A GROUND-WATER MONITORING NETWORK FOR SOUTHWESTERN IDAHO

Well TN-2W-35abi

1950 1955 1960 1966

66 70 74 78
66 70 74 78
84 88 92 96

Water Information Bulletin No. 2
Idaho Department of Reclamation
September 1967
THE COVER

1. Map showing coverage of Ground-Water Monitoring Network for Southwestern Idaho.

2. Well being drilled near Hammett, Idaho, with a cable-tool type drilling rig.

3. Flowing well plumbed to discharge through an old hand pump in a garden at the residence of Harold W. Davis, Middleton, Idaho.

4. Flowing irrigation well equipped with valve located east of Nampa, Idaho.

5. Department of Reclamation employees measuring water in an irrigation ditch. The water is being discharged into this ditch by a hot flowing well located 12 miles east of Mt. Home, Idaho. Robert Hamilton (top of photo) is making the measurement with a pigmy current meter and Gary Page (bottom of photo) is recording the readings.

6. Department of Reclamation employees talking with rancher, Wm. Walker, about his very productive well used for irrigation, shown in the photo. Well is located about 16 miles east of Mt. Home, Idaho.

7. Hydrograph showing water-level depth changes in feet below land surface in a well located in Sec. 35, T. 7 N, R. 2 W (near Emmett, Idaho).
CONTENTS

INTRODUCTION ... 1

GEOLOGIC FRAMEWORK 2

GENERAL GROUND-WATER CONDITIONS IN THE
PRINCIPAL HYDROLOGIC UNITS 3
 Weiser River Basin 3
 Payette Valley 3
 Boise Valley 4
 Mountain Home Plateau 4
 Northeast Slope of Owyhee Mountains 5
 Bruneau River Valley 5
 Sailor Creek Area 6

SELECTION OF WELLS 6
 Areal Coverage 6
 Aquifer Penetration 7
 Availability and Accessibility 7
 Water-Level Measurement Capability 7
 Well Use 7
 Nearby Interference 8
 Previous Record 8

THE OBSERVATION-WELL NETWORK 8

CONCLUSIONS AND RECOMMENDATIONS 9

SELECTED BIBLIOGRAPHY 10

ILLUSTRATION

Figure 1. Map of southwestern Idaho showing location and
frequency of measurement of observation wells . In pocket

TABLE

Table 1. Records of Observation Wells in Southwestern Idaho . 11
A GROUND-WATER MONITORING NETWORK
FOR SOUTHWESTERN IDAHO

By N. P. Dion and M. L. Griffiths

INTRODUCTION

The study area covers more than 15,500 square miles in southwestern Idaho and includes all or parts of Ada, Adams, Boise, Canyon, Elmore, Gem, Owyhee, Payette, Valley, and Washington Counties. Surface drainage is provided by the Snake River and its tributaries, which include the Weiser, Payette, Boise, and Bruneau Rivers.

Large scale water-development projects which could affect the entire hydrologic regimen of this region are now in the planning stage. The Idaho Department of Reclamation, which is responsible for the administration of the State's water resources, and the Water Resources Division of the U.S. Geological Survey recognized the need to monitor changes in ground-water conditions resulting from the implementation of the proposed projects.

The objectives of this study were to establish a network of observation wells that would:

a. adequately monitor seasonal and long-term ground-water changes in all significant aquifers of the area;

b. provide a foundation of hydrologic data from which future comparisons could be made to show the effects of large-scale development on the ground-water system;

c. indicate areas where ground-water problems are most likely to develop;

d. permit detection of ground-water problems before they become serious;

and,
e. identify areas and (or) aquifers that are not adequately represented by existing observation wells, either areally or with respect to depth.

GEOLOGIC FRAMEWORK

In general, southwestern Idaho is underlain by clastic and volcanic rocks ranging in age from Miocene to Recent. Only in the highlands of Valley, Boise, Elmore, and Owyhee Counties do older, pretertiary granites, gneisses, and folded sediments crop out.

Pyroclastic, basaltic, and rhyolitic rocks of Miocene and Pliocene age crop out in several regions, such as the Jarbidge and Owyhee Mountains, and along the Payette River. The basalt flows apparently are equivalent in age to the Miocene and Pliocene Columbia River Group which extensively covers the Weiser River basin and part of the Payette River basin. The Payette Formation, composed chiefly of coarse arkose and granite cobble conglomerate, generally occurs interbedded with basalts of the Columbia River Group.

Unconformably overlying the Miocene and Pliocene volcanic rocks are the Pliocene Idavada Volcanics, several thousand feet of welded ash flows with bedded tuffs and lava flows. The rocks are exposed in the Jarbidge and Owyhee Mountains, in the Mt. Bennett Hills, and on the Owyhee upland.

The Idaho Group of Pliocene and Pleistocene age consists of several thousand feet of partly-consolidated sand and clay with some gravel, volcanic ash, and intercalated basalt flows. The sedimentary beds, which probably accumulated in a subsiding basin, generally erode into badlands. Exposures of the Idaho Group occur along the Snake River and in the lower reaches of its tributaries. The group also mantles much of the Mountain Home Plateau.
The Snake River Group, composed of olivine basalt with some clay, silt, sand, and gravel, is of Pleistocene and Recent age. It underlies a large part of the Mountain Home Plateau.

Unconsolidated deposits of Pleistocene to Recent age consist of glacial outwash, alluvium, and terrace gravels. They occur in the axis of Long Valley and the lower reaches of the larger streams.

GENERAL GROUND-WATER CONDITIONS IN
THE PRINCIPAL HYDROLOGIC UNITS

Weiser River Basin

Sedimentary deposits and basalt of the Columbia River Group supply most of the ground water in the Weiser River basin. The sediments are generally fine grained and yield only small to moderate amounts of water. Larger supplies can be obtained from the coarser deposits and from the basaltic rocks. Many of the wells finished in the basalt flow at the surface.

Payette Valley

Sand and gravel beds within the Idaho Group are the best aquifers but yields are erratic from one area to another. Permeable stream and terrace gravels overlying the Idaho Group yield moderate quantities of water to wells.

The principal sources of recharge to the valley are runoff from precipitation on the surrounding highlands and percolation of irrigation water from surface-water sources. Ground water moves toward the center of the valley and then down-gradient in the direction of stream-flow.

Depth to water is generally less than 50 feet and has decreased in the recent past owing to the application of irrigation water. Partly as a result of the rise in water level, about 25 percent of the irrigated area has a drainage problem.
Locally, the confining action of hardpan and clay beds causes low artesian pressures.

Boise Valley

Ground water occurs in stream and terrace gravels and in the sand, gravel, and lava flows of the Idaho Group which underlies most of the valley. Water occurs unconfined in the shallower aquifers and confined under low to moderate pressures in the deeper aquifers. South of Nampa, basalt of the Snake River Group yields large quantities of water, but elsewhere in the valley the basalt lies above the regional water table.

Principal sources of ground-water recharge include seepage from the Boise River, runoff from the highlands north of the valley, and seepage of irrigation water obtained from both surface- and ground-water sources. Ground-water movement is generally westward. Natural discharge is to drainage canals and to the Boise River.

Owing to widespread irrigation, water levels in the Boise valley have risen considerably through the years. This rise has caused widespread water-logging and drainage problems in low-lying areas.

Mountain Home Plateau

Little is known about the ground water in this area. Between Mountain Home and the foothills to the north, sand and gravel contain water at shallow depths. The southwestern part of the City of Mountain Home is underlain by a very shallow body of perched ground water that is of small extent. This aquifer yields small amounts of water to domestic wells. Elsewhere on the plateau, wells must be drilled several hundred feet to tap the aquifers of the Snake River and Idaho Groups whose yields in this region have proved erratic from one area to another.
Recharge to the aquifers is from intermittent stream percolation, underflow from the foothills, and seepage losses from irrigation water. Natural discharge is probably southward and southwestward to the Snake River.

Northeast Slope of Owyhee Mountains

Ground water occurs under artesian conditions in the sand, gravel, and volcanic rocks of the Idaho Group and Idavada Volcanics from Grandview to the Oregon state line, and under nonartesian conditions in alluvial deposits along the Snake River.

Recharge to the artesian aquifers is from precipitation on the highlands to the southwest; recharge to the alluvial deposits is from intermittent stream percolation and seepage losses of irrigation water.

Development of the ground water west of Grandview has increased significantly in the past few years with the construction of several deep irrigation wells that yield large quantities of hot (80–170°F) water under high artesian pressures.

Bruneau River Valley

Little is known about the ground-water hydrology of the Bruneau River basin except for the downstream part near Bruneau. There, unconfined ground water occurs in alluvium along the Bruneau River and its principal tributaries, and warm (60–125°F) artesian water occurs in the Idaho Group and in the underlying basalt and silicic volcanics.

The artesian aquifers are recharged by precipitation on the outcrop area to the south. The principal direction of ground-water movement is northward toward the Snake River.

In general, wells flow if drilled into the artesian aquifer and if ground-surface elevation at the well is less than 2,700 feet above sea level. Artesian water levels
in the Bruneau area have declined slightly since the increase in ground-water
development, which began about fifteen years ago.

Sailor Creek Area

Ground water occurs under low artesian pressures in sedimentary deposits of
the Idaho Group and in the underlying basaltic and silicic volcanic rocks. The
depth to water is generally several hundred feet below the land surface.

Recharge is from precipitation on the outcrop area to the south. The regional
direction of ground-water movement is northward toward the Snake River.

Ground-water development has been slow for this relatively isolated area but
it is now increasing with the drilling of several new wells for irrigation.

SELECTION OF WELLS

The observation wells for the ground-water monitoring system in southwestern
Idaho were selected according to the following criteria, in order of decreasing con-
sideration: areal coverage, aquifer penetration, availability and accessibility,
water-level measurement capability, well use, nearby interference, and previous
record.

Areal Coverage

Prime concern was given to the geographic locations of the candidate wells.
All available well data were examined and the well locations plotted on a base
map. A code was used to distinguish between domestic and irrigation wells.
After determining the desired areal density of observation wells, the most likely
candidates were selected from examination of records and then inspected in the
field. For those areas where no recorded well satisfied the requirements or where
no wells had been previously inventoried, additional wells were visited and in-
ventoried. In general, areas most likely to be affected by future hydrologic projects
and areas having the greatest degree of ground-water development were covered by the greatest density of observation wells.

Aquifer Penetration

The aquifers selected for monitoring by the observation network were those thought most likely to be affected by future hydrologic development. Well schedules and drillers' logs were examined and wells not finished, at least partly, in the aquifers of interest were disregarded and not visited. Highest consideration was given to wells that tapped only one aquifer.

Availability and Accessibility

Permission to make periodic water-level measurements and (or) to install continuous recorders was obtained from well owners. In order to minimize the amount of time and labor involved in making the water-level measurements, consideration was given to whether or not the well was accessible without hindrance during inclement weather, from stock gates, or because of seasonal crops. For the same reason, wells at ground level were given preference over those in a subsurface pit.

Water-Level Measurement Capability

Preference was given to the well offering the most accurate type of water-level measurement capability. The four most common methods are, in order of decreasing accuracy: wetted tape, continuous recorder, electric tape, and manometer (for flowing wells only).

Well Use

The majority of the wells selected for the observation network were used for either domestic or irrigation purposes or not presently in use. Irrigation wells are generally preferable because they are deeper, of larger diameter, and easier
to measure. However, they usually are pumped for extended periods during the irrigation season, thus preventing a measurement of static water level. Domestic wells are usually shallower, of smaller diameter, and pumped intermittently for shorter periods. Because of location and type of pump they are often more difficult to measure.

An unused well gives the most meaningful water-level data. In selecting unused wells for observation purposes, a check was made to determine if the well was not being used because of caving, plugging, screen failure, or some other factor that might cause the measured water level to be nonrepresentative of the aquifer.

Nearby Interferences

The static water level of many wells is affected by nearby wells that are pumped either intermittently or continuously. This effect does not necessarily reflect a change in regional water levels. The records from such wells must be carefully analyzed because the relationship of their water level to the regional static water level is difficult to interpret. In many cases, several months of record must be analyzed before nearby influences can be identified and related to the regional static water level.

Previous Record

Wells with previous water-level measurements were given preference over unmeasured wells because they provided a historic record of water-level fluctuations in their respective aquifers.

THE OBSERVATION-WELL NETWORK

Figure 1 shows the location of the wells selected for the observation-well network. The symbol used to designate the well location also indicates the frequency of measurement. The wells are labeled according to their "local" well
numbers which are based on the location of the wells within the official rectangular subdivisions of the public lands. Data for each well are listed in Table 1. All available geographic, physical, and geologic data, with the exception of the driller's log and location sketch, have been coded so that they may be entered on punch-cards for computerized storage and retrieval.

Those wells that promise to be the most representative of their hydrologic units will be measured more often than others until sufficient record is obtained to determine the character of water-level changes in these units. Continuous water-level recorders have been installed on 10 wells. Bimonthly water-level measurements will be made on 37 wells; the remaining 88 wells will be measured semianually. Water levels in all network wells have been measured at least once.

CONCLUSIONS AND RECOMMENDATIONS

The newly established observation-well network will meet the intended objectives except in two small areas. Areal control is lacking in southern Ada County and in the Sailor Creek area of Owyhee County because these areas are still in a primitive state of water development and few, if any, wells have been drilled. As these areas are developed, early efforts should be made to establish observation wells, or wells might be drilled specifically for the purpose of observing water levels.
SELECTED BIBLIOGRAPHY

TABLE 1
RECORDS OF OBSERVATION WELLS IN SOUTHWESTERN IDAHO

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (ft)</th>
<th>Casing Diam. (in.)</th>
<th>Depth (ft)</th>
<th>Well Finish</th>
<th>Type of Aquifer</th>
<th>Altitude</th>
<th>Water Level Date Measured</th>
<th>Pump Type</th>
<th>H. P.</th>
<th>Use of Water</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5N-1W-16cab1</td>
<td>628</td>
<td>8</td>
<td>492</td>
<td>X</td>
<td>S</td>
<td>2,715</td>
<td>187.6</td>
<td>4-26-67</td>
<td>S</td>
<td>1.0</td>
<td>H</td>
</tr>
<tr>
<td>35saa1</td>
<td>153</td>
<td>12</td>
<td>65</td>
<td>P</td>
<td>S</td>
<td>2,610</td>
<td>61.3</td>
<td>5-1-67</td>
<td>T</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>5N-1E-34dbb1</td>
<td>175</td>
<td>14</td>
<td>---</td>
<td>P</td>
<td>-</td>
<td>2,680</td>
<td>30.0</td>
<td>5-1-67</td>
<td>T</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>4N-1W-5ced1</td>
<td>58</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,470</td>
<td>3.7</td>
<td>4-27-67</td>
<td>S</td>
<td>0.75</td>
<td>H</td>
</tr>
<tr>
<td>-13ddbb1</td>
<td>130</td>
<td>3</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,525</td>
<td>+8.5</td>
<td>5-1-67</td>
<td>N</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>-31aaal</td>
<td>462</td>
<td>6</td>
<td>455</td>
<td>O</td>
<td>S</td>
<td>2,508</td>
<td>+25.2</td>
<td>4-28-67</td>
<td>N</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>-35aaa1</td>
<td>44</td>
<td>24</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,572</td>
<td>11.0</td>
<td>4-27-67</td>
<td>N</td>
<td>---</td>
<td>U</td>
</tr>
<tr>
<td>4N-1E-14aba1</td>
<td>100</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,620</td>
<td>24.2</td>
<td>5-1-67</td>
<td>J</td>
<td>---</td>
<td>H</td>
</tr>
<tr>
<td>4N-2E-26cccl</td>
<td>741</td>
<td>20</td>
<td>210</td>
<td>P</td>
<td>S</td>
<td>2,875</td>
<td>81.1</td>
<td>5-2-67</td>
<td>T</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>3N-1W-14aaal</td>
<td>150</td>
<td>3</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,595</td>
<td>12.7</td>
<td>5-1-67</td>
<td>P</td>
<td>---</td>
<td>H</td>
</tr>
<tr>
<td>3N-1E-5aab2</td>
<td>82</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,616</td>
<td>13.6</td>
<td>5-1-67</td>
<td>N</td>
<td>---</td>
<td>U</td>
</tr>
<tr>
<td>-11dddl</td>
<td>139</td>
<td>14</td>
<td>---</td>
<td>P</td>
<td>S</td>
<td>2,684</td>
<td>4.3</td>
<td>5-1-67</td>
<td>C</td>
<td>---</td>
<td>I</td>
</tr>
<tr>
<td>-36ada1</td>
<td>330</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,621</td>
<td>121.3</td>
<td>5-1-67</td>
<td>N</td>
<td>---</td>
<td>U</td>
</tr>
<tr>
<td>3N-2E-6aad1</td>
<td>79</td>
<td>36</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,710</td>
<td>32.6</td>
<td>5-1-67</td>
<td>J</td>
<td>---</td>
<td>H</td>
</tr>
<tr>
<td>-21bccc1</td>
<td>58</td>
<td>14</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,758</td>
<td>12.5</td>
<td>5-1-67</td>
<td>T</td>
<td>7.5</td>
<td>I</td>
</tr>
</tbody>
</table>

Depth: Depth of well below land surface datum, to nearest foot.
Casing depth: Depth to first perforation(s).
Well finish: F-perforated with gravel packing
G-screened with gravel packing
O-open end P-perforated S-screen
W-shored X-open hole

Water level: Feet above (+) or below land surface datum.
Type of pump: C-centrifugal J-jet N-none
P-piston S-submersible T-turbine

Use of water: D-dewatering H-domestic I-irrigation
P-public supply S-stock U-unused

Remarks: gpm—gallons per minute
L—driller's log available
s. c.—specific capacity
T—temperature

Type of aquifer: S-sand and (or) gravel V-volcanic rocks
Altitude: Approximate altitude of land surface in feet above mean sea level. Determined from topographic maps.
TABLE 1 (Cont.)
RECORDS OF OBSERVATION WELLS IN SOUTHWESTERN IDAHO

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (ft)</th>
<th>Casing Diam. (in.)</th>
<th>Depth Finish (ft)</th>
<th>Well Type</th>
<th>Type of Aquifer</th>
<th>Altitude (ft)</th>
<th>Water Level Date Measured</th>
<th>Pump Type</th>
<th>H.P.</th>
<th>Use of Water</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA COUNTY (Cont.)</td>
<td></td>
</tr>
<tr>
<td>3N-2E-24aca2</td>
<td>110</td>
<td>12</td>
<td>55</td>
<td>X</td>
<td>S</td>
<td>2,760</td>
<td>36.1</td>
<td>5-1-67</td>
<td>T</td>
<td>P</td>
<td>L, s.c. 4.3</td>
</tr>
<tr>
<td>2N-1W-11ada1</td>
<td>130</td>
<td>16</td>
<td>64</td>
<td>P</td>
<td>S</td>
<td>2,685</td>
<td>72.4</td>
<td>12-20-66</td>
<td>T</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>2N-1E-32aa1</td>
<td>208</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>2,750</td>
<td>62.9</td>
<td>5-19-67</td>
<td>N</td>
<td>U</td>
<td>Cont. recorder</td>
</tr>
<tr>
<td>2N-3E-4add1</td>
<td>42</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>2,840</td>
<td>33.4</td>
<td>5-1-67</td>
<td>N</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>470</td>
<td>6</td>
<td>470</td>
<td>-</td>
<td>-</td>
<td>3,095</td>
<td>392.4</td>
<td>5-1-67</td>
<td>S</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>1N-1W-7bcc1</td>
<td>408</td>
<td>20</td>
<td>14</td>
<td>X</td>
<td>V</td>
<td>2,820</td>
<td>225.3</td>
<td>4-27-67</td>
<td>T</td>
<td>400.0</td>
<td>I, L, s.c. 960</td>
</tr>
<tr>
<td></td>
<td>366</td>
<td>20</td>
<td>---</td>
<td>X</td>
<td>-</td>
<td>2,880</td>
<td>304.7</td>
<td>4-28-67</td>
<td>T</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>1N-2E-15dca1</td>
<td>600</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>2,970</td>
<td>361.5</td>
<td>5-25-67</td>
<td>T</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1S-1E-6ccd1</td>
<td>595</td>
<td>16</td>
<td>---</td>
<td>P</td>
<td>-</td>
<td>2,965</td>
<td>435.4</td>
<td>5-22-67</td>
<td>N</td>
<td>U</td>
<td>Cont. recorder</td>
</tr>
<tr>
<td>1S-4E-30aacl</td>
<td>637</td>
<td>12</td>
<td>550</td>
<td>X</td>
<td>V</td>
<td>3,150</td>
<td>487.6</td>
<td>5-24-67</td>
<td>N</td>
<td>U</td>
<td>Cont. recorder</td>
</tr>
<tr>
<td>2S-1E-18ddal</td>
<td>40</td>
<td>24</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,320</td>
<td>11.5</td>
<td>4-28-67</td>
<td>T</td>
<td>3.0</td>
<td>H</td>
</tr>
<tr>
<td>2S-4E-9dd2</td>
<td>600</td>
<td>6</td>
<td>400</td>
<td>X</td>
<td>V</td>
<td>3,122</td>
<td>421.4</td>
<td>4-24-67</td>
<td>N</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>ADAMS COUNTY</td>
<td></td>
</tr>
<tr>
<td>16N-1W-3ddcl</td>
<td>79</td>
<td>12</td>
<td>7</td>
<td>X</td>
<td>S</td>
<td>2,985</td>
<td>1.8</td>
<td>4-24-67</td>
<td>N</td>
<td>U</td>
<td>L, s.c. 5</td>
</tr>
<tr>
<td>15N-1W-10bacl</td>
<td>61</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,935</td>
<td>41.0</td>
<td>4-24-67</td>
<td>N</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>14N-1W-11cccl</td>
<td>163</td>
<td>6</td>
<td>24</td>
<td>P</td>
<td>-</td>
<td>3,000</td>
<td>4.1</td>
<td>4-24-67</td>
<td>C</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>BOISE COUNTY</td>
<td></td>
</tr>
<tr>
<td>2N-4W-22bddl</td>
<td>111</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>3,100</td>
<td>54.2</td>
<td>4-24-67</td>
<td>S</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>7N-2E-34caal</td>
<td>42</td>
<td>60</td>
<td>42</td>
<td>O</td>
<td>S</td>
<td>2,650</td>
<td>39.1</td>
<td>4-24-67</td>
<td>S</td>
<td>H</td>
<td>Local observer</td>
</tr>
<tr>
<td>CANYON COUNTY</td>
<td></td>
</tr>
<tr>
<td>6N-5W-30bab1</td>
<td>169</td>
<td>12</td>
<td>135</td>
<td>X</td>
<td>S</td>
<td>2,225</td>
<td>30.0</td>
<td>4-26-67</td>
<td>T</td>
<td>20.0</td>
<td>I, L, s.c. 10</td>
</tr>
<tr>
<td>5N-5W-18cacl</td>
<td>250</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>2,225</td>
<td>12.4</td>
<td>4-26-67</td>
<td>S</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>18</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>2,300</td>
<td>9.5</td>
<td>5-12-67</td>
<td>N</td>
<td>U</td>
<td>Cont. recorder</td>
</tr>
<tr>
<td>5N-4W-13bce1</td>
<td>105</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>2,395</td>
<td>19.7</td>
<td>4-26-67</td>
<td>J</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>5N-3W-11bca1</td>
<td>365</td>
<td>16</td>
<td>311</td>
<td>P</td>
<td>S</td>
<td>2,625</td>
<td>160.1</td>
<td>4-26-67</td>
<td>T</td>
<td>I</td>
<td>L</td>
</tr>
</tbody>
</table>
TABLE 1 (Cont.)
RECORDS OF OBSERVATION WELLS IN SOUTHWESTERN IDAHO

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (ft)</th>
<th>Casing Diam. (in.)</th>
<th>Depth (ft)</th>
<th>Type of Aquifer</th>
<th>Altitude (ft)</th>
<th>Water Level Date Measured</th>
<th>Pump Type</th>
<th>H.P.</th>
<th>Use of Water</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5N-2W-22caal</td>
<td>450</td>
<td>12</td>
<td>279</td>
<td>P</td>
<td>2,610</td>
<td>185.9</td>
<td>T</td>
<td>---</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>4N-5W-7dcc1</td>
<td>130</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>2,292</td>
<td>12.2</td>
<td>T</td>
<td>10.0</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>-22cc1</td>
<td>37</td>
<td>6</td>
<td>33</td>
<td>X</td>
<td>2,290</td>
<td>9.2</td>
<td>C</td>
<td>3.0</td>
<td>Yields 90 gpm</td>
<td>Small flow</td>
</tr>
<tr>
<td>4N-4W-5ddb1</td>
<td>178</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>2,284</td>
<td>+3.3</td>
<td>N</td>
<td>---</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>-11ddal</td>
<td>42</td>
<td>4</td>
<td>37</td>
<td>X</td>
<td>2,310</td>
<td>7.4</td>
<td>C</td>
<td>---</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>-32dbb1</td>
<td>155</td>
<td>12</td>
<td>28</td>
<td>F</td>
<td>2,530</td>
<td>41.3</td>
<td>T</td>
<td>40.0</td>
<td>I</td>
<td>L, s.c. 2.2</td>
</tr>
<tr>
<td>4N-3W-13baa1</td>
<td>185</td>
<td>6</td>
<td>185</td>
<td>O</td>
<td>2,370</td>
<td>+6.2</td>
<td>N</td>
<td>---</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>4N-2W-34ddc1</td>
<td>150</td>
<td>16</td>
<td>---</td>
<td>-</td>
<td>2,562</td>
<td>13.0</td>
<td>T</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>3N-4W-11dad1</td>
<td>91</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>2,497</td>
<td>11.6</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td>Cont. recorder</td>
</tr>
<tr>
<td>3N-3W-3hcb2</td>
<td>94</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>2,428</td>
<td>14.6</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>3N-2W-7dddl1</td>
<td>100</td>
<td>4</td>
<td>80</td>
<td>X</td>
<td>2,450</td>
<td>10.8</td>
<td>S</td>
<td>---</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>3N-1W-7bcb1</td>
<td>51</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>2,495</td>
<td>8.6</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2N-4W-36aad1</td>
<td>550</td>
<td>12</td>
<td>120</td>
<td>P</td>
<td>2,305</td>
<td>80.5</td>
<td>T</td>
<td>---</td>
<td>I</td>
<td>L, s.c. 3.1</td>
</tr>
<tr>
<td>2N-3W-2dcc1</td>
<td>46</td>
<td>36</td>
<td>---</td>
<td>-</td>
<td>2,550</td>
<td>19.1</td>
<td>J</td>
<td>---</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>-6ddc1</td>
<td>---</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>2,614</td>
<td>214.7</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2N-3W-22ddc1</td>
<td>580</td>
<td>14</td>
<td>400</td>
<td>F</td>
<td>2,750</td>
<td>313.0</td>
<td>T</td>
<td>125.0</td>
<td>I</td>
<td>L, s.c. 7.9</td>
</tr>
<tr>
<td>2N-2W-6aab1</td>
<td>132</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>2,575</td>
<td>71.7</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>-23eb1</td>
<td>165</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>2,655</td>
<td>109.6</td>
<td>N</td>
<td>---</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>2N-1W-7bce4</td>
<td>103</td>
<td>6</td>
<td>---</td>
<td>P</td>
<td>2,550</td>
<td>9.9</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td>Cont. recorder</td>
</tr>
<tr>
<td>1N-2W-5add1</td>
<td>720</td>
<td>12</td>
<td>415</td>
<td>P</td>
<td>2,675</td>
<td>134.9</td>
<td>T</td>
<td>75.0</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>-17dd1</td>
<td>565</td>
<td>16</td>
<td>20</td>
<td>P</td>
<td>2,718</td>
<td>201.1</td>
<td>T</td>
<td>100.0</td>
<td>I</td>
<td>L, yields 1350 gpm</td>
</tr>
<tr>
<td>1S-2W-14cc2</td>
<td>235</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>2,395</td>
<td>46.8</td>
<td>J</td>
<td>0.5</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

CANYON COUNTY (Cont.)

ELMORE COUNTY

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (ft)</th>
<th>Casing Diam. (in.)</th>
<th>Depth (ft)</th>
<th>Type of Aquifer</th>
<th>Altitude (ft)</th>
<th>Water Level Date Measured</th>
<th>Pump Type</th>
<th>H.P.</th>
<th>Use of Water</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N-4E23aab1</td>
<td>64</td>
<td>18</td>
<td>---</td>
<td>P</td>
<td>3,500</td>
<td>27.1</td>
<td>T</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1S-4E10dad1</td>
<td>525</td>
<td>10</td>
<td>525</td>
<td>S</td>
<td>3,300</td>
<td>341.6</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1S-5E35bab1</td>
<td>445</td>
<td>16</td>
<td>400</td>
<td>P</td>
<td>3,360</td>
<td>161.9</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2S-5E36bb1</td>
<td>356</td>
<td>6</td>
<td>50</td>
<td>X</td>
<td>3,190</td>
<td>285.1</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td>Cont. recorder</td>
</tr>
<tr>
<td>2S-6E11dac1</td>
<td>1,620</td>
<td>12</td>
<td>---</td>
<td>-</td>
<td>3,540</td>
<td>107.7</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Well</td>
<td>Depth (ft)</td>
<td>Casing Diam. (in.)</td>
<td>Depth Fin. (ft)</td>
<td>Well Type</td>
<td>Type of Aquifer</td>
<td>Altitude (ft)</td>
<td>Water Level Depth (ft)</td>
<td>Date Measured</td>
<td>Pump Type</td>
<td>H. P.</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>ELMORE COUNTY (Cont.)</td>
<td></td>
</tr>
<tr>
<td>3S - 6E - 35abb1</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>O</td>
<td>S</td>
<td>3,135</td>
<td>6.6</td>
<td>4-24-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>3S - 7E - 3cdc1</td>
<td>411</td>
<td>6</td>
<td>---</td>
<td>X</td>
<td>S</td>
<td>3,395</td>
<td>+131.6</td>
<td>4-24-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>3S - 8E - 36cd1</td>
<td>600</td>
<td>8</td>
<td>---</td>
<td>P</td>
<td>S</td>
<td>2,485</td>
<td>18.9</td>
<td>4-26-67</td>
<td>T</td>
<td>25.0</td>
</tr>
<tr>
<td>4S - 5E - 19cba1</td>
<td>490</td>
<td>18</td>
<td>4</td>
<td>X</td>
<td>V</td>
<td>3,000</td>
<td>321.2</td>
<td>4-26-67</td>
<td>T</td>
<td>---</td>
</tr>
<tr>
<td>-25bbcl</td>
<td>530</td>
<td>20</td>
<td>444</td>
<td>S</td>
<td>V</td>
<td>3,048</td>
<td>359.1</td>
<td>4-24-67</td>
<td>T</td>
<td>350.0</td>
</tr>
<tr>
<td>4S - 7E - 9dcl</td>
<td>862</td>
<td>12</td>
<td>630</td>
<td>X</td>
<td>V</td>
<td>3,152</td>
<td>367.7</td>
<td>4-24-67</td>
<td>T</td>
<td>300.0</td>
</tr>
<tr>
<td>4S - 10E - 30bbal</td>
<td>2,265</td>
<td>20</td>
<td>---</td>
<td>S</td>
<td>P</td>
<td>2,850</td>
<td>175.9</td>
<td>4-26-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>5S - 4E - 5caal</td>
<td>600</td>
<td>14</td>
<td>440</td>
<td>P</td>
<td>S</td>
<td>3,030</td>
<td>381.6</td>
<td>4-26-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>5S - 6E - 14bal1</td>
<td>408</td>
<td>8</td>
<td>30</td>
<td>X</td>
<td>-</td>
<td>3,030</td>
<td>381.6</td>
<td>4-26-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>5S - 7E - 3adb1</td>
<td>1,260</td>
<td>8</td>
<td>592</td>
<td>F</td>
<td>S</td>
<td>3,090</td>
<td>422.0</td>
<td>4-24-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>5S - 8E - 36cc1</td>
<td>90</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,536</td>
<td>63.4</td>
<td>4-25-67</td>
<td>J</td>
<td>---</td>
</tr>
<tr>
<td>5S - 9E - 21abc1</td>
<td>905</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>3,065</td>
<td>513.4</td>
<td>4-24-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>5S - 10E - 32adal</td>
<td>1,006</td>
<td>6</td>
<td>85</td>
<td>X</td>
<td>-</td>
<td>2,510</td>
<td>+39.7</td>
<td>4-25-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>6S - 10E - 60dcl</td>
<td>437</td>
<td>6</td>
<td>---</td>
<td>P</td>
<td>V</td>
<td>2,990</td>
<td>251.1</td>
<td>4-25-67</td>
<td>P</td>
<td>---</td>
</tr>
<tr>
<td>6S - 11E - 6bbal</td>
<td>445</td>
<td>6</td>
<td>---</td>
<td>P</td>
<td>-</td>
<td>2,680</td>
<td>109.2</td>
<td>4-25-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>GEM COUNTY</td>
<td></td>
</tr>
<tr>
<td>7N - 3W - 14bb1</td>
<td>170</td>
<td>4</td>
<td>160</td>
<td>X</td>
<td>S</td>
<td>2,400</td>
<td>105.8</td>
<td>4-26-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>-36ccl</td>
<td>32</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,260</td>
<td>+15.9</td>
<td>4-26-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>7N - 2W - 35ab1</td>
<td>99</td>
<td>36</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>---</td>
<td>76.6</td>
<td>4-26-67</td>
<td>T</td>
<td>---</td>
</tr>
<tr>
<td>7N - 1W - 28cc1</td>
<td>64</td>
<td>6</td>
<td>54</td>
<td>P</td>
<td>S</td>
<td>2,500</td>
<td>43.6</td>
<td>4-26-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>7N - 1E - 3accl</td>
<td>6</td>
<td>24</td>
<td>6</td>
<td>O</td>
<td>S</td>
<td>2,560</td>
<td>3.1</td>
<td>4-24-67</td>
<td>C</td>
<td>---</td>
</tr>
<tr>
<td>-26ddcl</td>
<td>400</td>
<td>10</td>
<td>160</td>
<td>P</td>
<td>S</td>
<td>2,695</td>
<td>40.8</td>
<td>4-24-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>6N - 2W - 15dc1</td>
<td>20</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,350</td>
<td>7.3</td>
<td>4-26-67</td>
<td>C</td>
<td>---</td>
</tr>
<tr>
<td>6N - 1W - 9cc1</td>
<td>385</td>
<td>6</td>
<td>373</td>
<td>-</td>
<td>-</td>
<td>2,405</td>
<td>26.4</td>
<td>4-26-67</td>
<td>J</td>
<td>---</td>
</tr>
<tr>
<td>Well</td>
<td>Depth (ft)</td>
<td>Casing Diam. (in.)</td>
<td>Casing Depth (ft)</td>
<td>Well Finish</td>
<td>Type of Aquifer</td>
<td>Altitude Depth (ft)</td>
<td>Water Level Measured Date</td>
<td>Pump Type</td>
<td>H. P.</td>
<td>Use of Water</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>3N-5W-19dc1</td>
<td>325</td>
<td>4</td>
<td>110</td>
<td>X</td>
<td>-</td>
<td>2,378</td>
<td>58.4</td>
<td>4-28-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>3N-4W-30aab1</td>
<td>200</td>
<td>12</td>
<td>63</td>
<td>X</td>
<td>S</td>
<td>2,305</td>
<td>53.0</td>
<td>1-3-67</td>
<td>T</td>
<td>---</td>
</tr>
<tr>
<td>2N-4W-7dbbl1</td>
<td>1,100</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>V</td>
<td>2,356</td>
<td>49.2</td>
<td>4-28-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>1N-3W-20bda1</td>
<td>155</td>
<td>12</td>
<td>90</td>
<td>P</td>
<td>-</td>
<td>2,475</td>
<td>35.7</td>
<td>4-28-67</td>
<td>T</td>
<td>20.0</td>
</tr>
<tr>
<td>1S-3W-1bcbl1</td>
<td>---</td>
<td>3</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>2,290</td>
<td>+8.1</td>
<td>5-5-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>2S-3W-18dbcl</td>
<td>910</td>
<td>6</td>
<td>189</td>
<td>X</td>
<td>V</td>
<td>3,787</td>
<td>+2.6</td>
<td>4-24-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>2S-2W-3ccbl1</td>
<td>900</td>
<td>8</td>
<td>66</td>
<td>X</td>
<td>V</td>
<td>2,467</td>
<td>38.5</td>
<td>4-28-67</td>
<td>T</td>
<td>5.0</td>
</tr>
<tr>
<td>3S-1W-8cbb1</td>
<td>920</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>V</td>
<td>3,180</td>
<td>414.5</td>
<td>4-26-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>3S-1E-35dcb1</td>
<td>300</td>
<td>6</td>
<td>60</td>
<td>X</td>
<td>-</td>
<td>2,340</td>
<td>14.6</td>
<td>4-26-67</td>
<td>C</td>
<td>---</td>
</tr>
<tr>
<td>43-2W-11ab1</td>
<td>450</td>
<td>12</td>
<td>20</td>
<td>P</td>
<td>-</td>
<td>3,260</td>
<td>3.6</td>
<td>4-26-67</td>
<td>T</td>
<td>---</td>
</tr>
<tr>
<td>4S-1E-30bb1</td>
<td>320</td>
<td>10</td>
<td>32</td>
<td>X</td>
<td>-</td>
<td>2,810</td>
<td>40.9</td>
<td>4-26-67</td>
<td>T</td>
<td>7.5</td>
</tr>
<tr>
<td>5S-1E-29aa1</td>
<td>666</td>
<td>10</td>
<td>74</td>
<td>X</td>
<td>V</td>
<td>---</td>
<td>28.7</td>
<td>4-26-67</td>
<td>T</td>
<td>---</td>
</tr>
<tr>
<td>5S-2E-5bcb1</td>
<td>2,800</td>
<td>10</td>
<td>---</td>
<td>O</td>
<td>V</td>
<td>2,530</td>
<td>+51.6</td>
<td>5-23-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>6S-3E-14bcb1</td>
<td>1,341</td>
<td>4</td>
<td>373</td>
<td>X</td>
<td>V</td>
<td>2,643</td>
<td>13.6</td>
<td>5-26-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>6S-4E-15bcb1</td>
<td>2,000</td>
<td>15</td>
<td>1,400</td>
<td>X</td>
<td>V</td>
<td>2,606</td>
<td>6.1</td>
<td>4-26-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>6S-5E-24bec1</td>
<td>1,095</td>
<td>6</td>
<td>76</td>
<td>X</td>
<td>V</td>
<td>2,525</td>
<td>+49.8</td>
<td>4-26-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>6S-33dcb1</td>
<td>142</td>
<td>6</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,540</td>
<td>3.1</td>
<td>4-26-67</td>
<td>C</td>
<td>---</td>
</tr>
<tr>
<td>6S-6E-11ba1</td>
<td>89</td>
<td>4</td>
<td>---</td>
<td>-</td>
<td>S</td>
<td>2,505</td>
<td>63.2</td>
<td>4-25-67</td>
<td>J</td>
<td>---</td>
</tr>
<tr>
<td>6S-7E-3dcb1</td>
<td>32</td>
<td>---</td>
<td>W</td>
<td>S</td>
<td>-</td>
<td>2,490</td>
<td>38.6</td>
<td>4-25-67</td>
<td>J</td>
<td>---</td>
</tr>
<tr>
<td>7S-4E-10db1</td>
<td>907</td>
<td>16</td>
<td>200</td>
<td>X</td>
<td>-</td>
<td>2,750</td>
<td>57.5</td>
<td>2-2-67</td>
<td>T</td>
<td>250.0</td>
</tr>
<tr>
<td>7S-5E-19ccl1</td>
<td>760</td>
<td>12</td>
<td>300</td>
<td>X</td>
<td>V</td>
<td>2,720</td>
<td>25.9</td>
<td>4-26-67</td>
<td>T</td>
<td>---</td>
</tr>
<tr>
<td>7S-6E-9bcb1</td>
<td>960</td>
<td>8</td>
<td>80</td>
<td>X</td>
<td>O</td>
<td>2,578</td>
<td>+26.7</td>
<td>4-25-67</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>7S-26ad1</td>
<td>1,000</td>
<td>12</td>
<td>171</td>
<td>X</td>
<td>V</td>
<td>2,700</td>
<td>0.8</td>
<td>4-25-67</td>
<td>C</td>
<td>---</td>
</tr>
<tr>
<td>8S-11E-33cba1</td>
<td>290</td>
<td>6</td>
<td>---</td>
<td>P</td>
<td>S</td>
<td>3,190</td>
<td>172.6</td>
<td>4-25-67</td>
<td>S</td>
<td>---</td>
</tr>
<tr>
<td>9S-12E-29db1</td>
<td>530</td>
<td>18</td>
<td>---</td>
<td>-</td>
<td>-</td>
<td>3,640</td>
<td>195.9</td>
<td>4-25-67</td>
<td>N</td>
<td>---</td>
</tr>
</tbody>
</table>

OWYHEE COUNTY

- L, s. c. 7.2
- Yields 175 gpm
- T 106°F
- Cont. recorder
- L, yields 700 gpm
- Yields 17 gpm
<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (ft)</th>
<th>Casing Diam. (in.)</th>
<th>Depth Finish (ft)</th>
<th>Type of Aquifer</th>
<th>Altitude (ft)</th>
<th>Water Level Date</th>
<th>Pump Type</th>
<th>H. P.</th>
<th>Use of Water</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payette County</td>
<td></td>
</tr>
<tr>
<td>9N-5W-13ecbl</td>
<td>88</td>
<td>6</td>
<td>83</td>
<td>S</td>
<td>2,195</td>
<td>56.7 4-25-67</td>
<td>S</td>
<td>---</td>
<td>H</td>
<td>L, yields 30 gpm</td>
</tr>
<tr>
<td>8N-5W-3badl</td>
<td>26</td>
<td>12</td>
<td>---</td>
<td>S</td>
<td>2,156</td>
<td>9.4 4-25-67</td>
<td>C</td>
<td>7.5</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>-14cddl</td>
<td>42</td>
<td>3</td>
<td>---</td>
<td>P</td>
<td>2,212</td>
<td>31.1 4-25-67</td>
<td>J</td>
<td>---</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>8N-4W-3acd1</td>
<td>183</td>
<td>5</td>
<td>129</td>
<td>F</td>
<td>2,335</td>
<td>74.7 4-25-67</td>
<td>S</td>
<td>---</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>-14bdal</td>
<td>18</td>
<td>48</td>
<td>---</td>
<td>O</td>
<td>2,195</td>
<td>11.6 4-25-67</td>
<td>C</td>
<td>3.0</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>-33acal</td>
<td>29</td>
<td>6</td>
<td>---</td>
<td>S</td>
<td>2,211</td>
<td>5.5 5-17-67</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td>Cont. recorder</td>
</tr>
<tr>
<td>8N-3W-19adc1</td>
<td>600</td>
<td>12</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7N-5W-2bce1</td>
<td>55</td>
<td>10</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-25bcbl</td>
<td>160</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7N-4W-25cbe1</td>
<td>99</td>
<td>4</td>
<td>97</td>
<td>P</td>
<td>2,390</td>
<td>47.4 4-25-67</td>
<td>S</td>
<td>---</td>
<td>H</td>
<td>L, s.c. 3.0</td>
</tr>
<tr>
<td>7N-3W-7ab1</td>
<td>118</td>
<td>4</td>
<td>---</td>
<td>S</td>
<td>2,175</td>
<td>+12.2 4-25-67</td>
<td>N</td>
<td>---</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>6N-3W-18dd1</td>
<td>300</td>
<td>4</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>Valley County</td>
<td></td>
</tr>
<tr>
<td>18N-3E-36bc1</td>
<td>160</td>
<td>6</td>
<td>140</td>
<td>F</td>
<td>5,120</td>
<td>42.7 4-24-67</td>
<td>J</td>
<td>---</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>16N-3E-14adb1</td>
<td>100</td>
<td>6</td>
<td>80</td>
<td>F</td>
<td>4,865</td>
<td>1.9 4-24-67</td>
<td>S</td>
<td>---</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>13N-4E-16bad1</td>
<td>84</td>
<td>6</td>
<td>67</td>
<td>X</td>
<td>4,770</td>
<td>23.3 4-24-67</td>
<td>S</td>
<td>---</td>
<td>H</td>
<td>L, s.c. 0.3</td>
</tr>
<tr>
<td>12N-4E-8acc1</td>
<td>55</td>
<td>6</td>
<td>---</td>
<td>S</td>
<td>4,775</td>
<td>53.7 4-24-67</td>
<td>S</td>
<td>---</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Washington County</td>
<td></td>
</tr>
<tr>
<td>14N-2W-6dce1</td>
<td>398</td>
<td>4</td>
<td>315</td>
<td>X</td>
<td>2,745</td>
<td>+14.0 4-24-67</td>
<td>T</td>
<td>3.0</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>13N-4W-12cbe1</td>
<td>170</td>
<td>6</td>
<td>---</td>
<td></td>
<td>2,625</td>
<td>52.0 4-24-67</td>
<td>S</td>
<td>---</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>13N-3W-10cdd1</td>
<td>320</td>
<td>8</td>
<td>149</td>
<td>X</td>
<td>2,610</td>
<td>1.3 4-24-67</td>
<td>P</td>
<td>---</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>12N-4W-31dcb1</td>
<td>95</td>
<td>6</td>
<td>---</td>
<td></td>
<td>2,510</td>
<td>39.6 4-24-67</td>
<td>S</td>
<td>---</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>11N-6W-14bcbl</td>
<td>72</td>
<td>12</td>
<td>45</td>
<td>F</td>
<td>2,178</td>
<td>33.0 4-25-67</td>
<td>T</td>
<td>15.0</td>
<td>I</td>
<td>L, s.c. 7.7</td>
</tr>
<tr>
<td>10N-4W-6add1</td>
<td>---</td>
<td>6</td>
<td>---</td>
<td></td>
<td>2,185</td>
<td>+36.2 4-25-67</td>
<td>N</td>
<td>---</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>
GEOLeCAL SURVEY

INDEX

FIGURE 1.--MAP OF SOUTHWESTERN IDAHO SHOWING LOCATION AND FREQUENCY OF MEASUREMENT OF OBSERVATION WELLS.