

Brad Little *Governor*

Jeff Raybould

Chairman St. Anthony At Large

Jo Ann Cole-Hansen

Vice Chair Lewiston At Large

Dean Stevenson

Secretary Paul District 3

Dale Van Stone

Hope District 1

Albert Barker Boise District 2

Brian Olmstead

Twin Falls At Large

Marcus Gibbs

Grace District 4

Patrick McMahon

Sun Valley At Large

AGENDA

IDAHO WATER RESOURCE BOARD

Aquifer Stabilization Committee Meeting No. 2-23 Wednesday, May 31, 2023 1:00 p.m. (MT)

Water Center Conference Rooms 602 C & D / Online Zoom Meeting 322 E. Front St. BOISE

Board Members & the Public may participate via Zoom Click here to join our Zoom Meeting

<u>Dial in Option</u>: 1(253) 215-8782 <u>Meeting ID</u>: 823 2643 9539 <u>Passcode</u>: 681191

- 1. Introductions and Attendance
- 2. ESPA Managed Recharge Follow Up on Stakeholder Perspectives
- 3. Metric Evapotranspiration Ground Truthing Project
- 4. Other Items
- 5. Adjourn

Committee Members: Chair Dean Stevenson, Al Barker, Brian Olmstead, and Pat McMahon.

* Action Item: A vote regarding this item may be made at this meeting. Identifying an item as an action item on the agenda does not require a vote to be taken on the item.

Americans with Disabilities

The meeting will be held in person and online. If you require special accommodations to attend, participate in, or understand the meeting, please make advance arrangements by contacting Department staff by email jennifer.strange@idwr.idaho.gov or by phone at (208) 287-4800.

ESPA Managed Aquifer Recharge Program

IWRB Aquifer Stabilization Committee

Wesley Hipke

IDWR Water Projects Section Supervisor

May 31, 2023

ESPA Camp

"Sustain the economic viability and social and environmental health of the Eastern Snake Plain by adaptively managing a balance between water use and supplies."

- Stakeholder process with all major water users
- Designed to add 600,000 af/yr to the ESPA water budget
- 2009 adopted by IWRB & added to the State Water Plan

Key Components / Goals

- ✓ Aquifer Recharge
- ✓ Demand Reduction
- ✓ GW-to-SW Conversions
- ✓ Cloud Seeding

250,000 af/yr avg. 240,000 af/yr. 100,000 af/yr.

ESPA Camp - Implementation

Meet the physical goals & objectives by:

- Improving aquifer levels (stabilization & potential enhancement).
- Increasing gains in river reaches.
- Increasing water supply certainty for all users.
- Decreasing demand for litigation and administrative remedies.

Managed Recharge a Major Component

ESPA Managed Recharge Program - Goals

Senate Concurrent Res. No. 136 - 2016

- The State recognizes the need for managed recharge of the ESPA and resolves that the State establish a managed recharge goal of 250,000 af/year on average across the ESPA."
- Develop managed recharge capacity to achieve 250,000 af/year on average on or before Dec. 31, 2024."
- Increase the 100,000 af/year average ESPA CAMP Phase I target for state funded managed recharge to 250,000 af/year average recharge across the ESPA."

Current IWRB Recharge Status

- IWRB Natural Flow Recharge to date
- Status of the Aquifer and Reach Gains - 2022

IWRB Recharge

Snake River Water Available for Recharge vs. Water Recharged

IWRB Natural Flow ESPA Recharge 2014 - 2023

DAHO

LV Recharge UV Recharge Water Available

Impact to the Aquifer

Year

"Thousand Springs" Gains Due to IWRB Recharge

Reach gains due to recharge are highly variable

Snake River Reach Gains above American Falls Due to Recharge

Limitations to IWRB Managed Recharge

- Managed Recharge Capacity
 - Current Capacity
 - Current Construction Projects
- Water Availability
- Operational Limitations

ESPA IWRB Recharge Sites

ESPA IWRB Recharge Sites

ESPA Storage Change vs Wet / Dry Periods

Idaho, Climate Division 9 Palmer Drought Severity Index (PDSI)

Water Available for Recharge in the ESPA

Above America Falls

Upper Valley Recharge Water Availability Blackfoot South Fork Henrys Fork 8000 Water Avaliability (CFS) 6000 4000 2000 0 Feb Mar Apr May Jan Jun Jul Dec Aug Nov Sep Oct

Opportunistic Strategy for Managed Recharge

Potential Issues:

- Highly Variable Water Supply
 - Timing of water available
 - Amount of water available
- Impacts to conducting Recharge
 - Canal operations
 - Weather
 - Private Recharge
- Canal Capacities Offsite Locations
- Partnerships are Key

What's Possible / Potential Impacts

- Active Potential IWRB Projects
- Max ESPA Recharge Capacity ??
- Potential Impacts

Potential IWRB Increased Recharge Capacity

IWRB Recharge Program Build-Out?

Max IWRB Recharge Buildout

- Lower Valley
- American Falls -Blackfoot
- N. Mid-Snake
- S. Mid-Snake
- South Fork
- Butte Market Lake
- Egin

Potential Impacts from Different Recharge Areas

Percentage of Total Recharge Returned to Blackfoot-to-Minidoka Reach

 Individual Areas will have varied impact on different reaches.

Combined Impact on a Specific Reach

Blackfoot-to-Minidoka Reach

• Percentage of All Recharge to the reach per Trimester

Blackfoot-to-Minidoka Reach Impact

IWRB Recharge 100 cfs / 30 days

Areas:

•

- Lower Valley
- American Falls Blackfoot
- N. Mid-Snake
- S. Mid-Snake
- South Fork
- Butte Market Lake
- Egin

Blackfoot-to-Minidoka Reach Impact

IWRB Recharge

30 days

Areas:

- Lower Valley
- American Falls–Blackfoot
- N. Mid-Snake
- S. Mid-Snake
- South Fork
- Butte Market Lake
- Egin

Stakeholder Comments

Summary of Feedback:

- Systems approach to Managed Recharge.
 - Not as focused on High Aquifer Retention.
 - Impacts more Important than Volume.
- Analysis of Impacts due to Recharge to optimize Program activities.
- Impacting the reaches on the Snake River below Blackfoot are a key interest.
- Recharge as much as possible when water available.

Moving Forward

Key Point for Developing the Program:

- Partnerships are crucial to the success and further development of the program.
- Flexibility will be required for Variable / "Dryer" climate.
- Further analysis and data will be required to continually evaluate and adaptively manage the Recharge Program.
- Stakeholder input is an important part of assessing the hydrologic, economic, and environmental issues related to implementing the ESPA CAMP

Questions

Evapotranspiration Ground Truthing Project

Presented to the IWRB Aquifer Stabilization Committee May 31, 2023 By Phil Blankenau, P.E.

Overview

- Evapotranspiration (ET) is a large component of water budgets built into IDWR groundwater models and other projects
- IDWR modelers are concerned about the defensibility of METRIC model ET estimates
 - METRIC has not been compared to ground truth measurements in Idaho since the 1990s and is returning values higher than ET calculated by other methods
- After gathering information from neighboring states and ET experts, staff are proposing a 4-year field verification study that would cost approximately \$1M

Evapotranspiration (ET) and Consumptive Use (CU)

METRIC ET model

- Mapping ET at high Resolution with Internalized Calibration
- METRIC has been the remote sensing method employed by IDWR to quantify ET since 2005
- > IWRB and IDWR funded METRIC datasets through Dr. Rick Allen's group for ~\$100k per year
- METRIC datasets are now developed in-house

How is METRIC used

- > Groundwater modeling
 - Groundwater withdrawal estimates
 - Recharge from surface water irrigation estimates
- > Water budgets for basin studies
- > Water right transfers
- > Water Supply Bank rentals
- > Delivery calls

Groundwater Modeling and Basin Characterization Projects

	Fiscal Year								since FY2017											
ACTIVE/PROPOSED MODELING PROJECT	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	# of contracts	Dollar amount
Spokane Valley - Rathdrum Prairie Aquifer	SVRP 1.0										0	-								
Eastern Snake Plain Aquifer	ES	SPAM 1	.1	ESPAM 2.0 / ESPAM 2.1 ESPAM 2.2											ESPAM 3.0		41	\$2,697,115		
Wood River Valley				hydro	framev constr	work / n uction	nodel		WRV 1.0)		WR\	/ 1.1	WR			₹V 1.2		3	\$231,445
Treasure Valley		hydro framework / model TV 1.0									TV 1.1	8	\$2,469,360							
Big Lost River		hydro framework (DOE SEP #2) model construction							BL	1.0	9	\$1,575,140								
Raft River	hydro framework (DOE SEP #3) model construction								iction	4	\$1,814,500*									
Mountain Home Plateau	hydro framework model construction										el ction	3	\$1,200,000*							
Camas Prairie	hydro framework / model construction (= term sheet component)									odel ent)	2	\$1,200,000*								
Portneuf	hydrologic investigation								ation	-	-									
*Cost includes estimated \$500k for groundwater model construction							то	TAL	70	\$11,187,560										

ET ground truthing importance

Why measure ET in the field?

METRIC is becoming less defensible

- Last field verified in Idaho in the 1990s
- Higher than respected OpenET models
- Higher than pumping data

No Ground Truth

- Hard to defend claim that METRIC is the best available science
- Several surrounding states have adopted OpenET but are groundtruthing
- Not clear which ET models to use

Ground Truth

- Compare OpenET and METRIC to ground truth data
- Improve METRIC calibration or select the best OpenET models for Idaho

What is OpenET?

 "OpenET provides open, easily accessible satellite-based ET data for improved water management" - <u>https://openetdata.org/about/</u>

OpenET ground truthing locations

ESPAM boundary agricultural ET (Apr-Oct)

OpenET compared to METRIC

 METRIC is higher than all OpenET models

METRIC

SSEBop

DisALEXI

geeSEBAL

PT-JPL

SIMS

eeMETRIC

- There are large differences between OpenET models
- Unknown which quantity is correct

Pumping comparisons

- IDWR compared consumptive use (CU) calculated using METRIC and OpenET data to flowmeter data
- CU using METRIC sometimes exceeds pumping

Proposed Solution - Measure ET and CU

Install 3 eddy covariance (EC) stations along with flowmeters, soil moisture sensors, and precipitation gauges

How does EC work?

Wind moves in eddies

- Measuring the wind velocity and vapor concentration of eddies we can find the mean vertical flux
- ET is the difference between the mass of water moving up and the mass moving down

https://en.wikipedia.org/wiki/Eddy_covariance

The value of ground truth data

- > Preserves the defensibility of our ET modeling
- > Enables data-driven modeling decisions

Proposed Project and Budget

- > Total proposed budget is \$1,000,000 over four years
- Year 1: develop agreements, determine sites, purchase equipment, build stations
- Years 2-4: operate sites, collect and process data, develop reports and comparisons

Item		Total		
Eddy covariance station hardware	\$	250,000.00		
Installation, calibration, maintenance, uninstallation, raw data processing and storage	\$	650,000.00		
Data post-processing, QAQC, remote sensing comparisons, and reporting	\$	100,000.00		
Total	\$ 1,000,000.00			

Questions?

.///