Idaho Cloud Seeding and SNOWIE

Nov 2, 2021

Overview

- Why Idaho Power does Cloud Seeding
- What is Cloud Seeding/Where is it done.
- SNOWIE
- Idaho Power's cloud seeding projects
- Benefits
- Program expansion
- Project Costs

Communities We Serve

Clean Energy 2020 Energy Mix

Data Source: U.S. Energy Information Administration Totals may not equal 100% due to rounding **National Average**

Almost half of Idaho Power's energy comes from clean hydropower.

What is Cloud Seeding??

How does a snowflake/raindrop develop? (Cold Cloud)

Microscopic dust particle in a cloud.

The snow crystal is then blown into a new set of conditions which favour plate growth again. The variablility of conditions experienced by each crystal accounts for the complexity of

Cold Cloud Seeding Method

- Glaciogenic Seeding
 - Conducted in clouds cold enough to promote growth of ice.
 - Seeding Agents
 - Silver Iodide
 - Dry Ice
 - Liquid Propane (expands into gas form)

Winter Orographic Cloud Seeding

- *Cloud seeding* provides additional efficient ice nuclei that function at warmer temperatures, allowing ice formation to begin sooner
- This occurs at temperatures as warm as 23°F, though more effectively at 17°F or colder
- Natural ice nuclei become effective below 5°F

Winter Orographic Cloud Seeding

- *Cloud seeding* provides additional efficient ice nuclei that function at warmer temperatures, allowing ice formation to begin sooner
- This occurs at temperatures as warm as 23°F, though more effectively at 17°F or colder
- Natural ice nuclei become effective below 5°F

Cloud Seeding Programs

Idaho Power Seeding Mechanisms

Modified Aircraft

SNOWIE

Seeded & Natural Orographic Wintertime clouds: the Idaho Experiment

- NSF funded SNOWIE to study winter precipitation processes (\$2.1M)
- Field campaign early 2017 (Jan Mar), focused on Payette Basin
- Goal:
 - further understand natural and dynamic winter precipitation processes.
 - determine physical processes by which cloud seeding effects winter precipitation.
- Field Effort:
 - Over 75 additional instruments (research aircraft, ground based instruments)
 - <u>4 Pl's</u>, <u>11 scientists</u> operating instruments and analyzing data
- Results will directly benefit weather modeling over complex terrain
- Collaborative effort between:
 - National Center for Atmospheric Research (NCAR)
 - University of Wyoming
 - University of Colorado, Boulder
 - University of Illinois
 - Idaho Power Company

Additional Efforts

- BSU silver sampling
- Research seeding aircraft
- Ice nuclei counter

DOW Pack o 20 km range rings from PJ

NASA1 Radiometer/SLW sondes

2 Ul Met

quaw Butte

SA1 Radiometer/SLW sondes

UI Met

PCASPINCAR MRR SB Disdrometer NCAR Radiometer DOW Show

CU Radiometer 🤞

PJ Disdrometer DOW Pack

Crouch

WMI Radiometer

NASA2 Radiometer

NCAR airborne seeding simulation

IOP

Intensive Observation Period

How does SNOWIE benefit this effort?

- PNAS publication ...
 - SNOWIE provided the '... first <u>unambiguous observations</u> of the physical chain of events following introduction of glaciogenic cloud seeding aerosol into supercooled liquid orographic clouds.'
- BAMS publication ...
 - The measurements from SNOWIE aim to address long-standing questions about the efficacy of cloud seeding, starting with documenting the physical chain of events following seeding.
- More than 14 peer-reviewed research publications published, and researchers continue additional analysis
- Researchers received an additional NSF funding to continue analysis due to the large amount of quality data
- Ultimately, the <u>findings are consistent</u> with assumptions applied to estimate benefits

Pocatello NWS Radar

Idaho Power's Cloud Seeding History

- Began investigating cloud seeding in 1993 (shareholder question)
 - Take home: Long-term water management tool
- Operational in fall of 2003 (7 generators, aircraft, assessment)
 - Completed second year of assessment and third year of operations in May 2005
- In 2008 collaborated with HC RC&D and E Idaho Counties to enhance their program 5 year pilot project for CAMP
- In 2010 started working with WW RC&D to evaluate cloud seeding opportunities in western Wyoming
- In 2011 started working with NCAR to develop WRF model to guide and evaluate CS operations and projects
- In 2013 contracted with Big Wood Canal Company to seed Wood River with aircraft
- WY 2015 Expansion (43 generators, 2 aircraft)
 - Boise and Wood Basin's remote generators and aircraft seeding
 - Continued expansion in Salt and Wyoming Ranges
 - IWRB funding a grant for equipment associated with expansion
- WY 2016/2017 Expansion
 - Additional remote generators in Central Mountains and Upper Snake (WY16-53/WY17-55)
 - Third aircraft (2016)
- WY 2022 (Current)
 - Total 57 remote generators, 3 aircraft
 - Continued model development

Ground Generators

Current Program

Payette, Boise, Wood & Upper Snake

Payette and Wood

- 17 Remote Gen's
- Aircraft
- Radiometer
- Weather
 Balloon
- Weather Tower
- 9 hi-res precip gauges

Boise and Wood

- 15 Remote Gen's
- Aircraft
- Radiometer
- 2 hi-res precip gauges

Upper Snake

•

- 25 Remote
 Gen's
- 25 Manual Gen's
- Aircraft
- 2 Radiometers
- 2 Weather Balloons
- Weather Tower2 hi-res precip
- gauge
- All
 - Weather Model

Target Control

Pooled control site cumulative precipitation (in.) - Nov. 1 - Apr. 15

Target Control Avg/2021

TC#	Basins	Average	WY2021	Old Basins	Average	WY2021
WP1	Middle/South Forks Payette	11%	8.5%	Payette	11%	7.5%
WP2	North/Middle Forks Boise & Mores Creek	12%	10.1%	Boise	12%	9.6%
WP3	South Fork Boise	11%	9.4%	DUISE	1270	9.0%
WP4	Big Wood & Camas Creek	10%	9.1%	Wood	10%	9.5%
WP5	Little Wood	10%	7.1%	wood	10%	9.5%
EP1	Birch & Medicine Lodge & Beaver-Camas	5%	4.0%	Henrys Fork	6%	5.0%
EP2	Upper & Lower Henrys Forks	6%	5.4%			
EP3	Teton River	10%	9.3%			
EP4	Snake Headwaters	9%	8.3%	Upper Snake	8%	7.2%
EP5	Gros Ventre	10%	8.8%	opper Sliake	0 70	7.270
EP6	Palisades/Greys-Hoback/Salt	8%	7.0%			

Estimated Runoff Benefits (Current)

Average Additional Runoff (unregulated)

- Payette 221 KAF
- Boise 264 KAF
- Wood 105 KAF
- Upper Snake 415 KAF Abv Palisades – 276KAF Henry's Fork – 139 KAF

Total – 1,005 KAF

Cost of Additional Water

- Gross ~\$3.4/AF

WY2021 – 42 KAF - without cloud seeding, the Wood would have received ~42 KAF <u>less</u> runoff in WY2021.

Potential Future Program

Payette, Boise, Wood & Upper Snake

Payette

- 17 Remote Gens
- Aircraft
- Radiometer
- Weather Balloon
- Weather Tower
- 7 hi-res precip gauges
- Boise and Wood
- 20 26 Remote Gen's**
- Aircraft
- Radiometer
- Weather Balloon
- 4 hi-res precip gauges
- Upper Snake
- ~ 40 Remote Gens
- 25 Manual Gens
- 2 Aircraft
- 2 Radiometers
- 2 Weather Balloons
- Weather Tower
- 2 to 5 hi-res precip gauges
- All
 - Weather Model

Estimated Runoff Benefits (Buildout)

Average Additional Runoff (unregulated)

- Payette 221 KAF
- Boise 323 KAF
- Wood 133 KAF
- U Snake 602 KAF Abv Palisades – 419 KAF Henry's Fork – 183 KAF

Total – 1,279 KAF

Cost of Additional Water

- Gross ~\$3.6/AF

Potential Increases from Expansion

Incremental Additional Runoff (unregulated)

- Payette 0 KAF
- Boise 59 KAF
- Wood 28 KAF
- U Snake 187 KAF Abv Palisades – 143 KAF Henry's Fork – 44 KAF

Total – 274 KAF

Project Costs

- 2021 level of build-out Wood Basin
 - Shared aircraft with Boise
 - Remote Ground Generators 7 dedicated, 4 shared
 - Assuming shared funding 1/3 IPC, 1/3 State, 1/3 water users, average
 - 105,000 AF / year
 - \$191,000 / year (Wood Basin water users funded \$89,000 in WY2021)
 - State made up water user shortages
- 2022 \$203,000 (Total \$610,000)
- Assuming Buildout Wood Basin
 - Shared aircraft with Boise
 - Remote Ground Generators 12 dedicated, 7 shared
 - Total costs \$879,000
 - 133,000 AF / year

Questions?

mkunkel@idahopower.com