

Presented to the ESPA GWMA Advisory Committee
Jennifer Sukow, P.E., P.G., Idaho Department of Water Resources
November 15, 2023

ESPA water budget history

ESPA water budget components

Areal recharge (dependent on weather and human activities)

- Natural recharge
- Incidental recharge
- Managed recharge

Head-dependent recharge (dependent on aquifer water levels)

 Seepage losses from Snake River between Ashton/Heise and near Blackfoot gages

Areal discharge (dependent on human activities and weather)

- Consumptive use of groundwater
- Evaporation from wetlands

Head-dependent discharge (dependent on aquifer water levels)

 Aquifer discharge to Snake River and springs (near Blackfoot to Minidoka and Kimberly to King Hill)

Change in aquifer storage

- When discharge exceeds recharge, water will be removed from aquifer storage
- When recharge exceeds discharge, water will be added to aquifer storage
- Observed change in aquifer water levels are best indicator of relative imbalance between recharge and discharge

Natural recharge components and locations

Groundwater irrigation in tributary areas

Groundwater irrigation in ESPA GWMA

Natural recharge trends (WY1981-WY2021)

Incidental recharge components and locations

Incidental recharge trends (WY1981-WY2021)

Managed recharge locations

Incidental + managed recharge trends (WY1981-WY2021)

Total areal recharge trend (WY1981-WY2021)

Groundwater pumping locations

Groundwater consumptive use trend (WY1981-WY2021)

Spatial distribution of net areal recharge and pumping

Head-dependent aquifer recharge and discharge

Observed head-dependent recharge and discharge

Observed head-dependent recharge and aquifer storage

Observed head-dependent discharge and aquifer storage

Observed head-dependent discharge and aquifer storage

Average ESPA water budget by decade

Examples of estimating groundwater availability relative to assumed future recharge and goals for aquifer discharge

Water budget challenges

- Aquifer water budget will vary year to year with weather
 - recent years had greater than 2 MAF/yr variation in areal recharge between a high water-supply year with mild summer and a low water-supply year with hot summer
 - even with long-term stabilization, the minimum aquifer level and aquifer discharge will be considerably lower than the longterm average
- Uncertainty in measurement and estimation of water budget components is greater than the estimated average annual water budget deficit
 - aquifer water levels are the most reliable indicator for monitoring aquifer status and guiding adaptive management

Water budget challenges

- Uncertainty in future trends for natural recharge, incidental recharge, and managed recharge adds to uncertainty in estimating an average available groundwater pumping volume
 - adaptive management will be needed to respond to future changes in natural, incidental, and managed recharge
- Compilation of data required to calculate water budget has time lag
 - Many data not available until following year
 - Many data are compiled from hand-written or scanned Watermaster reports (can't be automated)
 - As of November 2023, water budget is updated through WY2021

