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AGENDA
IDAHO WATER RESOURCE BOARD

Aquifer Stabilization Committee Meeting No. 2-24
Thursday, August 8, 2024
1:00 p.m. (MT) / Noon (PT)

Water Center
Conference Rooms 602 C & D
322 E. Front St.
BOISE

Livestream available at https:/www.yvoutube.com/@iwrb

Introductions and Attendance

ESPA Aquifer Storage Update

ESPA Spring Discharge and Reach Gains Update
ESPA Aquifer Impacts

Raft River Hydrogeologic and Water Budget Analysis
ESPA Recharge Conveyance Contracts*

Other Items

Adjourn

Sl A o

Committee Members: Chair Dean Stevenson, Al Barker, Brian Olmstead, and Pat McMahon.

* Action Item: A vote regarding this item may be made at this meeting. Identifying an item as an action item on the
agenda does not require a vote to be taken on the item.

Americans with Disabilities

The meeting will be held in person and online. If you require special accommodations to attend, participate in, or
understand the meeting, please make advance arrangements by contacting Department staff by email
jennifer.strange@idwr.idaho.gov or by phone at (208) 287-4800.

322 East Front Street « P.O. Box 83720 ¢ Boise, Idaho 83720-0098
Phone: (208) 287-4800 Fax: (208) 287-6700 Website: idwr.idaho.gov/IWRB/
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ESPA Storage Changes

Presented by Mike McVay, P.E., P.G.
July 25, 2023



Kilgore

« Rexburg

Idaho Falls

" Pocatello

Twin Falls




IDAHO

Water Resource Board

Aquifer Water Balance

Inflow — Outflow = AStorage

ESPA Inflows = Incidental recharge from SW irrigation, Canal
Seepage, Perched River Seepage, Tributary Underflow,
Precipitation.

ESPA Outflows = Evapotranspiration, Spring Discharge, Well
Pumping

 Requires large investment of time, money and effort.

* A more efficient method of calculating change-in-storage allows us to
evaluate both aquifer conditions and aguifer management activities.

e Direct calculation of change-in-storage using water-level
measurements.
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Using Water-Level Data to Estimate Changes in
Aquifer Storage

 Water-level changes are calculated for each of the wells.

* Changes at the wells are interpolated across the ESPAM version
2.2 (ESPAM?2.2) model area to create water-level change maps.
o The resulting volume represents water and aquifer matrix.

* Specific Yield (Sy) is the ratio of the volume of water that drains
from a saturated rock due to gravity to the total volume of the
rock.




Specific Yield = Available Water

WATER
+

AQUIFER MATRIX

AQUIFER

AVAILABLE WATER
(specific yield)
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Using Water-Level Data to Estimate Changes in
Aquifer Storage

 Water-level data are differenced to produce water-level changes
at discrete points (at the wells).

* Changes at the wells are interpolated across the ESPAM?2.2
model area to create water-level change maps.

o The resulting volume represents water and aquifer matrix.

v The volumes calculated above are multiplied by the average,

calibrated Sy from EPAM?2.2 to calculate the change in volume of
water.
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Mass Measurements and Aquifer Storage
Changes

e Storage change calculations are based on data collected during
mass measurement events.

 Mass measurement events are designed to collect as much data
as possible during a brief window of time.

o Provides a snapshot of the aquifer.
* Mass measurement events take place annually in the spring.

* Previous mass measurement events took place in the spring of
1980, 2001, 2002, 2008, 2013, 2018, 2023 and are now
conducted every 5 years.
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Rationale for using Spring-Season Water Levels

* Conducting measurement events in the spring:

o Integrates the impacts due to irrigation-season activities
into a resulting condition (annual aquifer storage change).

o Maximizes the time between irrigation seasons.

o Pre-irrigation measurements reduce the impact of local
water use on water levels (unperturbed water table).
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Water-Level Impacts due to Local Water Use

Cone of Depression

 Example: Short-term pumpingin
a well can produce water-level
changes that do not represent
the regional conditions. We don’t
want these water levels.

Land surface Well

Radius of influence
 What if a water level is impacted Cone of

by increased areal recharge from Pumping level
. Wt
a wet winter? Wit casing ARt

depression

 Managed recharge also impacts Well screen
water levels...

Impermeable material

Source: National Groundwater Association,2007
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The Value of Transducer-Data Loggers

* Transducers measure the pressure of water above the probe.
o Manual measurements are used to relate the pressure to depth-
of-water.
* Data loggers record the pressure measurements.

* We collect much more data using transducers.

* Able to collect measurements even if the well is inaccessible during
the synoptic measurement event.

* Allows for understanding of well behavior.

e Data collected via transducer allows for the selection of the most
appropriate water level.
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Mass Measurement Change Maps




Water Level Change - Spring 1980 To Spring 2001
with Well Locations
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Water Level Change - Spring 1980 To Spring 2002
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Water Level Change - Spring 1980 To Spring 2008

Water Level
Change (ft)
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Water Level Change - Spring 1980 To Spring 2013 -

Water Level
Change (ft)
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Water Level Change - Spring 1980 To Spring 2018 g
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Water Level Change - Spring 1980 To Spring 2023
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Storage Change between Mass Measurements

 Changes based on mass-measurement events give a general
indication of the volume of water stored in the aquifer;
o However, it is difficult to make management decisions
with only this information.

* Hundreds of wells are measured in the spring each year.
o Historically, these measurements were taken as time
and conditions allowed.

* Since the spring of 2016, IDWR has been conducting
coordinated measurement of the ESPA well network every
spring to facilitate storage-change calculations.
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Annual Measurement Change Maps:
2015 - 2024




Water Level Change - Spring 2015 To Spring 2016
with Well Locations
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Water Level Change - Spring 2016 To Spring 2017 o
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Water Level Change - Spring 2017 To Spring 2018 -

with Well Locations /WJ
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Water Level Change - Spring 2018 To Spring 2019 -
with Well Locations
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Change (ft)

8

6 -30,000 AF

369 Wells



Water Level Change - Spring 2019 To Spring 2020 -
with Well Locations P :
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Water Level Change - Spring 2020 To Spring 2021
with Well Locations
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Water Level Change - Spring 2021 To Spring 2022
with Well Locations
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Water Level Change - Spring 2022 To Spring 2023
with Well Locations
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Water Level Change - Spring 2023 To Spring 2024
with Well Locations
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Water Level Change - Spring 2023 To Spring 2024
with Sentinel Well Locations
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Cumulative Storage Change (acre-feet)
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Cumulative Storage Change (acre-feet)

ESPA Change in Volume of Water and Thousand Springs Discharge

20,000,000 7,000
18,000,000
- 6,500
16,000,000
14,000,000
- 6,000
12,000,000
10,000,000 5,500
8,000,000
5,000
6,000,000
4,000,000
4,500
2,000,000
0 - 4,000
N LW O f WO N VW O ¥ 0 N VW O S 0 N VW O ¥ W N W O F 0O N VW O
4 4 & 8 N &M F S § 0N on ©® O O N KN ® 00 © 6 0 O 9O O dA 49 &
A O O A A @ DA D A D A DN A A DN A N A N O O O O O O O O
— - — — — — — — — — — — — — - — — — — i i — (@] (@] (@] (@] (o] o~ N

[ Calculated Thousand Springs Discharge

=—o=—|DWR Water Level Volume Change

—&— USGS Water Budget Volume Change

Discharge (cfs)




IDAHO

Water Resource Board

Intermediate Change Map:
2015 - 2024




Water Level Change - Spring 2015 To Spring 2024 <
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Water Level Change - Spring 2015 To Spring 2024
with Sentinel Well Locations
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Water-Level Monitoring Network
Continues to Expand
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Storage Change Summary

 The aquifer gained approximately 800,000 acre-feet from 2023 to
2024.

 The aquifer has gained approximately 500,000 acre-feet of storage
since 2015.

* Undulations due to weather are to be expected.

 The ESPA leaks, and aquifer-storage gains are fleeting.

* Perseverance through the dry times is vital to success.
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Discussion
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Spring Discharge on ESPA

Iointed basalt flows  Springs occur when the groundwater
[/ table intersects the land surface or
) canyon wall.
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ater table
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- Example 1: Easy to Measure

« Road access

« Flow becomes concentrated
in a single channel.
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Total Spring Discharge is Difficult to Measure

Example 2: Harder to
Measure

Limited road access

Brush in channel

Possible seepage into
hillside.
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Blue Heart:Springs &

Example 3: Hard to Measure
and Unmeasurable

River access

Only measurable during low
river flow.

Possible discharge directly
into Snake River.
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Streamflow at Snake River near Murphy
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Streamflow at Snake River near Murphy
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Box Canyon Spring nr Wenaell
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Box Canyon Spring nr Wendell
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Briggs Spring at Head nr Bu
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Blue Lakes Spring nr Twin Falls
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* IGWA Recharge

* Scenario includes donated SWC

storage and Cities’ recharge

* Knowledge of timing and location

varies in detail

* Pumping reductions

* Distributed evenly through the

irrigation season

°* Some WMIS wells have unknown

locations

- IWRB recharge

* Timing and location well known

Calendar Year

Board Recharge IGWA Recharge

Pumping

(AF)* (AF)* Reduction (AF)*
2014 36,087 - -
2015 67,542 16,847 -
2016 77,432 101,814 128,764
2017 420,212 243,311 266,507
2018 352,348 178,207 213,269
2019 336,301 168,195 299,988
2020 469,480 157,497 224,301
2021 134,524 67,584 72,959
2022 156,922 20,473 130,912
2023 135,000 94,728 358,712
2024 329,686 17,379 -

* These volumes are model and inputs and may differ slightly from reported
Department or IGWA numbers due to aggregation period, wells being outside of the
model boundary, and omission of conversions.
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Top plot shows
timing and total

volumes (inputs)

Storage impact at
end of model run
(August 2024)

 IWRB: 1.44 MAF

* IGWA Recharge: 0.3
MAF

°* Reductions: 0.89
MAF

« Total: 2.63 MAF
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Average volume (AF) accruing to

reach since 2018

Apr-Oct  Nov-Mar
Board 28,027 15,827
IGWA 27,493 21,412
Pumping
Reduction 37,823 21,864
Total 94,052 59.104
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- IWRB impacts to reach

steadily increasing.

° ~45 cfs at end of August
2024

Average volume (AF) accruing to
reach since 2018

Apr-Oct  Nov-Mar

Board 12,847 7,884

IGWA 21,937 15,059

Pumping

Reduction 20,685 13,695

Total 55,469 36,638

acre-feet per month
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During 2024, IWRB
contributions to below

Milner peaked at 8 KAF in
July

Average volume (AF) accruing to
reach since 2018

Apr-Oct  Nov-Mar

Board 43,280 27,651

IGWA 4,426 1,593
Pumping
Reduction 8,597 3,902

Total 56,049 33,147

acre-feet per month

8000 -

6000

4000

2000

Below Milner

Entity
—— Board
— IGWA
—— Pumping Reduction

2015 2016 2017

2018

2019

2020

2021

2022

2023

2024

140

120

100

80

60

40

20

SJ0



Where are reach gains
occurring for each

management activity?

Board recharge mainly
impacts below Milner,
but gains above Milner

are increasing

Relative location of
impacts for IGWA
recharge and pumping

reduction consistent

1000s Acre-Feet
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50% of annual gains
due to Board

recharge accrue

below Milner in 2024
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56% of IWRB recharge
occurring since 2014

remains in storage

29% of IGWA recharge

remains in storage

53% of pumping
reductions remain 1in

storage
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Index is 5
points higher
with aquifer

management

-10

Sentinel Well Index

- Sentinel Index

@ Benchmarks
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Estimate storage change
baseline as observed change
less modeled aquifer storage

impacts

Add simulated recharge

scenarios to new baseline

Million acre-feet
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ESPA Cumulative Storage Change

1920
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- Simulated aquifer storage
change given no

management (new baseline)

- What would have
happened without aquifer
management (i.e. natural

recharge only)

Million acre-feet

ESPA Cumulative Storage Change

—e— QObserved (Kjelstrom/McVay)
—e— - Actual Mitigiation (Simulated Baseline)

2010 2012 2014 2016 2018

2020

2022

2024



Varying levels of impact by

management activity

Management activities
moderate the decline in

aquifer storage

Million acre-feet

ESPA Cumulative Storage Change

HERE

Observed (Kjelstrom/McVay)

- Actual Mitigiation (Simulated Baseline)
Simulated Baseline + IWRB Recharge
Simulated Baseline + All Recharge
Simulated Baseline + Pumping Reductions

2010

2012 2014 2016 2018

2020

2022

2024



° Animations of modeled changes to aquifer head since 2014, not current state of the

aquifer (3)
* Illustrates how Board recharge in lower valley can impact upgradient reaches

* Observed water level changes and attribution of change to modeled scenarios (1)

* Board recharge, IGWA recharge and pumping reduction, Natural and incidental recharge

Water Level Animation Link




Aquifer water level
response from
IWRB recharge,
2014 on

* Water
ft and O.







Aquifer water level
response from
IGWA, city, and
donated storage
recharge, 2014 on

* Water
ft and O.







Aquifer water level
response from
pumping reductions
below baseline,
2014 on

* Water
ft and O.



















Over half of Board recharge impacts remains in storage

Sentinel well index is 5 points higher with aquifer management, 3 points due to Board

recharge

Management has increased aquifer Storage by 2.63 million acre-feet and moderated

storage decline

. Natural recharge during the 2017-2018 wet spell was enhanced by management

activities taking advantage of increased water supply



Memorandum

To: Idaho Water Resource Board (IWRB)
From: Craig Tesch, P.G., Hydrology Section Manager
Date:  August 8, 2024

Re: Raft River Basin Hydrologic Investigation

Significant groundwater level declines and decreased stream flow in the Raft River Basin resulted in the
establishment of the Raft River Critical Ground Water Area (CGWA) on July 23, 1963. Over the last 70
years, the Idaho Department of Water Resources (IDWR) and the U.S. Geological Survey have tracked the
continuation of these issues through regular measurement of groundwater levels. Since 2000, the Raft
River CGWA has seen groundwater declines of up to seven feet per year.

Due to long-term declining groundwater-levels, decreased streamflow, and concerns about groundwater
resource availability, the Idaho Geological Survey (IGS) conducted a hydrologic characterization of the Raft
River Basin from 2019 to 2024 in cooperation with IWRB and IDWR. The IGS will present a summary of
findings, including the hydrogeologic framework and groundwater budgets developed for the
characterization.
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Raft River Basin — overview

Geothermal Resources

GEOLOGIEAL SURVEY
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Explanation
— |D/UT state boundary
Raft River Critical Ground
Water Area (Idaho
Department of Water
Resources, 2020a)
Eastern Snake Plain
Aquifer (ESPA) numerical
groundwater model
boundary (IDWR, 2013)
Idaho active water
districts (Idaho
Department of Water
Resources, 2022a)
District 130 (Thousand
Springs Area)
District 143 (Raft River
Basin)
—— Sub-district 43B (Upper
— Raft River)
Sub-district 43C (Cassia
Creek)
- Sub-district 43D (Almo
! Creek)
Utah water right area
(Utah Division of Water
Rights, 2016)
Area 11 (Snake River
Tributaries)

1
41°45'0"N

Raft River Basin —
hydrogeologic investigation
(2019-24)

Overview

Tributary to the ESPA

Critical Ground Water Area (since 1963)

Administrative areas

Project drivers

Groundwater availability

Groundwater level declines in central
and northern parts of the basin

*  Well deepening
* Land subsidence

Decreased streamflow and water
quality TMDLs

Watershed scale investigation — ID-UT

Phase 1 — data compilation and review,
data gaps evaluation, support for
IDWR-led field data collection

Phase 2 — hydrogeologic framework
and groundwater budget

| GEOLOGICAL SURVEY |




Groundwater level hydrographs — northern Raft River Basin
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Explanation
— — —ID/UT state boundary

Faults (Ludington and others, 2007;
Lewis and others, 2012)

=7 norma fault, certain

= =7~ normal fault, approximate
=== =1-normal fault, concealed
——thrust fault, certain

— =y~ thrust fault, approximate

— == detachment fault, approximate

[:IRaft River Critical Ground Water
Area (CGWA) (IDWR, 2018)

Eastern Snake Plain Aquifer
(ESPA) numerical groundwater
model boundary (IDWR, 2013)

[JRaft River Basin study boundary

Idaho hydrogeologic unit
(modified from Lewis and others,
2012)

Alluvial
Alluvial-fan
Loess

Lake Bonneville
Glacial

Quaternary and Tertiary
sedimentary rocks

Pleistocene and Pliocene basalt
0 Miocene rhyolite
Cligocene granite

Permian and Pennsylvanian
sedimentary rocks
Cambrian and Neoproterozoic
Windermere Supergroup
Paleoproterozoic and Archean
metamorphic rocks
Utah hydrogeologic unit
(modified from Hintze and
others, 2000)

Quaternary surficial alluvium
and colluvium

Quaternary older surficial
aluvium and colluvium

Tertiary sedimentary rocks
Pliocene basalt

I Miocene rhyolite
Triassic Chinle and other Fm
Permian Cedar Mesa and other
Fm

Permian and Pennsylvanian
QOquirrh Group

Mississippian Chainman and
other Fm

Ordovician Fish Haven and
other Fm

Cambrian Prospect Mountain
and other Fm

~ Precambrian intrusive rocks

Precambrian metamorphic
rocks

Proterozoic sedimentary and
metasedimentary rocks

Raft River Basin — Geology

* Structural setting
* Eastern Snake River Plain
* Basin and Range

e Albion-Raft River-Grouse Creek
metamorphic core complex

* Precambrian to Recent exposures

* Shallow aquifer
* Raft River and Salt Lake Fm.

* Unconsolidated deposits and
consolidated units

* Basalt aquifer
* Deep aquifer geothermal resource
* Raft River Geothermal Area

* Precambrian Elba quartzite
e 150°C or 300°F

GEOLOGICAL SURVEY
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Raft River Basin - Geological
model

* Well-driller reports

e |IDWR and IGS databases
* 1,046 lithologic logs

* Well completion details

* Three-dimensional geological

model of the aquifer

e 16 cross sections

 Model-associated file

publication

* |GS website

GEOLOGICAL SURVEY




Elevation (m)

NS3
N

1400

1,000

Hydrogeol ogic unit—The spatial representation of units is
defined by well-driller reports (IDWR, 2022h; UT DWR, 2023)
and model interpolation (this study). Interpolation is based on
wells present on and in proximity to the cross-section line.
White (blank) areas indicate no data, insufficient data, or
topsoil.

Explanation

402588 Well—Labeled with well ID number; fill color shows hydrogeologic unit. Flanking blue bars convey the top of the
uppermost well screen or open interval to the total well depth. This portrays the part(s) of the aquifer intercepted by
the well and may not reflect multiple screens or open intervals. Multiple screens or intervals, if present, are not
shown. Black horizontal lines on the well symbol reflect the vertical resolution of well-driller report descriptions,
which may or may not be resolved at the cross-section vertical scale and model interpolation. Model interpolation
honors the well lithology.

ﬁasalt zone tq IIVIaItaI

WEZ-WE3
inteisection

380777° 275958
339954 385540

402588 283170°

3ggr7y| 999889

311851
420859

350449

433820°" 133507

384514 WESWES ) 40506y

385299 5 ;
intersection

440533

T8 312182 297294

4196257

312017 390052
381198 400845 348117

2900537
435237

T T T T T
0 2,000

10x vertical exaggeration shown.

Ground surface represented as a black line extracted from the USGS digital elevation model, at 1/3 arc-second (approximately 10 m) resolution

(U.S. Geological Survey, 2020).

T T T T T T T T T T T T T T T T T T T T T T T
10,000 12,000 14,000 16,000 18,000 20,000 22,000 -
Distance (m)
=
=

Well elevations (IDWR, 2022h) may or may not match the ground surface shown.

Indicators of fault motion in cross-section (Lewis and others, 2012): plus towards ocbserver, minus away from observer.

* Asterisk indicates the well lithology is projected to the cross-section lithology.

NS3
5

Lithologic Key

Cobbles
Gravel
Sand/Gravel
Sand
Clay/Gravel
Clay/Sand/Gravel
Sit/Sand
Clay/Sand

Silt

Clay
Sandstone
Conglomerate
Shale
Limestone
Ash

Cinder

Basalt
Rhyolite
Clay/Sandstone
Gravel/Shale
Clay/Basalt
ClayRhyolite
Sand/Rhyolite

GEOLOGICAL SURVEY




Raft River Basin - Groundwater-budget components and residuals (2000 — 21)

Annual groundwater-budget term, in acre-feet per year

100,000

50,000

-50,000

-100,000

-150,000

-200,000

-250,000

2000

2001
2002
2003
2004
2005
2006
2007
2008

Tributary canyon underflow
Areal recharge
—s— Groundwater budget residual

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

Calendar year

Applied irrigation recharge
Groundwater extraction for irrigation
- - - Mean groundwater budget residual

2021

Scope
* Entire
watershed
* Annual
estimates
Inflow
e Tributary
canyon
underflow
e Applied
irrigation
recharge
* Areal recharge
Outflow

* Groundwater
extraction for

irrigation
Residual
* Inflows minus
outflows

GEOLOGICAL SURVEY
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Raft River Basin - Groundwater budget, aquifer storage change, and outflow
to the ESPA (in acre-feet per year)

Discharge
component!

Groundwater budget summary Recharge component!

2000 - 21
(calendar Annual Grm:’nd:lvater
years) Inflow groundwater undertiow : ,
. exiting basin Tributary Applied Groundwater
Total Total minus storage X o Areal .
. (Residual canyon irrigation extraction for
inflow  outflow outflow change . . recharge .
(residual)? T minus partial  underflow recharge irrigation
ag uifer)? aquifer storage
change)?
Mean 57,800 166,600 -108,800 -15,4007 -94,1002 25,400 20,000 12,400 166,600

12000 - 21 (entire study area)
22000 — 19 (based on available data for partial aquifer extent)

GEOLOGICAL SURVEY




Raft River Basin hydrogeologic investigation — key findings

 Complex geologic conditions
* Implications for groundwater occurrence

* Declining groundwater levels are concentrated within and to the
north of the CGWA

e Limited available groundwater resources
* Central and northern part of the Raft River Valley

* Mean annual budget residual
* Negative for all study years (2000 — 21)

* Hydraulic gradient reversed in the northern part of the basin

* Average budget-estimated consumptive irrigation requirement
for all irrigated lands

» 2 acre-feet per acre throughout most of the basin

| GEOLOGICAL SURVEY |




Raft River Basin — hydrogeologic framework and groundwater budget
uses, limitations, and suggested next steps

e Uses e Limitations

* Assist water resource Managers

* High uncertainty in some
and water users

estimated budget terms, storage
* Future numerical groundwater change, and outflow to the ESPA

flow modeling * Net change in storage and

* Managed aquifer recharge outflow to ESPA may be higher
or lower than estimated

» Suggested next steps for IDWR

* Continued data collection to
reduce uncertainty

* Numerical groundwater flow
model to reduce and address
uncertainty
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Questions?
Thank youl!

Alexis Clark, P.G.

Idaho Geological Survey

322 E. Front Street, Suite 201
Boise, ID 83702
208-364-4599
aclark@uidaho.edu

www.idahogeology.org

IGS report web page:

https://www.idahogeology.org/product/B-32  suplett Reservoir (IGS, 2022)
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Memorandum

To: Aquifer Stabilization Committee

Date: August 06, 2024

Re: ESPA Recharge Program Conveyance Contracts

REQUIRED ACTION: No official action required. Guidance and feedback is requested.

The Idaho Water Resource Board’s (IWRB) 2019 Resolution No. 18-2019 established terms for
conveyance contracts with entities willing to deliver IWRB recharge water to the Eastern Snake Plain
Aquifer (ESPA) in the Lower Valley of the Snake River (downstream of American Falls Dam). The
resolution defined the payment structure, maximum term/length of conveyance contracts, and other
requirements for conducting IWRB managed recharge. The 2019 contracts have expired or will expire by
the end of this year.

Conveyance contract conditions for recharge in the Upper Valley (upstream of American Falls Dam)
were established through IWRB Resolution No. 7-2016, passed in January of 2016. The conditions
defined the payment structure for IWRB recharge in the Upper Valley, limit contracts to a one-year
term, and establish other requirements for conducting IWRB managed recharge.

The payment structures and other contract requirements need to be reviewed to determine if they still
align with the goals of the ESPA Managed recharge program and address current operational conditions.
Staff has collected feedback from some of the IWRB’s recharge partners. In the Lower Valley the IWRB's
recharge partners appear to be satisfied with the current three-tier payment structure. While Upper
Valley partners are generally satisfied with the existing payment structure, they acknowledge that
private entities pay significantly more than the IWRB’s current structure.

Potential Alternate Concepts to Explore:

1. Adopt a universal payment structure across the ESPA and potentially a specified dollar per acre-
foot or a tiered system. This alternative would simplify end-of-season accounting for IWRB staff.

2. Issue an annual payment based on an average recharge volume. Given the variability of annual
recharge volumes, particularly in the Upper Valley, this alternative may simplify the budget
planning process for partners. In addition, averaging or annualizing payments may be helpful to
recharge partners who are non-profit organizations that have difficulties managing a single large
payment for IWRB managed recharge. However, developing an equable annual payment
system will take time to develop.

Given the time needed to review potential options with IWRB members and partners, staff recommends
execution of new one-year contracts for the 2024-2025 recharge season based on terms and conditions
in the existing contracts. Depending on the availability of water associated with Surface Water Coalition



Agreements, the one-year contracts may be active as early as September or October. Over this next fall
staff will develop alternative criteria for new multi-year conveyance contracts for the IWRB to consider.

For background a brief summary of the current criteria is provided below.

The Lower Valley three-tiered payment structure:

Board Conveyance Payment Payment Rate per AF
Date Ranges Recharged
August 15t — November 15t S7
November 16" — February 15t $10
February 16 — July 31°t S5

The Upper Valley payment structure is also a tiered payment structure dependent on aquifer retention
of the location of the managed recharge:

Board Conveyance Payment Payment Rate per AF
based on 5-year Retention* Recharged
Greater than 40% retention S6
20% to 40% retention S5
15% to Less than 20% retention sS4

e  Retention as determined by the most recent ESPAM groundwater flow model

¢ Added Incentive for Delivery — $1.00/af when recharge is conducted at least 75% of the
time that IWRB recharge right is in priority and IWRB issues a Notice to Proceed.

e Added Winter-time Incentive for Delivery — $1.00/af when IWRB recharge right

is conducted between December 1%t and March 31% and IWRB has issued a
Notice to proceed.
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