Daisy and Helen,

Following are a few comments / suggestions. I can provide the spreadsheet if needed.

Below are some highlights on Ag Surface Water Supply (SWSI) that NRCS has been using and on the source of our water supply, mountain snowfall/precipitation. Feel free to include in Future Demand Study, if desired. Additional graphs and information to view the water supply trends for the Boise basin is available at this link:

http://www.id.nrcs.usda.gov/snow/watersupply/sysi-main.html#weiser

- Boise Basin

 - Monthly Graph of Snow, Reservoir and Streamflow for Recent Years -Updated monthly

 SWSI Tables 1971-present require Adobe Acrobat.

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct-Sep</th>
<th>2010 Amount Needed</th>
</tr>
</thead>
</table>

 - Graphs - Reservoir and Streamflow - 1971 to present, and Historic

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep

 - Streamflow Forecast Graphs, 2002 - Present

 - Annual Streamflow - Historic Data - 1, 2, 3, 4, 6, 8, 10 Year Total

1yr	2yr	3yr	4yr	6yr	8yr	10yr

 - Prairie Precipitation Monthly

 - Trinity Mountain Precipitation Monthly
To help understand the total surface water supply available or hydrology factors that may cause a change in crops to be planted as was mentioned on teleconference during discussion of question 3.8 (City of Nampa) questions... This may help show variability of annual surface water supply, and support the range mentioned in dry vs wet years. These amounts may support or help explain the annual Ag water demand of 780,937-1,555,491 AF mentioned on page 3-28.

Boise River near Boise, Idaho. Lucky Peak, Arroyo Creek, Boise Area.

Graphs - Reservoir and Streamflow - 1971 to present, and Historic

Adapted Irrigation Water Supply Above 1,500 A.F.
Snowpack:

1997 was the biggest year on record for these 10 sites and the April 1 snowpack was 162% of normal. The lowest year on record was 1977 and was 24% of average.
Precipitation:

Based on 10 sites in the Boise River headwaters, winter precipitation accounts for 67% of the annual total. Spring precipitation accounts for 19% of the annual total. Fall precipitation accounts for 9% of the annual total followed by summer, which accounts for a mere 4%.

Graph of mountain precipitation illustrates a precipitation pattern much different pattern than the valley prec graph in report.
Streamflow:

There are 4 USGS gages which measure streamflow in the Boise watershed. The average annual flow of the Boise River near Boise is close to 2 million acre-feet; 860,000 acre-feet for the Boise near Twin Springs; 700,000 acre-feet for the South Fork Boise and 200,000 acre-feet for Mores Creek. The April through July streamflow volume accounts for nearly 60% of the average annual flow for these rivers except at the Boise River near Boise where this seasonal volume accounts for 72% of the annual flow. Out of 55 years of measurement for these Rivers, the lowest April-July volume was 23% of average in 1977 and highest was 180% in 1965. Note these flows are for the natural flow that would occur without the reservoirs in place. NRCS does not forecast or have the corrected data set for Boise River near Parma so it is not in this analysis.