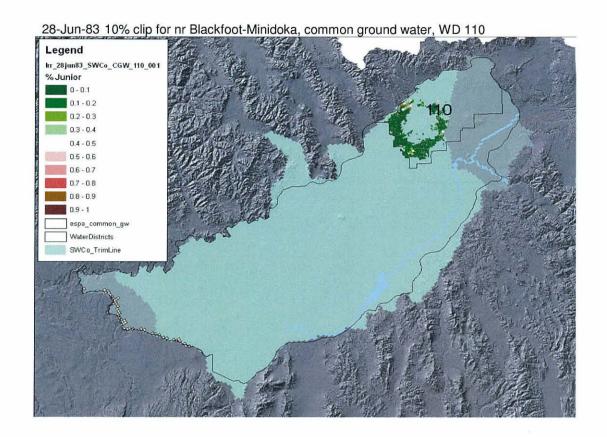
E9 EE2 22		117,589 ac-ft/y				
58,553 ac		117,589 8	ac-II/y			
reach	cf/d gain	cfs gain	ac-ft/y			
MLD-BAN	9894.797	0.1	83			
MLD	259937	3.0	2,180			
KSP-MLD	31123.91	0.4	261			
KSP	288730.1	3.3	2,421			
BUL-KSP	461455.4	5.3	3,869			
DWB-BUL	1274090	14.7	10,683			
A-R	1189441	13.8	9,973			
H-S	728923	8.4	6,112			
S-B	2358262	27.3	19,774			
N-M	1041114	12.0	8,730			
B-N	6380782	73.9	53,503	62,232		
sum	14,023,753	162	117,589			
Global senior	Global senior fraction = 0.93					

Depletions


14,023,753 ft^3/d

ft/ac/yr

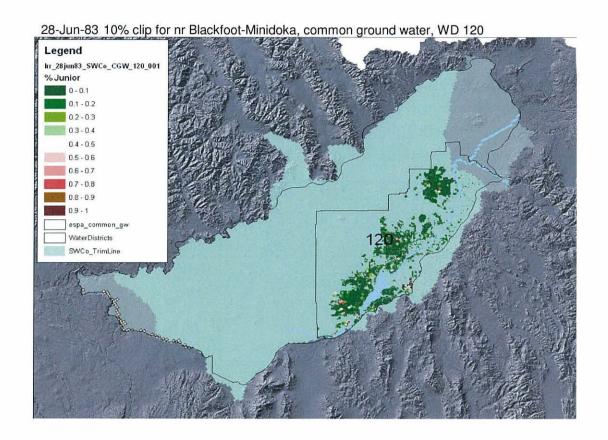
2.008252


irr_area

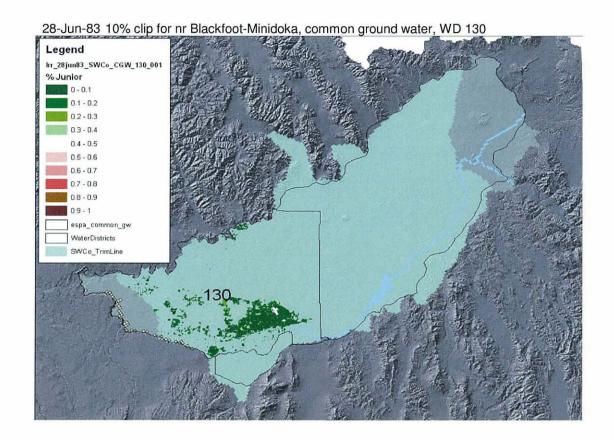
236,955,191 m^2

irr_area		Depletions		ft/ac/yr
2,044,919 m^2		58,420 f	ft^3/d	0.969411
505	5 ac	490 8	ac-ft/y	
	-5/-1	ata mata	**/	
reach	cf/d gain	cfs gain	ac-ft/y	
MLD-BAN	50.19918	0.0	0	
MLD	1314.089	0.0	11	
KSP-MLD	152.4726	0.0	1	
KSP	1386.14	0.0	12	
BUL-KSP	2185.885	0.0	18	
DWB-BUL	5667.557	0.1	48	
A-R	2272.208	0.0	19	
H-S	2176.771	0.0	18	
S-B	11272.79	0.1	95	
N-M	3269.015	0.0	27	
B-N	28673.18	0.3	240	268
sum	58,420	1	490	

Global senior fraction = 0.93 Global junior fraction = 0.0705


ESCHEDITORS CONTRACTORS		The state of the s		Charles across and Secure	
35,197,439 m^2 8,697 ac		2,040,330 f	t^3/d	1.967023	
		17,108 a			
			E		
	reach	cf/d gain	cfs gain	ac-ft/y	
	MLD-BAN	96.26863	0.0	1	
	MLD	2520.11	0.0	21	
	KSP-MLD	292.4444	0.0	2	
	KSP	2658.86	0.0	22	
	BUL-KSP	4193.147	0.0	35	
	DWB-BUL	10875.53	0.1	91	
	A-R	936910	10.8	7,856	
	H-S	405418.5	4.7	3,399	
	S-B	260271.4	3.0	2,182	
	N-M	10257.07	0.1	86	
	B-N	406836.3	4.7	3,411	3,497
	sum	2,040,330	24	17,108	

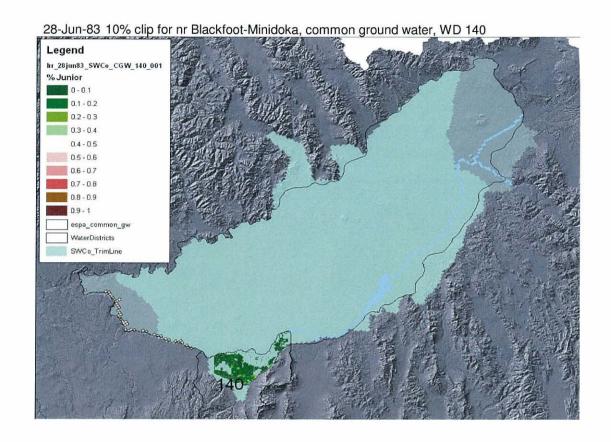
Depletions


ft/ac/yr

irr_area

Global senior fraction = 0.93 Global junior fraction = 0.0705

irr_area 126,586,245 m^2 31,280 ac		Depletions 7,237,704 ft^3/d 60,688 ac-ft/y		ft/ac/yr 1.940146		
reach	cf/d gain	cfs gain	ac-ft/y			
MLD-BAN	1108.764	0.0	9			
MLD	29025.39	0.3	243			
KSP-MLD	3368.552	0.0	28			
KSP	30628.28	0.4	257			
BUL-KSP	48304.3	0.6	405			
DWB-BUL	125322.6	1.5	1,051			
A-R	193165.4	2.2	1,620			
H-S	258697.3	3.0	2,169			
S-B	1643698	19.0	13,782			
N-M	478525.3	5.5	4,012			
B-N	4425861	51.2	37,111	41,123		
sum	7,237,705	84	60,688			
Global senior	Global senior fraction = 0.93					



44,208,486	m^2	2,911,540 f	t^3/d	2.234793
10,924 ac		24,413 ac-ft/y		
reach	cf/d gain	cfs gain	ac-ft/y	
MLD-BAN	5635.203	0.1	47	
MLD	148138.3	1.7	1,242	
KSP-MLD	17807.84	0.2	149	
KSP	165601	1.9	1,389	
BUL-KSP	265046	3.1	2,222	
DWB-BUL	721193.8	8.3	6,047	
A-R	31495.05	0.4	264	
H-S	36120.5	0.4	303	
S-B	269441.1	3.1	2,259	
N-M	308533.2	3.6	2,587	
B-N	942528	10.9	7,903	10,490
sum	2,911,540	34	24,413	
Global senior	fraction = 0.93	3		

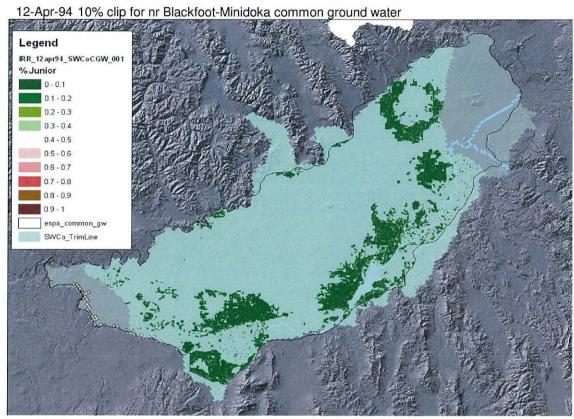
Depletions

ft/ac/yr

irr_area

Depletions 1,701,029 ft^3/d

ft/ac/yr

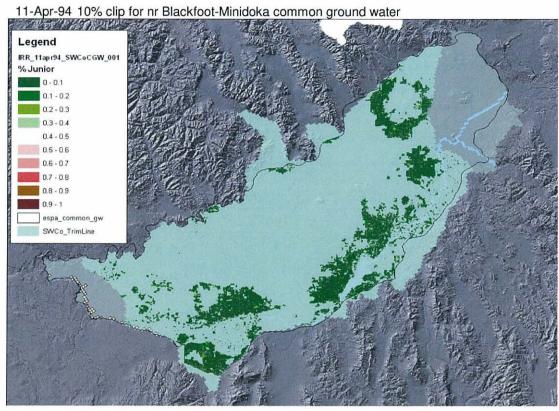

2.080782

irr_area

27,739,925 m^2

6,855 ac		14,263 8	ac-ft/y	
reach	cf/d gain	cfs gain	ac-ft/y	
MLD-BAN	2993.541	0.0	25	
MLD	78655.75	0.9	660	
KSP-MLD	9469.722	0.1	79	
KSP	88156.9	1.0	739	
BUL-KSP	141254.8	1.6	1,184	
DWB-BUL	409808.3	4.7	3,436	
A-R	17945.21	0.2	150	
H-S	20585.48	0.2	173	
S-B	153670.8	1.8	1,289	
N-M	239454.3	2.8	2,008	
B-N	539034.4	6.2	4,520	6,528
sum	1,701,029	20	14,263	
Global senior fraction = 0.93				

ATTACHMENT C



irr_area	Depletions	ft/ac/yr
6,385,417 m^2	376,645 ft^3/d	2.001533
1,578 ac	3,158 ac-ft/y	

reach	cf/d gain	cfs gain	ac-ft/y	
MLD-BAN	69.9202	0.0	1	
MLD	1826.473	0.0	15	
KSP-MLD	201.3841	0.0	2	
KSP	1786.232	0.0	15	
BUL-KSP	2794.514	0.0	23	
DWB-BUL	7286.563	0.1	61	
A-R	78095.95	0.9	655	
H-S	41419.34	0.5	347	
S-B	86927.74	1.0	729	
N-M	6218.626	0.1	52	
B-N	150018	1.7	1,258	1,310
sum	376,645	4	3,158	

Global senior fraction = 0.998 Global junior fraction = 0.00184

ATTACHMENT D

irr_area	Depletions	ft/ac/yr
53,452,080 m^2	3,326,885 ft^3/d	2.111997
13,208 ac	27,896 ac-ft/y	

reach	cf/d gain	cfs gain	ac-ft/y	
MLD-BAN	3304.885	0.0	28	
MLD	86868.74	1.0	728	
KSP-MLD	10440.17	0.1	88	
KSP	97019.91	1.1	814	
BUL-KSP	155107.6	1.8	1,301	
DWB-BUL	428979.8	5.0	3,597	
A-R	280550.5	3.2	2,352	
H-S	173193.3	2.0	1,452	
S-B	536821.2	6.2	4,501	
N-M	225731	2.6	1,893	
B-N	1328868	15.4	11,142	13,035
sum	3,326,885	39	27,896	

Global senior fraction = 0.981 Global junior fraction = 0.0186