Eastern Snake Plain Aquifer Model Overview

Presented to Idaho Water Resource Board July 13, 2006 Idaho Water Resources Research Institute, University of Idaho
Donna M. Cosgrove
Gary S. Johnson
Bryce A. Contor
Idaho Department of Water Resources
Allan Wylie

Introduction

Brief Modeling Introduction Snake Plain Model Overview Water Budget Calibration Model Application Scenarios Tools

Why Model?

- Numerical models allow representation of very complex conditions
 - Spatial variation of hydrologic properties
 - Variation of aquifer recharge and discharge in both time and space
 - Better representation of aquifer heterogeneities than other tools

What is a Numerical Model?

- The model area is divided (discretized) into small pieces called model cells
- Time is also discretized into time steps
- Boundaries such as mountains, rivers are identified
- A water budget (inputs and outputs) is estimated for each model cell for each time step

Model Grids and Boundaries

Head-Dependent River Boundary

River Leakage or Gain Varies as Aquifer Water Level Varies

Model Input Data

Discharge Data

Aquifer Pumping (by layer) Drain Characteristics River Gains

Recharge Data

Precipitation Canal Seepage River Seepage Irrigation Infiltration

What is a Numerical Model? (cont'd)

- Mathematical equations are established to describe the flow of water into and out of each model cell
- These equations are run, representing the change in hydrologic conditions over time
- Model outputs are compared with measured aquifer water levels and river gains

The Snake Plain Model

- Upgrade or enhancement to original ground-water model
- 22-Year Recharge/Discharge Data Set
- More Refined Grid
 - 104 Rows, 209 Columns
 - 1 mile x 1 mile
 - Approximately 10,000 Active Cells
- Better River Representation

Unique Model Development Method

- Eastern Snake Hydrologic Modeling (ESHM) Committee participated in model re-development
 - Group comprised of experts representing various water use interests
 - Major design decisions discussed in ESHM group
 - Not always total agreement, but general consensus

Unique method for model development

 Attempt to gain consensus on science

 Group kept well informed through meetings and design documents

 Approximately 30 interim reports available on IWRRI web site

 Collaboration resulted in better, more

Collaboration resulted in better, mor error-free model

Snake River Representation

River Cells

REACH

Ashton to Rexburg

Heise to Shelley

Near Blackfoot to Neeley

Neeley to Minidoka

Shelley to Near Blackfoot

Spring Representation

Model Water Budget

Model Ins and Outs

Model Water Budget

- Representation of all water coming and going from the aquifer over time
- One of the most important aspects of a numerical model
- Water budget drives the numerical model

Aquifer Recharge and Discharge

Recharge mechanisms

- Surface water irrigation application (less ET)
- Canal seepage
- Subsurface flow from tributary valleys
- Precipitation directly on the plain
- River losses
- Discharge mechanisms
 - Springs and river gains
 - Ground water pumping

The aquifer is a large, leaky tank filled with rocks

Input varies dramatically

Recharge Variation With Time

Precipitation Exerts Control

Components of recharge averaged for model period.

Recharge/Extraction Depth (feet per six months)

less than – 18 feet -18 to -0.9 -0.9 to +1.0 1.0 to 2.7 2.7 to 4.6 4.6 to 9.1 9.1 to 18 more than +18 feet

May 1980 - October 1980

AF/yr

Annual Net Aquifer Recharge and River Gains

 Managing changes in water budget provides opportunity for adjusting supply and demand

Some elements out of our control

- Precipitation
- Tributary underflow
- Some elements can be managed
 - Consumptive use
 - Irrigation diversions, return flows, canal leakage
 - Ground-water pumping
 - Managed recharge

Managing changes in water budget provides opportunity for adjusting supply and demand

- Some elements out of our control
 - Precipitation
 - Tributary underflow
- Some elements can be managed
 - Consumptive use
 - Irrigation diversions, return flows, canal leakage
 - Ground-water pumping
 - Managed recharge

Model Calibration

Model Calibration

Model Calibration

- Model calibrated using automated tools
- Thousands of model runs, looking for best fit to field measurements
 - Aquifer water levels
 - Spring discharges
 - River gains/losses

Measured Data for Calibration

Water table elevation data

- USGS data
- IDWR data
- Reach gain and loss data
 - IDWR reach gain and loss program
 - USGS gaging station data
 - Water master diversion data
- Spring Discharge
 - USGS data
 - Idaho Power data

Average Aquifer Water Levels May 1, 1982 through October 31, 2000

Average Water Level Matches

Aquifer Water Level Match Over Time

Aquifer Water Level Match Over Time

Aquifer Water Level Match Over Time

Snake River

Springs

Nine springs with significant time series

s Research Institute

Calibration Summary

Average Aquifer Measurements

- 1008 water table elevation measurements
- 5 Snake River gain and loss measurements
- 6 spring measurements
- Aquifer Measurements Over Time
 - 127/17 water table elevation measurements
 - 725 Snake River gain and loss measurements
 - 1526 spring discharge measurements

Model Calibrated to over 15,000 measurements!

Model Use

Model Use—Scenarios and Tools

Scenarios pose 'what if' questions
What if nothing changes in water use?
What if the drought continues?
Tools use the model for estimating the impacts of proposed changes

- CREP
- Water rights transfers

Scenarios

- Base Case Scenario
- Curtailment Scenario
- Drought Scenario
- Managed Recharge Scenario
- A&B Scenario
- Continued Conversion to Sprinkler Scenario
- No Changes to Surface Water Practices Scenario
- We will show example results for Curtailment, Base Case and Managed Recharge Scenarios

Scenarios (cont'd)

- Scenarios estimate impacts to river reaches due to changes in hydrologic conditions or practices
- Some scenarios require large assumptions
 - Drought scenario—future drought conditions
 - Base Case Scenario—future water supply and use
 - Managed Recharge Scenario—future excess water availability

Scenarios (concluded)

- Primary reason for running scenarios is to ascertain how the hydrologic system responds to changes in water supply or practices
- Scenarios best evaluated in terms of changes in river gains—not absolute gains
- No one scenario defines the whole system
 - Best to evaluate the scenarios as a group

Some example scenarios

Base Case Scenario

"If current land and water use practices continue and if the 22-year period from 1980 to 2002 represents future water supply conditions, what will be the effect on spring discharge and Snake River gains and losses?"

Method—repeats past 22 years of water supply and practice multiple times in the future

Base Case Scenario (cont'd)

Major assumptions

- Future water supply identical to last 22 years
- Evolution of water use practices identical to last 22 years

 Not realistic, but useful for determining whether we are yet to experience a huge impact from past activities

Base Case Scenario predicted impacts—Near Blackfoot to Neeley Reach

Idaho Water Resources Research Institute

Curtailment Scenario

"If ground water pumping junior to a specified priority date were to be curtailed, what would be the effect on spring discharge and Snake River gains and losses?"

- Method—evaluates impact to the river reaches of curtailing ground-water pumping junior to each of 5 cut-off priority dates
 - Ground-water use associated with each date is determined
 - Impacts to river due to that use are evaluated

Curtailment Scenario (concluded)

Benefit depends on location of river reach
Highly dependent on location of curtailed acres
Takes long time for benefit to accrue
Scenario predicts that ground water pumping accounts for approximately 50% of measured decline in Thousand Springs area

 Balance of declines due to changes in surface water practices and drought

Predicted Reach Accruals due to Curtailment NEAR BLACKFOOT-NEELEY

Predicted Reach Accruals due to Curtailment for Near Blackfoot-Neeley Reach.

Predicted Reach Accruals due to Curtailment for Thousand Springs Reach.

Managed Recharge Scenario

"If we had been recharging in the Milner-Gooding and Northside Canal recharge sites during the past 22 years using all available water and canal capacity, what would be the expected increases in discharges to the river as a result of the managed recharge?"

 Method—evaluates impact to the river reaches due to intentionally recharging the aquifer with excess water during the past 22 years

Managed Recharge Scenario (concluded)

- Evaluated excess water for each of the past 22 years
- Evaluated canal carrying capacity during same period
- Used model to estimate the impacts to the river of conducting managed recharge with the excess water

Location of Milner-Gooding and Northside Canals relative to hydraulically connected river reaches.

In-Stream flow available for managed recharge by 6-month stress period assuming 750 ft³/sec past Milner.

Predicted impact to Ashton-Rexburg reach due to managed recharge in Milner-Gooding and Northside Canals.

Predicted impact to Thousand Springs reach due to managed recharge in Milner-Gooding and Northside Canals.

Tools

- Facilitate use of ground-water model
- Spreadsheets based on model results
- Examples of tools
 - Water Rights Transfer Tool
 - CREP Evaluation Tool
 - Managed Recharge Tool
 - Water Use Conversion Tool

Tools (cont'd)

User inputs parameters

- CREP: number of acres of CREP land in a specific county
- Managed recharge: number of acre-feet of water to be recharged at a specific location
- Tools estimate impacts to nine river reaches resulting from the input parameters

Tools (concluded)

- Allow non-modeler to use model results
- Very useful when evaluating proposed changes in water use

Conclusions

- Model best science and tool available
- Objective model—developed with input from water user group experts
- Water budget major driver for model
 - Near balanced for 22-year calibration period
- Model calibrated to 15,000 measurements
- Scenarios provide assessment of specific questions
- Tools available for assessing proposed management activities

Contact Us?

- Donna Cosgrove
 - 208-282-7914
 - cosgrove@if.uidaho.edu
- Gary Johnson
 - 208-282-7985
 - johnson@if.uidaho.edu
- Bryce Contor
 - 208-282-7846;
 - bcontor@if.uidaho.edu
- Allan Wylie
 - 208-287-4963
 - Allan.wylie@idwr.idaho.gov/
- IWRRI Web Page (model, documents, scenarios, etc)
 - http://www.if.uidaho.edu/~johnson/ifiwrri/projects.html