POTENTIAL CONSTRUCTED RECHARGE SITES

Presented to CAMP Recharge Committee August 5th, 2009
Existing Recharge Sites
Used in 2009

- Existing Sites
- County Boundaries

- Lower Snake River Aquifer Recharge District site
- Hilton Spill
- West Egin Lakes Area
Potential Recharge Sites

- 1999 Report Aquifer Recharge Sites
- County Boundaries
Potential Recharge Sites Greater Than One Mile From Domestic and Municipal Wells

- 1999 Report Aquifer Recharge Sites
- County Boundary
- 1 Mile Buffer around Domestic and Municipal Wells
Potential Recharge Sites with a maximum Permeability Rate greater than 0.50 inches/hour

- 1999 Report Aquifer Recharge Sites
- County Boundary

Legend:
- No Data
- 0.01 - 0.19
- 0.20 - 0.50
- 0.51 - 1.99
- 2.00 - 5.99
- 6.00 - 19.99

This layer is based on permh or Permeability Rate within the SSURGO soils data. This is the maximum value for the range in permeability rate for the soil layer or horizon, expressed as inches/hour.
Land Status
Potential Recharge Sites

- 1999 Report Aquifer Recharge Sites

- County Boundary
- Bureau of Land Management
- Private
- State of Idaho
- U.S. Forest Service
- Other Federal Land or Tribal Lands
Land Status
Potential Recharge Sites

- 1999 Report Aquifer Recharge Sites
- Bureau of Land Management
- State of Idaho
- Private
- Canals

Map showing locations and landmarks such as Section 16, Section 21, Section 22, Section 35, Mile 41.5, Mile 39, Mile Post 31, Milner-Gooding Canal, North Side Main Canal, Wilson Canyon, and Dietrich Canal.
Egin Canals Recharge
- EBC Head Measurement
- EBC Return Flow Measurement
- EBC Recharge Site Measurement

Egin Lakes
Tibbits Lake
Egin Recharge Canal
St. Anthony Union Canal
Last Chance Canal

Rexburg
Henry's Fork
Highway 20
ADDITIONAL SITE SELECTION CRITERIA

<table>
<thead>
<tr>
<th>Site</th>
<th>County</th>
<th>land status</th>
<th>typical soils</th>
<th>useable acreage</th>
<th>est. infiltr. rate in/day</th>
<th>est. rech. rate a-f/day</th>
<th>canal</th>
<th>canal capacity</th>
<th>gravity flow</th>
<th>sufficient</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mile 31</td>
<td>Lincoln</td>
<td>BLM</td>
<td>A</td>
<td>360</td>
<td>6</td>
<td>180</td>
<td>Milner -</td>
<td>Gooding</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Mile 39</td>
<td>Lincoln</td>
<td>BLM</td>
<td>C</td>
<td>140</td>
<td>6</td>
<td>70</td>
<td>Milner -</td>
<td>Gooding</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Mile 41.5</td>
<td>Jerome</td>
<td>BLM</td>
<td>C</td>
<td>160 - 200</td>
<td>6</td>
<td>90</td>
<td>Milner -</td>
<td>Gooding</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Egin Lakes</td>
<td>Fremont</td>
<td>BLM</td>
<td>E</td>
<td>126</td>
<td>6</td>
<td>63</td>
<td>Fremont -</td>
<td>Madison</td>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Wilson Canyon</td>
<td>Jerome</td>
<td>BLM</td>
<td>B</td>
<td>25 - 30</td>
<td>6</td>
<td>15</td>
<td>North Side</td>
<td></td>
<td>?</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Sec 15</td>
<td>Lincoln</td>
<td>BLM</td>
<td>D</td>
<td>100</td>
<td>6</td>
<td>50</td>
<td>Dietrich</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 16</td>
<td>Lincoln</td>
<td>State</td>
<td>D</td>
<td>120</td>
<td>6</td>
<td>60</td>
<td>Dietrich</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 21</td>
<td>Lincoln</td>
<td>BLM</td>
<td>D</td>
<td>80</td>
<td>6</td>
<td>40</td>
<td>Dietrich</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec 22</td>
<td>Lincoln</td>
<td>BLM</td>
<td>D</td>
<td>120</td>
<td>6</td>
<td>60</td>
<td>Dietrich</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soils key

A - silty loam, silt loam, gravelly loam, unweathered basalt bedrock to 72 in.
B - unweathered basalt bedrock, loam, clay loam, gravelly loam to 60 in.
C - loam, sandy clay loam, fine sandy loam, unweathered basalt bedrock to 68 in.
D - fine sandy loam, sandy clay loam, cemented material, unweathered basalt bedrock to 65 in.
E - sand, fine sand, unweathered basalt bedrock to 60 in.