AGENDA
IDAHO WATER RESOURCE BOARD
Cloud Seeding Committee Meeting No. 2-22
Thursday, February 24, 2022
1:00 p.m. (MT)

Water Center
Conference Rooms 602 C&D / Online Zoom Meeting
322 E. Front St.
BOISE

Board Members & the Public may participate via Zoom
Click here to join our Zoom Meeting
Dial in Option: 1(253) 215-8782
Meeting ID: 897 2673 8981 Passcode: 101626

1. Introductions and Attendance
2. Cloud Seeding Program Development
 a. Statewide Assessment Initial Results
 b. Requirements for Developing a Cloud Seeding Program
3. Cloud Seeding Program Update
4. Other Items
5. Adjourn

Committee Members: Chair Roger Chase, Jeff Raybould, Pete Van Der Meulen, and Al Barker.

* Action Item: A vote regarding this item may be made this meeting. Identifying an item as an action item on the agenda does not require a vote to be taken on the item.

Americans with Disabilities
The meeting will be held telephonically. If you require special accommodations to attend, participate in, or understand the meeting, please make advance arrangements by contacting Department staff by email jennifer.strange@idwr.idaho.gov or by phone at (208) 287-4800.
Idaho Cloud Seeding Program
Idaho Water Resource Board | Cloud Seeding Committee Meeting
February 24, 2022
OVERVIEW

• Program Summary
• Cloud Seeding Program Development
 • Statewide Assessment
 • Feasibility and Design
 • Implementation
 • Operations & Maintenance
 • Monitoring
• Cloud Seeding Program Update
PROGRAM SUMMARY

• Idaho House Bill 266 (HB266, 2021)
 • Directed the IWRB to:
 1. Continue analysis of existing cloud seeding projects
 2. Complete an assessment of opportunities for cloud seeding in other basins
 3. Authorize cloud seeding programs in Idaho

• Provides the IWRB authority to:
 • Sponsor or develop local or statewide cloud seeding programs
 • State funds may only be used in basins where the IWRB finds that existing water supplies are insufficient to support existing water rights, water quality, recreation, or fish and wildlife
CLOUD SEEDING PROGRAM DEVELOPMENT

- Statewide Assessment
 - July 2021– Contracted with the National Center for Atmospheric Research (NCAR) to look at opportunities for cloud seeding across the State of Idaho
 - Initial look, more detailed feasibility required for basins of interest
 - Ground and airborne seeding opportunities (AgI)
 - Opportunities for propane seeding
CLOUD SEEDING PROGRAM DEVELOPMENT

- Prioritizing new projects
 - Develop criteria for Board participation
 - Funding requirements
- Significant stakeholder interest in new projects
CLOUD SEEDING PROGRAM DEVELOPMENT

• Implementation
 1. Development of criteria for competitive bid
 – Based on results of feasibility and design study
 2. Request for Proposal (RFP) for an operator
 3. Contract Development
 4. Build out of Infrastructure
CLOUD SEEDING PROGRAM DEVELOPMENT

• **Implementation**
 1. Development of criteria for competitive bid
 - Based on results of feasibility and design study
 2. Request for Proposal (RFP) for an operator
 3. Contract Development
 4. Build out of Infrastructure
 - Airborne
 - Ground

 Considerations
 - Seeding equipment
 - Generators
 - Aircraft
 - Weather instrumentation
 - Availability of resources
 - Siting Equipment
 - Availability of suitable location
 - Accessibility
 - Development of land lease
 - Installation
CLOUD SEEDING PROGRAM DEVELOPMENT

- Operations & Maintenance
 - Typically 3-5 year contract
 - Modeling
 - Forecasting
 - Analysis
 - Reporting
 - Equipment Maintenance

Considerations
- Existing WRF-WxMod
- Licensing
- Operator
- Expansion of Domain
- Weather Instrumentation
- Coordination of multiple operations
CLOUD SEEDING PROGRAM DEVELOPMENT

- Monitoring & Analysis
- Ongoing for duration of operation
- Benefit Analysis
- Assessment of program design
Cloud Seeding Analysis

Objective: Determine the impact of cloud seeding operations in the Payette, Boise, Wood, Upper Snake River Basins

Phase 1 completed 2020; preliminary estimates, several assumptions used

Phase 2 began early 2021, refine results using sophisticated modeling tools

1. WRF-Hydro model calibration & impacts analysis (NCAR)
 - Physically based hydrologic model used to simulate runoff from snow
 - Calibrate model for each region → run historical data with & without CS → determine estimated qty of water generated
 - Upper Snake first, then West Central Mountains

2. RiverWare model refinement (IDWR/IPC)
 - System operations model
 - Modified version of the BOR Snake River RiverWare model

3. Route WRF-Hydro data through RiverWare → Determine impacts

<table>
<thead>
<tr>
<th>Phase 1 Preliminary Estimates</th>
<th>In-Basin Use</th>
<th>Hydropower</th>
<th>Spill Out of State</th>
<th>IWRB Recharge</th>
<th>Captured by Reservoirs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snake</td>
<td>32%</td>
<td>13%</td>
<td>33%</td>
<td>12%</td>
<td>10%</td>
</tr>
<tr>
<td>Boise</td>
<td>17%</td>
<td>45%</td>
<td>30%</td>
<td>-</td>
<td>7%</td>
</tr>
<tr>
<td>Wood</td>
<td>29%</td>
<td>20%</td>
<td>28%</td>
<td>1%</td>
<td>22%</td>
</tr>
</tbody>
</table>
Cloud Seeding Analysis Project Schedule

- **Phase 2 Kickoff** Jan '21
- **Execute Contracts** July '21
- **Upper Snake Results** Jul '22
- **Boise/Wood Results** Mar '23
- **Final Report** Jun '23

Development Phase
- Acquisition of Model ✓

Upper Snake
- Baseline ✓
- Simulations
- Analysis

Boise/Wood/Payette
- Setup/Evaluation
- Calibration
- Baseline
- Simulations
- Analysis

Present US Results to IWRB

Execute Contracts
- July '21

Complete
Secondary Fund Program Costs

• Paid through IWRB’s Secondary Aquifer fund
 • $5M annually from General Fund
 • $5M annually from Cigarette Tax (will decline in future)

• Average IWRB Recharge Program costs (2017-2021) $6.20M
• Average IWRB Cloud Seeding program costs (2017-2021) $1.62M
• Average Hydrology cost (2017-2021) (modeling, monitoring, technical studies) $0.52M

TOTAL $8.34M

Remaining from the $10M - $1.66M
Investigating the potential for cloud seeding in Idaho

Statewide Assessment Results and Recommendations

Sarah Tessendorf
Research Applications Laboratory
National Center for Atmospheric Research, Boulder, CO

February 24, 2022

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.
The goal of winter orographic cloud seeding is to increase snowpack (and subsequent streamflow)

1. CLOUD
 Air flows over the mountain forming a cloud that may contain supercooled liquid water

2. RELEASE
 Silver iodide particles are released by an aircraft or ground based generator

3. DISPERSION
 Silver iodide particles reach the targeted cloud

4. ICE
 The silver iodide forms ice crystals

5. SNOW
 The ice crystals grow at the expense of supercooled water and become large enough to fall and create snow

0°C (32°F)
Two key criteria:
1) Supercooled liquid water (SLW)
2) Temperature for silver iodide to nucleate ice

1. Cloud: Air flows over the mountain forming a cloud that may contain supercooled liquid water.

2. Release: Silver iodide particles are released by an aircraft or ground-based generator.

3. Dispersion: Silver iodide particles reach the targeted cloud.

4. Ice: The silver iodide forms ice crystals.

5. Snow: The ice crystals grow at the expense of supercooled water and become large enough to fall and create snow.

Ground-based seeding has additional criteria that impact dispersion (wind direction, atmospheric stability).

Temperature: < –6 °C (21 °F)
Transforming the way we design and evaluate cloud-seeding programs

WRF-WxMod® cloud-seeding modeling

Supercomputing has enabled high-resolution modeling and more sophisticated modeling

+ **Observations** of clouds, precipitation, and atmospheric conditions
A breakthrough in modeling for cloud seeding

- High-resolution models can simulate precipitation in mountains quite well

- Multi-year simulations (Colorado Headwaters and CONUS) provided valuable information for studying winter orographic precipitation and cloud seeding potential
 - Ritzman et al. (2015), Tessendorf et al. (2020)

Precipitation accumulation over one water year

36 km | 2 km | SNOTEL Obs. | SNOTEL Gauge

Colorado Headwaters Region

Rasmussen et al. (2011)
WRF-WxMod: Simulating the impact of cloud seeding

Clouds
With supercooled liquid water

Silver Iodide Seeding Particles → Ice Crystals → Snow
Observations of Cloud Seeding from SNOWIE

Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment

Tessendorf et al. (2019)
SNOWIE Experimental Design and Strategy

- Strategy was to fly the research aircraft directly in silver iodide seeding plumes to detect and measure the impacts of seeding.

French et al. (2018) and Tessendorf et al. (2019)
A major highlight from SNOWIE

Unambiguous seeding lines were observed and radar and in situ data was collected that quantified the impacts of seeding in these cases!

We are comparing these data with WRF-WxMod simulations to validate and improve the model.
Recent advances provide new opportunities

Research
1) SNOWIE data are being used to **study impacts** of cloud seeding and **validate** WRF-WxMod

Design & Guidance
2) WRF-WxMod can be used to determine **when, where, and how to seed**

Evaluation
3) WRF-WxMod can be a cost-effective way to **quantify the impacts of seeding programs**
Approach for Statewide Assessment

Goal: Identify areas in the state of Idaho with potential for cloud seeding to conduct more detailed feasibility and design

- Observations required for assessing the potential for cloud seeding are not routinely collected
 - Weather balloons provide vertical profiles of temperature (limited)
 - No routine measurements of SLW
- High-resolution, long-term model simulations provide a new opportunity
 - 13-year (2000-2013) 4-km grid spacing WRF simulation over the CONUS
 - Shown to realistically reproduce precipitation observations
 - Includes 3D information on temperature, SLW, winds, etc.
Wintertime Precipitation over Idaho

Some locations have a lot of precipitation and large mean SLW
- Northern Idaho and western Montana, Tetons

Some locations have less precipitation, but still large mean SLW
- Salt River Range, Bear River Range vs Lemhi Mtns, Beaverhead Mtns

Any location with some SLW is a potential candidate for cloud seeding
Frequency of Cloud Seeding Opportunities

Ground seeding layer (0-1 km AGL)

This maps shows the frequency that temperature and SLW conditions are met, but not the additional dispersion criteria that are specific to each mountain barrier.

Airborne seeding layer (3.5-4.5 km MSL)

This layer was determined based upon minimum safe flight altitudes over most of the state. Regions with lower altitude mountains may have more potential than shown here since SLW decreases with altitude.

More detailed analysis by basin or mountain barrier is needed.

We recommend focusing on basins with some ground-seeding potential to investigate both ground and airborne seeding potential with a more detailed analysis approach.
Bitterroot Mountains/Some parts of Clearwater

Salmon River Mountains

Boise/Sawtooth Mtns

Boulder/White Cloud Mtns

Independence Mountains (flows into ID)

Current Study Area (incl. Bear River Range, Salt River Range, Uintas)

Beaverhead Mtns (on divide)

Lemhi Mtns

Lost River Range

Teton Range
Next steps once areas with potential have been identified

Feasibility & Design Study (for new programs)

- **Detailed climatological analysis**
 - Investigate the atmospheric characteristics specific to each mountain barrier (wind flow, vertical distribution of SLW, etc)
 - Determine if ground and/or airborne seeding is feasible (include dispersion criteria in analysis)

- **Develop and test designs**
 - Where to place generators or aircraft tracks
 - Use WRF-WxMod to test, iterate, and optimize designs

- **Estimate cost effectiveness of program**
 - Estimate program costs
 - Estimate potential streamflow benefits from program
Cost Benefits of Cloud Seeding

Cost of water from seeding = Cost of seeding operation ÷ Acre Feet of water produced

- Low cost of seeding and/or lots of water produced by seeding = cost effective for most costs of water
- High cost of seeding and/or little water produced by seeding = only cost effective if water costs a lot

Not cost effective

Cost effective
Cloud-seeding Feasibility and Design Study: Bear River Basin of Idaho

Three regions feed the Bear River Basin:
1. Uintas (UIN) -- Bear River headwaters
2. Salt River Range (SRR)
3. Bear River Range (BRR)

Airborne seeding opportunities between Nov-Apr, peak in late winter

Flight level 3.5-4.5 km MSL

Research sponsored by the Idaho Water Resource Board
Bear River Basin Airborne Design

- WRF-WxMod simulations of cases representing different wind regimes provided guidance for which tracks are most feasible

- A single, long north-south track to target all three regions under westerly winds was shown to not be as efficient as using a shorter track to target the northern half of the domain

- A track upwind of BRR could effectively target both BRR and SRR, so no need for an SRR specific track
We know that a considerable amount of SLW exists at temperatures warmer than -6°C (where silver iodide nucleates ice)

- Potential for liquid propane seeding

A statewide assessment could be done to look more closely at the criteria needed for liquid propane seeding
Summary

Clouds with SLW are candidates for cloud seeding to enhance the efficiency of their snow formation process.

- **Not every mountain range or storm is the same**: some locations and storms are more amenable to cloud seeding than others.
 - Important to study the climatology of weather conditions to determine when, where, and how to seed.
 - Ground-based and/or airborne seeding, silver iodide and/or liquid propane.

- **The statewide assessment highlighted areas with potential for cloud seeding with silver iodide**.
 - In those areas, the next step is to conduct a detailed feasibility and design study.
Recommended Path Forward

• **Pursue detailed feasibility and design studies for highlighted mountain barriers with potential for cloud seeding**
 – Investigate both ground and airborne seeding potential and program design
 – Estimate cost effectiveness to prioritize program planning

• **Cloud seeding potential is most frequent in the following areas:**
 – Bitterroot and Clearwater mountains
 – Lemhi and Lost River mountains
 – Sawtooth and Boulder/White Cloud mountains
 – Beaverhead mountains
 – Salmon River mountains