AGENDA
IDAHO WATER RESOURCE BOARD

Special Board Meeting No. 8-20
Thursday, August 20, 2020
1:00 p.m. (MDT)
Water Center
Conference Rooms C & D
322 E. Front St.
BOISE

(This meeting will be conducted using guidance in accordance with Governor Little's Stay Healthy Order issued May 30, 2020 in response to the public health emergency caused by the COVID-19 pandemic. Masks are required & in person attendance is limited. Call or email if you have questions: jennifer.strange@idwr.idaho.gov)

Board Members & the Public may participate via Go-To Meeting
Please join the meeting from your computer, tablet or smartphone.
https://www.gotomeet.me/IWRB
You can also dial in using your phone.
United States: +1 (571) 317-3122
Access Code: 673-626-773

1. Roll Call
2. Priest Lake*
3. Flood Control District10 Presentation
4. Non-Action Items for Discussion
5. Next Meeting & Adjourn

* Action Item: A vote regarding this item may be made this meeting. Identifying an item as an action item on the agenda does not require a vote to be taken on the item.

Americans with Disabilities
The meeting will be held telephonically/ online. If you require special accommodations to attend, participate in, or understand the meeting, please make advance arrangements by contacting Department staff by email jennifer.strange@idwr.idaho.gov or by phone at (208) 287-4800.
Memorandum

To: Idaho Water Resource Board (IWRB)
From: Neeley Miller, Planning & Projects Bureau
Date: August 19, 2020
Re: Priest Lake Water Management Project Update

ACTION: Consider resolution to accept bids, authorize funding, and execute agreements.

Background

As a result of limited water supply and drought conditions in northern Idaho in 2015 and 2016 (and 2019) it has been difficult to maintain required lake pool levels and downstream flow in the Priest River during the recreational season.

Phase 1: The Priest Lake Water Management Study was completed in February 2018. The study included the following recommendations:

- Temporarily raising the surface level of Priest Lake up to 6 inches during the recreational season for dry years and integrating real-time streamflow data to allow more operational flexibility
- Outlet dam structural and operational improvements
- Replacing the current existing porous breakwater with an impervious breakwater structure and dredging a portion of the Thorofare channel

Update on Phase 3

Final Engineering & Design which includes finalizing regulatory permitting and bidding assistance began in November 2019 and is nearing completion.

Schedule

- July 2020 – Outlet dam and Thorofare bids opened
- Aug 2020 – IWRB authorize funding resolution and issuance of Notice to Proceed
- Oct 2020 - Mar 2021 – Anticipated construction period for both projects

Attachments:
Bonner County Additional Funding Commitment Letter
Funding Resolution to Commit Funds and Provide Signatory Authority
August 13, 2020

Memorandum

To: Commissioners

From: Steve Klatt
Project Coordinator

Re: Priest Lake Thorofare – Phase 3 Commitment of Contribution

The Priest Lake Thorofare project has been a unique collaboration of the local Priest Lake property owners and businesses, Bonner County and the Idaho Water Resource Board. With approval of the Idaho Legislature, this collaborative effort has contributed to constructing a breakwater and dredging the navigation channel approximately $2,400,000. After four years of sustained efforts and collaboration, the project went to bid this summer and the low bid was in an acceptable cost range as per the engineer’s projected cost estimate.

The large wrinkle in the budget that has become apparent is the total costs of engineering and construction management. The Water Resource Board approached Bonner County and the Priest Lake community to see if we are willing and able to make further contributions to this project. Recognizing the significance of this project to recreational boating and its associated economy, the Commissioners have indicated Bonner County is capable of contributing an additional $100,000.00. Priest Lake community members have committed to an additional $25,000.00 of in-kind matches and cash contributions.

Distribution: Original to Steve Klatt
Copy to BOCC
Email copy to Nate Demmons and Lyndsie Halcro

A suggested motion would be: Based on the information before us, I move that the Commissioners approve allocating $100,000.00 from the FY20 and FY21 budgets to be contributed to the Idaho Water Resource Board for the construction of the Thorofare breakwater and channel dredging project and sign the commitment letter to the Board.

Recommendation Acceptance: [] yes [] no
Commissioner Dan McDonald, Chairman
Date: 8/13/20
August 13, 2020

Idaho Water Resource Board
P.O. BOX 83720
Boise, Idaho 83720-0098

Re: Priest Lake Thorofare Breakwater and Dredging Project Funding

Dear Water Resource Board,

Your Board Member, Dale Van Stone, brought to Bonner County's attention the budgetary conflict that has arisen as the costs of the construction bid, engineering design, and the necessary construction management services have all been tabulated. This project has been an exemplary collaboration amongst the Water Resource Board, Bonner County, and the Priest Lake community. This project is of significant importance to the preservation of recreational access to Upper Priest Lake and the resource of our water based economy in Bonner County.

To represent the importance we feel this project is to our local community and economy, the Bonner County Commissioners hereby commit to providing an additional $100,000 to the Phase Three completion of the Priest Lake Thorofare Project. We also represent that the local Priest Lake community is committed to an additional $25,000 per the attached exhibit.

Bonner County Commissioners

[Signatures]

DAN MCDONALD
JEFF CONNOLLY
STEVEN BRADSHAW
PRIEST LAKE THOROFARE AND DAM IMPROVEMENT PROJECTS

PRIEST LAKE'S THOROFARE

COMMUNITY SUPPORT

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Pledged:</td>
<td>$70,000.00</td>
</tr>
<tr>
<td>Engineering Match:</td>
<td>($20,000.00)</td>
</tr>
<tr>
<td>BALANCE DUE:</td>
<td>$50,000.00</td>
</tr>
</tbody>
</table>

Contribution Pledged:

- Sandpiper Shores check received: $10,000.00

In-kind Services:

- Copper Bay Construction: $10,000.00
- Storro Excavating: $8,500.00
- Huckleberry Bay Development – disposal site: $11,500.00
- 40 – 10 yd. loads = $7,200 ($18/yd – BonCty fee)
- 40 – Truck haul time savings to Dickensheet = $4,300

Priest Lake Residents' Contributions:

- $110,000.00

Bonner County’s Contributions Received:

- Cash from Waterways: $60,000.00
- Grant Funds – IDPR Waterways: $80,000.00

PHASE ONE:

TOTAL LOCAL COMMITMENT: $250,000.00

PHASE THREE:

ADDITIONAL LOCAL COMMITMENT: $125,000.00

Priest Lake Community

- Cash Pledged: $10,000.00
- In-kind Services: $15,000.00
 - Local Restaurants/Lodging: $5,000.00
 - Sandpiper Shores – access: $10,000.00
 - Peterson & Putnam Property Access

Bonner County

- Cash Pledged: $100,000.00
WHEREAS, the State of Idaho owns the Priest Lake Outlet Dam (dam) which was constructed in 1950 and reconstructed in 1978 as an outlet control structure to maintain lake levels in the Priest Lake in accordance with Idaho Code §70-507; and

WHEREAS, Senate Bill 1261 passed and approved by the 2018 Legislature updated Idaho Code §70-507 to 1) clarify that management of the state-owned dam on Priest Lake at Outlet Bay is under the jurisdiction of the Idaho Water Resource Board, and 2) to allow for flexibility of the management of the lake level to a range between 3 feet and 3.5 feet on the USGS Priest Lake Outlet gage (located upstream of the dam) after run-off of the winter snowpack until the close of the main recreational season; and

WHEREAS, as a result of drought conditions in northern Idaho in 2015 and 2016, it was difficult to maintain required lake pool levels and downstream minimum flows in the Priest River during the recreational season; and,

WHEREAS, the Priest Lake, Upper Priest Lake and Priest River are significant draws for tourism and recreation, and are highly valued environmental and economic assets for Bonner County and the State of Idaho; and

WHEREAS, in 2016 the Idaho Water Resource Board (IWRB) authorized the expenditure of up to $300,000 from the Revolving Development Account to complete the Priest Lake Water Management Study (Phase 1) to evaluate strategies to meet long-term water management objectives for the Priest Lake and Priest River system; and

WHEREAS, the study has been completed and recommended temporarily raising water surface levels 6 inches during the recreation season of dry years/low water years and integrating real time streamflow data to allow more operational flexibility; and

WHEREAS, the study also recommended outlet dam structural and operational improvements; and

WHEREAS, the study also recommended replacing the current existing porous breakwater with an impervious breakwater structure and dredging of the Thorofare; and

WHEREAS, the estimated cost for these recommended improvements is approximately $5 million (in 2018 dollars); and

Resolution No. ________________
WHEREAS, in November 2017 the IWRB accepted and endorsed the recommendations in Phase 3 and recommended proceeding with the project if and when funding becomes available; and

WHEREAS, House Bill 677 passed and approved by the 2018 Legislature included 1) a $2.4 million transfer from the General Fund to the Revolving Development Account, and 2) a redirect of $2,419,600 in the Revolving Development from the Conservation Reserve Enhancement Program (CREP) to be used for the Priest Lake Water Management Project; and

WHEREAS, Mott MacDonald has been selected, through a competitive process, to assist the IWRB with this project; and

WHEREAS, in the fall of 2019 the IWRB authorized $653,000 from the Revolving Development Account to complete the Final Engineering and Design (Phase 3), which included finalizing regulatory permitting and bidding assistance; and

WHEREAS, Final Engineering and Design (Phase 3) is concluding in August 2020; and

WHEREAS, IWRB staff has worked in coordination with Mott MacDonald to develop a scope of work for the (Phase 4) Construction Management for the Priest Lake Water Management Project at the Thorofare and Outlet dam sites at a cost of not to exceed $579,744, which includes preconstruction submittal review, resident engineering, office engineering technical support, regulatory permit assistance, and construction progress observation; and

WHEREAS, bids were opened in July 2020 and a low bid of $1,542,334 was received for the construction of the Outlet dam portion (consisting of dam modifications and scour protection improvements), and a low bid of $2,047,058 was received for the construction of the Thorofare portion (consisting of dredging and stone breakwater construction) of the Priest Lake Water Management Project; and

NOW, THEREFORE, BE IT RESOLVED that the IWRB authorizes the expenditure of funds not to exceed $5 million from the Revolving Development Account for the construction of the Outlet dam portion and Thorofare portion of the Priest Lake Water Management Project as well as for the construction management and for other costs associated with the project; and

NOW, THEREFORE, BE IT FURTHER RESOLVED that the IWRB authorizes its chairman or designee to execute the necessary agreements or contracts to complete the construction of the Priest Lake Water Management Project.

Option A

NOW, THEREFORE, BE IT FURTHER RESOLVED that no funds approved in this resolution, may be expended until all necessary access agreements and permits have been executed and approval to expend funds will expire on September 14, 2020 if the agreements and permits have not been executed.

Option B

NOW, THEREFORE, BE IT FURTHER RESOLVED that the approval of this resolution is limited only to preconstruction activities until all necessary access agreements and permits are executed.
[Ask IWRB to pick option A or B and staff will update resolution]

DATED this 20th day of August 2020

ROGER W. CHASE, Chairman
Idaho Water Resource Board

ATTEST __

VINCE ALBERDI, Secretary
Boise River
Flood Control District #10

Boise River Management Tool

- Mike Dimmick, District Manager
- Dan Steenson, Sawtooth Law
- Mike Schubert, HDR Engineering
Boise River Management Tool (BRMT)

Purposes:
1. 2-D hydraulic model for Boise River management
2. Demonstration for use in other watersheds

Components:
1. LiDAR data acquisition, processing & reporting
2. Model Development, Calibration & Documentation
3. Boise River Management Plan (BRMP)
4. BRMP/BRMT Deployment & Training

Multiple Uses:
1. Flood Management & Land Use Planning
2. Instream Structure Assessment
3. Water Quality Management
4. Aquatic Habitat and Management
5. Plan, Manage, and Maintain Recreational River Uses
6. Groundwater-Surface Water Interactions
Boise River Flood Control District #10

Flood Management Grant Project Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>AOI 1</th>
<th>AOI 1 + 2</th>
<th>AOI 1 + 3</th>
<th>AOI 1 + 2 + 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiDAR Acquisition</td>
<td>$77,800</td>
<td>$96,800</td>
<td>$115,200</td>
<td>$136,500</td>
</tr>
<tr>
<td>Model Development, Calibration & Documentation</td>
<td>$158,000</td>
<td>$208,000</td>
<td>$237,000</td>
<td>$285,000</td>
</tr>
<tr>
<td>Project Contingency (10%)</td>
<td>$23,600</td>
<td>$30,500</td>
<td>$35,200</td>
<td>$42,200</td>
</tr>
<tr>
<td>Planning/Project Management</td>
<td>$23,600</td>
<td>$30,500</td>
<td>$35,200</td>
<td>$42,200</td>
</tr>
<tr>
<td>Administration/Legal</td>
<td>$11,800</td>
<td>$15,200</td>
<td>$17,600</td>
<td>$21,100</td>
</tr>
<tr>
<td>Grand Total</td>
<td>$294,800</td>
<td>$381,000</td>
<td>$440,200</td>
<td>$527,000</td>
</tr>
</tbody>
</table>
Boise River Flood Control District #10
BRMT Project Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiDAR data acquisition, processing & reporting:</td>
<td></td>
</tr>
<tr>
<td>Boise River</td>
<td>$162,551</td>
</tr>
<tr>
<td>Building</td>
<td>$16,081</td>
</tr>
<tr>
<td>Road Surfaces</td>
<td>$14,359</td>
</tr>
<tr>
<td>Model Development, Calibration & Documentation</td>
<td>$440,000</td>
</tr>
<tr>
<td>Project Contingency (10%)</td>
<td>$42,200</td>
</tr>
<tr>
<td>Planning/Project Management</td>
<td>$42,200</td>
</tr>
<tr>
<td>Administration/Legal</td>
<td>$31,600</td>
</tr>
<tr>
<td>Boise River Management Plan</td>
<td>$35,000</td>
</tr>
<tr>
<td>BRMP/BRMT Deployment & Training</td>
<td>$50,000</td>
</tr>
<tr>
<td>Total</td>
<td>$833,991</td>
</tr>
</tbody>
</table>
Financial Supporters – June, 2019

<table>
<thead>
<tr>
<th>Supporter/Collaborator</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flood Control District #10</td>
<td>$50,000</td>
</tr>
<tr>
<td>2. City of Boise</td>
<td>$25,000</td>
</tr>
<tr>
<td>3. City of Caldwell</td>
<td>$18,000</td>
</tr>
<tr>
<td>4. City of Eagle</td>
<td>TBD</td>
</tr>
<tr>
<td>5. City of Meridian</td>
<td>TBD</td>
</tr>
<tr>
<td>6. City of Nampa</td>
<td>TBD</td>
</tr>
<tr>
<td>7. Other neighboring cities</td>
<td>TBD</td>
</tr>
<tr>
<td>8. Eagle Sewer District</td>
<td>$25,000</td>
</tr>
<tr>
<td>9. Treasure Valley Water Users Assoc.</td>
<td>TBD</td>
</tr>
<tr>
<td>10. Pioneer Irrigation District</td>
<td>TBD</td>
</tr>
<tr>
<td>11. Ada County Emergency Management</td>
<td>TBD</td>
</tr>
<tr>
<td>12. Canyon County</td>
<td>TBD</td>
</tr>
<tr>
<td>13. Flood Control District #11</td>
<td>TBD</td>
</tr>
<tr>
<td>14. USDA – NRCS</td>
<td>Grant/TBD</td>
</tr>
<tr>
<td>15. U.S. Reclamation</td>
<td>Grant/TBD</td>
</tr>
<tr>
<td>16. U.S. Army Corps of Engineers</td>
<td>Grant/TBD</td>
</tr>
</tbody>
</table>

TOTAL TO DATE: $118,000
Participants/Contributors - Current

1. Flood Control District #10	$ 100,000
2. Idaho Water Resource Board	$ 160,000
3. U.S. Army Corps of Engineers	$ 333,996
4. USDA – NRCS	$ 34,500
5. City of Boise	$ 25,000
6. City of Caldwell	$ 18,000
7. City of Eagle	$ 25,000
8. Garden City	$ 10,000
9. City of Middleton	$ 5,000
10. Eagle Sewer District	$ 25,000
11. Ada County Highway District	$ 50,000
12. Treasure Valley Water Users Assoc.	$ 10,000
13. Pioneer Irrigation District	$ 3,000

TOTAL TO DATE: $ 799,496
BRMT: Milestones

- June, 2019
 FCD 10 grant application to IWRB for BRMT
- July, 2019
 Presentation to IWRB
- August, 2019
 IWRB grant award, stakeholder engagement
- September 25, 2019
 Planning Assistance to States Agreement with USACE
- September 30, 2019
 RFP for LiDAR data acquisition, post-processing & reporting
- October 3, 2019
 Interagency meeting
- October 30, 2019
 Quantum Spatial LiDAR contract
- November 7-10, 2019
 Quantum Spatial LiDAR collection flights
- December 19, 2019
 Kickoff meeting with USACE
- January 21, 2020
 IWUA Water Quality Committee Presentation
- February 2020
 IWUA, TVWUA, FCD10, and TFCC presentations to the state legislature
- November- March 2020
 Quantum Spatial LiDAR data processing
- March 31, 2020
 Quantum Spatial LiDAR data to FCD 10
- April, 2020
 FCD 10 LiDAR data delivery to USACE
- May, 2020
 FCD 10 LiDAR review and delivery to Idaho LiDAR Consortium
- June, 2020
 - Multiple projects using LiDAR data
 - Flood management & 319 grant applications
BRMT: Remaining 2020 Milestones

- June, 2020 - Ongoing Project Coordination with USACE
- Fall, 2020 - DEQ SW Basin Advisory Group consideration of 319 Grant Application for Hydraulic Map, Web App., & Advection-Dispersion Model
- August – September, 2020
 - Draft Model delivery to FCD10 for technical review
 - Draft Boise River Management Plan
- **October – November, 2020**
 - Final Hydraulic Model files and deliverable
 - Final Boise River Management Plan (BRMP)
- Fall, 2020- BRMT/BRMP rollout
 - Interagency Coordination
 - Stakeholder meeting
 - Training
Section 3015 of the Water Resources Reform and Development Act of 2014 (WRRDA 2014)
 • Development of water resource management plans
 • Technical Assistance re State water resource management
 • *Non-federal cost share is 50%*

PAS Agreement:
 • Prepare BRMP for coordinated use of BRMT in Boise River Management
 • USACE modeling team prepares fully-functioning 2D HEC-RAS model
 • Floodplain mapping for various flow events up to the 0.2% annual chance event
BRMT: USACE Planning Assistance to States (PAS) Agreement

USACE Modeling Expertise & Experience

- USACE developed 2-D HEC RAS Model
- Modeling Team
 Brandon W. Hobbs, P.E., CFM, Project Manager
 Tracy Schwarz, Project Modeling Lead
 Tracy Krause, Hydraulic Engineer
 Russ Lodge, Hydraulic Engineer
 Joel Asunskis, Hydraulic Engineer
 Bradley Kruse, Hydraulic Engineer

USACE BRMT Training Assistance

Cost Savings For USACE-Related Items

Without USACE

- Project cost: $192,911 LiDAR collection & processing
- + $285,000 Model development (June, 2019 estimate)
- + $35,000 BRMP

Sponsors cost: $512,911

With USACE (PAS - cost share)

- Project cost: $192,911 LiDAR collection & processing
- + $440,000 Model development
- + $35,000 BRMP
- $667,911

Sponsors cost: $333,996 ($667,911 ÷ 2)

- $192,911 LiDAR (in-kind)
- $35,000 BRMP (in-kind)
- $106,085 cash

USACE share: $333,996 Model development

Savings

$512,911 - $333,996 = $178,915
BRMT: Bathymetric (Green) LiDAR

Full Waveform topo-bathymetric Airborne Lidar

- Topographic Waveform 1064 nm
 - Backscattered intensity
 - Top of canopy
 - Tree canopy
 - Ground

- Bathymetric Waveform 532 nm
 - Backscattered intensity
 - Position and nature of the surface given by 1064 nm
 - Green surface echo
 - Backscattering by turbid water
 - Bottom echo

- 3D vegetation measurement. Species identification with 532 + 1064 nm analysis
- Bathymetric measurement for change detection
- High resolution 3D water column imaging (20 shots/m²)
- Aquatic habitat mapping

Max depth penetration varies between 0.5 to 5 m depending on water turbidity

© Dimbri Logue, OSIR
BRMT: November, 2019 LiDAR Flight

https://flightaware.com/live/flight/N604MD/history/20191110/1623Z/KBOI/KBOI

https://flightaware.com/live/flight/N604MD/history/20191108/2317Z/KBOI/KBOI

https://flightaware.com/live/flight/N604MD/history/20191109/1604Z/KBOI/KBOI

https://flightaware.com/live/flight/N604MD/history/20191107/2341Z/KBOI/KBOI
GRANT PROGRAM LEGISLATIVE SUMMARY
February, 2020

➢ House Resources & Conservation Committee
➢ House Energy, Environment and Technology Committee
IWRB Grant Program Administration

- Grant criteria & application/guidance
- Grant application announcement & application deadline
- IWRB Finance Committee review, ranking & recommendations
- Board approval
- Grant Agreements
- Grantee project implementation
- Grantees reimbursed for invoiced work
2018 Grant Program: 18 applications; 14 funded

<table>
<thead>
<tr>
<th>Grantee</th>
<th>Grant</th>
<th>Project Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Control District 9</td>
<td>$90,000</td>
<td>$273,809</td>
</tr>
<tr>
<td>Blaine County</td>
<td>$121,331</td>
<td>$306,334</td>
</tr>
<tr>
<td>Cassia County</td>
<td>$42,336</td>
<td>$84,673</td>
</tr>
<tr>
<td>Flood Control District 10</td>
<td>$78,400</td>
<td>$156,800</td>
</tr>
<tr>
<td>Flood Control District 10</td>
<td>$153,550</td>
<td>$307,100</td>
</tr>
<tr>
<td>Flood Control District 10</td>
<td>$38,808</td>
<td>$77,616</td>
</tr>
<tr>
<td>Clearwater SWCD</td>
<td>$155,220</td>
<td>$310,439</td>
</tr>
<tr>
<td>Flood Control District 10</td>
<td>$22,000</td>
<td>$44,000</td>
</tr>
<tr>
<td>Flood Control District 11</td>
<td>$57,675</td>
<td>$115,350</td>
</tr>
<tr>
<td>Twin Lakes/Flood Control District 17</td>
<td>$7,750</td>
<td>$15,500</td>
</tr>
<tr>
<td>Twin Falls Canal Company</td>
<td>$85,340</td>
<td>$591,000</td>
</tr>
<tr>
<td>Nez Perce SWCD</td>
<td>$115,460</td>
<td>$556,681</td>
</tr>
<tr>
<td>Riverside Village HOA/Garden City</td>
<td>$6,025</td>
<td>$15,980</td>
</tr>
<tr>
<td>City of Pocatello</td>
<td>$26,105</td>
<td>$70,000</td>
</tr>
<tr>
<td>Total</td>
<td>$1,000,000</td>
<td>$2,925,282</td>
</tr>
</tbody>
</table>
2019 Grant Program: 12 applications; 10 funded

Several 2018 projects completed under budget, returning $70,000 for 2019 grants.

<table>
<thead>
<tr>
<th>Grantee</th>
<th>Grant</th>
<th>Project Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Boise - Crane Creek</td>
<td>$6,371</td>
<td>$23,236</td>
</tr>
<tr>
<td>Blaine County - Big Wood Hospital Bridge</td>
<td>$50,000</td>
<td>$432,454</td>
</tr>
<tr>
<td>Flood Control District No.10 - BRMT</td>
<td>$160,000</td>
<td>$833,991</td>
</tr>
<tr>
<td>Blaine County - Broadford Road Fishermans Access</td>
<td>$100,000</td>
<td>$263,498</td>
</tr>
<tr>
<td>City of Hailey - Della View Subdivision</td>
<td>$50,000</td>
<td>$104,134</td>
</tr>
<tr>
<td>Board of Controls Irrigation - Diversion 45</td>
<td>$59,050</td>
<td>$136,457</td>
</tr>
<tr>
<td>Clearwater SWCD - Gold Creek</td>
<td>$72,727</td>
<td>$160,896</td>
</tr>
<tr>
<td>Idaho SWCD - Deer Creek</td>
<td>$159,436</td>
<td>$330,524</td>
</tr>
<tr>
<td>Clearwater SWCD - Shanghai Creek</td>
<td>$190,492</td>
<td>$392,561</td>
</tr>
<tr>
<td>Idaho SWCD - Lower Three Mile Creek</td>
<td>$21,619</td>
<td>$43,274</td>
</tr>
<tr>
<td>Total</td>
<td>$869,696</td>
<td>$2,721,025</td>
</tr>
</tbody>
</table>
Grants Leverage Funding & Participation

<table>
<thead>
<tr>
<th></th>
<th>Grants</th>
<th>Cost Share</th>
<th>Project Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018:</td>
<td>$1,000,000</td>
<td>$1,925,282</td>
<td>$2,925,282</td>
</tr>
<tr>
<td>2019:</td>
<td>$869,696</td>
<td>$1,851,329</td>
<td>$2,721,025</td>
</tr>
<tr>
<td></td>
<td>$1,869,696 (33%)</td>
<td>$3,776,611 (67%)</td>
<td>$5,646,307</td>
</tr>
</tbody>
</table>

Grantees & Other Project Contributors

1. Grantee
2. Stakeholders
3. FEMA
4. NRCS
5. Corps of Engineers
6. Bureau of Reclamation
7. 319 Grants
8. Local Governments & Agencies
Boise River Management Plan (BRMP)

Comprehensive Plan Format: Goals, Objectives, Implementation

1. Goals
 - Promote Public Access to Boise River LiDAR & BRMT
 - Coordinate use of BRMT for River Management & Land Use Planning
 - Flood Management:
 1. Flood Risk Reduction. Reduce/mitigate the risk of flooding in the Boise River Valley.
 2. Flood Response. Enhance flood response to minimize flood damage to life, property, and infrastructure.
 3. Flood Recovery. Increase cost effectiveness, durability and long-term benefits from flood mitigation and recovery projects
 - Promote Public Awareness of Boise River Geomorphology & Hydrodynamics
2. Objectives

- **Promote Public Access to Boise River LiDAR & BRMT.**
- **Coordinate use of BRMT for River Management.**
- **Flood Risk Reduction.** Use BRMT to improve flood risk assessment and reduce flood risk in the Boise River Valley.
- **Flood-Wise Development.** Use BRMT to project inundation and inform flood-wise land use changes within the Boise River floodplain.
- **Flood Response.** Use BRMT to enhance flood response capabilities, strategies and coordination with public agencies and private parties.
- **Flood Recovery.** Use BRMT increase cost effectiveness, durability and long-term benefits from flood mitigation and recovery projects.
- **Regulatory Review.** Use BRMT to streamline regulatory approval of flood management projects.
- **Floodplain Ordinances.** Use BRMT to inform floodplain ordinance standards and procedures & develop model ordinance.
- **River Access.** Secure and preserve access to the Boise River for river maintenance, flood projects, emergency vehicles and personnel, flood fight and safety for the District and other agencies involved in flood management and emergency responses.
- **Public Education and Outreach.** Enhance flood management education and outreach capabilities, channels and opportunities in coordination with agencies and educational institutions engaged in flood risk assessment and flood management.
3. Implementation

➢ Deployment: availability of BRMT (LiDAR data & 2-D Model)
➢ Training: train stakeholders to use BRMT
➢ Interagency Use: coordinated use of BRMT in river management & land use planning
➢ BRMT Maintenance: continue development & updating
Existing Lidar Data

Find previously-collected lidar data, reports, and available derived products.

Planned and “Wish List” Lidar Data

View planned and “Wish List” areas. More collaboration is better!

Click here for access and use instructions (pdf).

Lidar Collections In-Progress

View collections in-progress.

Existing Lidar Data

Find previously-collected lidar data, reports, and available derived products.

Planned and “Wish List” Lidar Data

View planned and “Wish List” areas. More collaboration is better!

Click here for access and use instructions (pdf).

Lidar Collections In-Progress

View collections in-progress.

Existing Lidar Data

Find previously-collected lidar data, reports, and available derived products.

Planned and “Wish List” Lidar Data

View planned and “Wish List” areas. More collaboration is better!

Click here for access and use instructions (pdf).

Lidar Collections In-Progress

View collections in-progress.
1. Create terrain (LiDAR)
2. Develop mesh
3. Apply terrain, roughness, and structures to mesh
4. Simulate flooding across the mesh
BRMT: Deployment, Training, Use – Channel Effects

- Scour
- Greenbelt Damage
- Channel Migration
- Property Damage/Bank Loss
BRMT Step 4: Deployment, Training, Use - Inundation

- Flooding pathways
- Nuisance Flooding
- Damaging Flooding
- Floodplain scour
- Temporary lines of protection
Early use of LiDAR Data

- FCD10 Grant Applications
 - IWRB & DEQ (319)
 - Eagle Road Crossing
 - Canyon Reach 1
 - Hydraulic Map, Web App. & advection/dispersion model

- City of Eagle
- Eagle Island State Park
- City of Boise
- Barber Pool
- Garden City
“A special acknowledgement and thanks go to Flood Control District #10 and those who contributed to the acquisition of the 2019 Bathymetric LiDAR. The LiDAR is exceptional and will undoubtedly result in improved flood assessments including much better flood risk mapping. The LiDAR, coupled with 2-dimensional hydraulic modeling, was the basis for this report.”
Simulate existing conditions hydraulics
- Angle of attack
- Impact of Piers
- Velocity distribution

Evaluate existing sedimentation
- Stream Power
- Shear Stress
- Compare to observed trends

Simulate alternatives
- Improve angle of attack
- Arrest progressive channel migration
- Improve sediment and flood carrying capacity
- Identify areas for ongoing monitoring
BRMT Early Uses: Eagle Bridge North Channel

2010

2016

2017

2019
Growing mid-channel gravel bars causing flood damage

Increased flood risk

Bank Erosion and damage
BRMT Early Uses: Eagle Bridge North Channel

- Pier Scour
- Abutment Scour
- Future Bank Loss
- Utilities at Risk
- Building Bar
- Property Damage

Impacts of Project
Proposed condition with Stream Barbs, Shear Stress- 3,500 cfs in North Channel
Simulate existing conditions hydraulics
- Velocity distribution
- Channel capacity
- Areas of overtopping

Evaluate existing sedimentation
- Stream Power
- Shear Stress
- Compare to observed trends

Simulate alternatives
- Reduce erosive velocities
- Identify areas where bank armoring is needing
- Improve sediment and flood carrying capacity
- Identify areas for ongoing sediment management
Existing Condition, 9,500 cfs (2017 peak), Velocity

Levee
Levee Failure
Levee Overtopping
Existing Condition, 6,500 cfs, Velocity
Proposed Condition, 6,500 cfs, Velocity
Existing Condition, 6,500 cfs, Shear Stress
Proposed Condition, 6,500 cfs, Shear Stress

Local Bank Protection

Ongoing Sediment Management

Ongoing Sediment Management
Project Sponsors
- FCD 10
- Lower Boise Watershed Council (LBWC)

LiDAR Data & BRMT publicly available through Web App.

Flood Management
- Identify areas susceptible to channel effects & inundation

Water Quality Management
- Model sources, transport, fate & effects of sediment, phosphorus & heat inputs to Boise River
- Identify areas susceptible to sedimentation, nuisance aquatic algae growth, temperature effects
- Identify impacts to recreational uses & aquatic life habitat

Grant Applications
- FCD 10 – IWRB flood management grant program *(not funded)*
- LBWC – DEQ 319 grant program *(pending)*
BRMT Early Uses: Water Quality Management

Drainages/Subwatersheds:
- Agricultural
- Urban
- Suburban

Nonpoint/Tributary:
- Sediment
- Phosphorus
- Bacteria
- Temperature

Land Use

Loads

BMPs

Impacts

Water Quality Management
- Subbasin Assessments
- TMDLs
- Implementation Plans

Riverine Water Quality:
Hydrodynamics creates, shapes, defines & drives riverine environment
- Pollutant Inputs, Transport, Fate & Impacts
- Aquatic Habitat
- Aquatic Life & Recreational Use
BRMT Early Uses: Advection-Dispersion Model

Assess *fine sediment transport, temperature, and periphyton habitat* within the reach of the Boise River between the USGS/IPC monitoring station upstream of Middleton and the Indian Creek confluence.
BRMT Early Uses: Advection-Dispersion Model

Mason Creek at the Geomorphic Nick Point
BRMT Future Projects: Eagle Island

[Image of a map showing Eagle Road and the Head of Eagle Island]
BRMT Future Projects: Eagle Island
BRMT Future Projects: Eagle Island

September 2006

October 2013
QUESTIONS
July 14, 2020

To: Contributors to Boise River LiDAR

From: Karl Gebhardt, P.E., P.H., Hydrologist/Environmental Engineer, Resource Systems Inc.

Subject: Topobathymetric LiDAR for the Boise River

Many of you know me from my years of working projects and initiatives associated with the Boise River. The reason for this letter is to thank you all for being part of the acquisition process for the recently completed “Topobathymetric LiDAR for the Boise River” by Quantum Spatial, for Flood Control District #10, Mike Dimmick, Project Manager. I have already put this data to use, and I wanted to let you know a little about the background for this LiDAR, it’s quality, and how it is and will be used in the future.

Four or five years ago, Steve Sweet and I were discussing the need for better LiDAR along the river to supplement similar data sets acquired in 2007 and 2015. We began an effort along with Mr. Mike Dimmick (Flood Control District 10) to promote the use of two-dimensional (2D) hydraulic modeling and the value of high-quality LiDAR. The persistence in educating and fund-raising paid off with the current LiDAR product, and I want to thank everyone who saw the benefit of the LiDAR early-on and those who enthusiastically supported the state-of-the-art data acquisition.

I have recently updated some of my earlier 2D models with the new LiDAR and have also applied the data to some future bank repair work along the Boise River. In doing this, I was able to evaluate and compare the LiDAR with recently surveyed channel data, along with its performance within some 2D models. I can tell you this new LiDAR is fantastic and is beyond what any of us could have hoped. The resolution is excellent. Just examining the hidden areas (bathymetry) beneath the water’s surface is eye-opening, providing something we have not had with any of the previous forms of data (LiDAR or conventional surveying).

Without going into too much technical detail, I can assure you all; this LiDAR will revolutionize flood hazard management and just about any river-related analyses for the Boise River where the data is used. Specifically, the LiDAR can provide much more accurate flood predictions helping to update the current and soon-to-become effective June 19, 2020, Flood Insurance Rate Maps (FIRM) (many of which will be very out-of-date even before they are released). The LiDAR itself or coupled with modeling can be used on a local basis to produce:

- Letters of Map Revision (LOMR) to correct errors in the FEMA mapping,
- Very detailed hazard mapping by having flow patterns identified at a resolution not available in the FEMA mapping (recall the problems that occurred during the 2017 flood that were not within FEMA hazard areas),
- Identification of existing and potential bank failure areas,
- Potential areas for floodplain modification which can reduce flood hazard,
• Better protection of infrastructure (roads, structures, pathways, pipeline crossings, irrigation diversions),
• Properly located and designed river projects for bridges, parks, wildlife and fisheries habitat, gravel mining, development, pathways, and other similar amenities, and
• Water quality modeling (temperature, sediment, nutrient).

The LiDAR can also be used on a larger scale to integrate and expand our understanding of how flooding occurs, how sediment moves, and how something in one part of the river may impact other elements, providing the potential for inter-jurisdictional management. Ideally, work that involves the river needs to be coordinated between jurisdictions, since the river has no such boundaries. If the LiDAR and associated hydraulic modeling projects are used consistently with a modest amount of regulation, our river management can improve significantly, allowing the river to continue on a long-term basis to provide a wonderful amenity for all of us.

After a long and involved career involving numerous projects up and down the Boise River, I thank you all for your foresight in acquiring this data. This excellent information will afford continued cooperation between jurisdictions, and I urge all the participants to forge new relationships to maximize the benefits for all.

While this new LiDAR offers new possibilities to many interests along the Boise River, we all need to acknowledge that the river is dynamic. Therefore, future management needs to be dynamic, as well. This technology will continue to improve, allowing more improvements each year. It will take an effort to go from a static planning base to a dynamic base. I am hopeful, because of this effort you all contributed to, that we all can keep the improved management opportunities forging forward. We all are at a great starting point for enhanced and sound river management. Just remember: This is a starting point; there are many more great opportunities for improvement ahead of us.

Thanks Again!

Karl Gebhardt, P.E., P.H.
Hydrologist/Environmental Engineer