Summary of Groundwater Levels in the Grand View-Bruneau Groundwater Monitoring Network – 2011 Update

By
Mike McVay

January 2012
Introduction
The Idaho Department of Water Resources (IDWR) manages a groundwater-level monitoring network in the area encompassing Grand View and Bruneau, in Owyhee County of southwestern Idaho. The monitoring network currently consists of 18 wells that are measured on a monthly basis. The purpose of the groundwater monitoring program is to observe water levels within the Grand View-Bruneau Groundwater Management Area (GBGWMA) that was designated on October 29, 1982 (IDWR, 1982). Designation was based on concern that there was insufficient groundwater supply for existing irrigation uses or to fulfill pending applications and permits.

Groundwater conditions in the GBGWMA are summarized in several reports (Piper, 1924; Littleton and Crotchwaite, 1957; Ralston and Chapman, 1969; Young and Whitehead, 1975; Rightmire, Young and Whitehead, 1976; Young and Lewis, 1982; Berenbrock, 1993; Mink and Lockwood, 1995; Harrington and Bendixsen, 1998). A management plan has not been developed for the area nor has an advisory committee been formed. Currently, data from this monitoring network provide the primary source of information for the management of the groundwater resource in this area.

Purpose and Scope
The purpose of this report is to summarize the status of the groundwater monitoring network and present water-level data collected over the network’s history.

Status of the Monitoring Network
Historically, up to 23 wells have been measured regularly in the monitoring network, and there are 67 wells with five or more water-level measurements. Currently, 18 of the 23 historic wells are being measured on a monthly basis (Figure 1). Table 1 summarizes the historical network and identifies the wells that are currently being monitored.

The oldest record in the network has monitoring data dating back to 1953. Wells included in the historic network that are no longer being monitored have been dropped from the network due to access restrictions or poor data quality (i.e., unreliable measurements).

Data for the active wells consists generally of monthly measurements. However, irrigation pumping or other temporary access restrictions result in short-term data gaps, typically during the irrigation season. Water-level data for the current monitoring network are displayed in Appendix A.
Figure 1. Grand View – Bruneau Groundwater Monitoring Network.
Table 1. Summary of the Historical Groundwater Monitoring Network for the Grand View-Bruneau Groundwater Management Area.

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Period of Water Level Record</th>
<th>Well Type</th>
<th>Current Monitoring Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>06S03E14BCB1</td>
<td>1953-2011</td>
<td>Monitoring</td>
<td>Monthly.</td>
</tr>
<tr>
<td>06S04E14ABC1</td>
<td>1957-2008</td>
<td>Irrigation</td>
<td>Dropped from network due to measurement difficulties (snags measurement equipment).</td>
</tr>
<tr>
<td>06S05E33DBB1</td>
<td>1953-2011</td>
<td>Domestic</td>
<td>Monthly.</td>
</tr>
<tr>
<td>06S05E35CBD1</td>
<td>1980-2011</td>
<td>Irrigation</td>
<td>Monthly.</td>
</tr>
<tr>
<td>07S05E18BCD1</td>
<td>1954-2011</td>
<td>Irrigation</td>
<td>Monthly.</td>
</tr>
<tr>
<td>07S05E19CCC1</td>
<td>1953-2000</td>
<td>Irrigation</td>
<td>Dropped due to access difficulties.</td>
</tr>
<tr>
<td>07S05E21CCA1</td>
<td>1978-2007</td>
<td>Irrigation</td>
<td>Dropped from network due to measurement difficulties (too much oil).</td>
</tr>
<tr>
<td>07S05E33BCC1</td>
<td>1994-2011</td>
<td>Domestic</td>
<td>Monthly.</td>
</tr>
<tr>
<td>07S06E09BAD2</td>
<td>1953-2011</td>
<td>Irrigation</td>
<td>Monthly.</td>
</tr>
<tr>
<td>07S06E34BBA1</td>
<td>1990-2011</td>
<td>Monitoring</td>
<td>Monthly.</td>
</tr>
<tr>
<td>07S06E34BCA2</td>
<td>1990-2011</td>
<td>Monitoring</td>
<td>Monthly.</td>
</tr>
<tr>
<td>07S06E34BCA3</td>
<td>1990-2011</td>
<td>Monitoring</td>
<td>Monthly.</td>
</tr>
<tr>
<td>07S06E34DAD1</td>
<td>1979-2002</td>
<td>Irrigation</td>
<td>Dropped from network due to access difficulties.</td>
</tr>
<tr>
<td>08S05E16AAA1</td>
<td>1989-2001</td>
<td>Stock</td>
<td>Dropped from network due to access difficulties.</td>
</tr>
<tr>
<td>08S06E03BCD1</td>
<td>1990-2011</td>
<td>Monitoring</td>
<td>Monthly.</td>
</tr>
<tr>
<td>08S06E03BCD2</td>
<td>1990-2011</td>
<td>Monitoring</td>
<td>Monthly.</td>
</tr>
<tr>
<td>08S06E03BCD3</td>
<td>1990-2011</td>
<td>Monitoring</td>
<td>Monthly.</td>
</tr>
<tr>
<td>08S06E04DCD1</td>
<td>1990-2011</td>
<td>Monitoring</td>
<td>Monthly.</td>
</tr>
</tbody>
</table>

Summary of Water Level Data

A review of the data from the wells in the current monitoring network was conducted to summarize the general water-level elevations, historic changes in water levels, recent (10-year) changes in water levels, and seasonal fluctuations experienced in each well. Analyses of the data from wells in the historic monitoring network that are no longer monitored were not conducted.

General Water Level Elevation Analysis

The Grand View-Bruneau area is underlain by a regional warm water aquifer system. This aquifer system is characterized by multiple confined and partially confined flow zones that exhibit increasing hydraulic head with depth. The construction of most wells in the network allows mixing, or hydraulic communication, between multiple flow zones.
This precludes the creation of a groundwater flow map using the monitoring network data because the observed water levels represent an unknown combination of flow zones.

Previous research in the area indicates that groundwater flow is generally south to north within the GBGWMA, and locally can vary from northeastward to northwestward (Littleton and Crosthwaite, 1957; Young and Lewis, 1982; Berenbrock, 1993).

Overall Water Level Changes

To evaluate the current conditions of the aquifer, analyses of water levels were conducted to determine the differences between the historic water levels and current water levels. No pumping water levels were included in the analyses. Eight of the 18 currently monitored wells in the network have been monitored since 1970. The water levels in all eight wells were lower in the spring of 2010 than they were in the spring of 1970. These wells show long-term water-level declines ranging from 2.4 to 36.0 feet (Table 2).

Nine of the 18 wells in the network only have data dating back to 1990, and all nine indicate lower water levels in 2010. These wells show long-term water-level declines ranging from 6.1 to 12.3 feet over the 20-year period.

Well 07S05E-33BCC1 was added to the network in 2008. The spring 2010 water level is approximately 35.8 lower than the water level recorded on the driller’s report when the well was installed in 1994.

To facilitate comparison of long-term water-level behavior, water-level differences for the period 1990 - 2010 were evaluated for all wells in the network (Table 2). Sixteen of the currently monitored wells in the network indicate lower water levels in the spring of 2010 compared to water levels in the spring of 1990. These wells show a 20-year water-level decline of 4.6 to 17.0 feet. Wells 07S05E-18BCD1 and 07S06E-09BAD2 indicated positive water-level changes of 3.9 and 4.8 feet, respectively. Both wells exhibit long-term downward trends, although it appears that the lowest water levels in both of these wells occurred during the late 1980’s and early 1990’s.

Recent Water Level Changes

An analysis of the data collected over the past 10 years was conducted to evaluate any recent changes in water levels. All but one of the wells in the current network show water-level declines over the past 10 years. One well, 07S06E09BAD2, indicates an increase in water levels when comparing the spring 2000 water-level measurement to the spring 2010 measurement. The 10-year water-level differences are listed in Table 2 and illustrated in Figure 3.
Table 2. Summary of water-level changes for wells in the current monitoring network.

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Maximum Seasonal Water Level Change (feet)</th>
<th>Minimum Seasonal Water Level Change (feet)</th>
<th>Average Seasonal Water Level Change (feet)</th>
<th>10-YR Water Level Change (feet)</th>
<th>20-YR Water Level Change (feet)</th>
<th>Overall Water Level Change (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06S03E14BCB1</td>
<td>-34.6</td>
<td>-0.6</td>
<td>-16.3</td>
<td>-17.0</td>
<td>-15.2</td>
<td>-36.0</td>
</tr>
<tr>
<td>06S05E33DBB1</td>
<td>-27.5</td>
<td>-0.2</td>
<td>-14.4</td>
<td>-4.2</td>
<td>-4.6</td>
<td>-5.3</td>
</tr>
<tr>
<td>06S05E35CBD1</td>
<td>-78.5</td>
<td>0.4</td>
<td>-37.8</td>
<td>-7.1</td>
<td>-17.0</td>
<td>-4.2</td>
</tr>
<tr>
<td>07S04E27BCC1</td>
<td>-7.8</td>
<td>-5.4</td>
<td>-6.5</td>
<td>-8.8</td>
<td>-12.6</td>
<td>-19.9</td>
</tr>
<tr>
<td>07S05E13CBB1</td>
<td>-140.5</td>
<td>-1.6</td>
<td>-26.7</td>
<td>-7.9</td>
<td>-14.4</td>
<td>-19.3</td>
</tr>
<tr>
<td>07S05E18BCD1</td>
<td>-22.7</td>
<td>-1.5</td>
<td>-9.9</td>
<td>-5.4</td>
<td>3.9</td>
<td>-25.1</td>
</tr>
<tr>
<td>07S05E33BCC1</td>
<td>-2.5</td>
<td>-2.3</td>
<td>-2.4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>07S06E09BAD2</td>
<td>-45.2</td>
<td>-7.9</td>
<td>-25.2</td>
<td>4.3</td>
<td>4.8</td>
<td>-2.4</td>
</tr>
<tr>
<td>07S06E26BDA1</td>
<td>-25.4</td>
<td>-3.5</td>
<td>-6.9</td>
<td>-14.5</td>
<td>-13.1</td>
<td>-14.7</td>
</tr>
<tr>
<td>07S06E29BBA1</td>
<td>-6.8</td>
<td>-5.0</td>
<td>-6.0</td>
<td>-8.3</td>
<td>-9.9</td>
<td>-9.9</td>
</tr>
<tr>
<td>07S06E29BBA2</td>
<td>-0.4</td>
<td>0</td>
<td>-0.16</td>
<td>-3.9</td>
<td>-6.1</td>
<td>-6.1</td>
</tr>
<tr>
<td>07S06E34BCA1</td>
<td>-6.0</td>
<td>-4.5</td>
<td>-4.9</td>
<td>-8.4</td>
<td>-11.4</td>
<td>-11.4</td>
</tr>
<tr>
<td>07S06E34BCA2</td>
<td>-6.0</td>
<td>-4.0</td>
<td>-4.9</td>
<td>-7.8</td>
<td>-10.7</td>
<td>-10.7</td>
</tr>
<tr>
<td>07S06E34BCA3</td>
<td>-6.2</td>
<td>-3.4</td>
<td>-5.2</td>
<td>-8.8</td>
<td>-11.5</td>
<td>-11.5</td>
</tr>
<tr>
<td>08S06E03BCD1</td>
<td>-6.2</td>
<td>-4.1</td>
<td>-5.2</td>
<td>-8.5</td>
<td>-12.3</td>
<td>-12.3</td>
</tr>
<tr>
<td>08S06E03BCD2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>08S06E03BCD3</td>
<td>-5.5</td>
<td>-0.9</td>
<td>-3.8</td>
<td>-6.5</td>
<td>-6.7</td>
<td>-6.7</td>
</tr>
<tr>
<td>08S06E04DCD1</td>
<td>-6.8</td>
<td>-3.5</td>
<td>-5.7</td>
<td>-8.5</td>
<td>-11.8</td>
<td>-11.8</td>
</tr>
</tbody>
</table>

1. Seasonal fluctuations represent the difference between non-pumping March and September water levels within a given year.
2. 10-Year water-level changes represent the difference between the non-pumping March 2010 and 2000 water levels.
3. The overall water-level change represents the difference between the non-pumping March 2010 and the March 1970 water levels.
4. The overall water-level change represents the difference between the non-pumping March 2010 water level and the earliest spring water level for wells without data reaching back to 1970.
5. The overall water-level change was calculated using March 2010 and March 1967 data.
7. The overall water-level changes were calculated using the 1990 and 2010 March water levels.
8. Since 2007, well is dry for at least six months every year.

On average, water levels in the GBGWMA area have declined 7.6 feet in the past 10 years, resulting in an average decline of 0.76 feet/year. These declines are apparent in all but one of the monitoring wells in the current network (07S06E-09BAD2), indicating the water-level decline is regional in extent. The historic water-level analysis indicates the regional aquifer is in a continued state of decline, and has yet to reach equilibrium in terms of recharge and discharge.
Figure 3. Water-level change map for the GBGWMA from 2000 to 2010. Locations with multiple values indicate well nests or multiple wells located very near to each other.
Seasonal Fluctuations
Seasonal responses to aquifer pumping and recharge are apparent in the hydrographs for each well. In general, the hydrographs show similar timing in responses to pumping and recharge events, with the seasonal high occurring in spring and the seasonal low in the fall (Figures 4 and 5). Wells in the western part of the GBGWMA generally exhibit larger fluctuations than wells to the east. The maximum, minimum, and average seasonal fluctuations for each well were determined by finding the difference between the March and September (spring and fall) measurements (Table 2). The maximum seasonal fluctuation was experienced by well 07S05E-13CBB1, which declined 140.5 feet between March of 2000 and September of 2000. One well (07S06E-29BBA2) does not exhibit significant seasonal variability, but in general, all of the wells show some degree of seasonal fluctuation, with an average change of 10.7 feet per season.

Figure 4. Hydrographs for wells in western portion of the Grand View-Bruneau Groundwater Monitoring Network for the period 2000 - 2010.
Summary
The data collected from the GBGWMA groundwater-level monitoring network indicates that water levels in the area are declining at an average rate of 0.76 feet per year for the period 2000-2010. The most significant declines have occurred toward the northwest, near Grand View, and in the southeast corner of the study area near the confluence of the Bruneau River and Hot Creek. Continuation of this monitoring effort is essential for evaluating the water-level declines and to ensure that more significant water-level declines do not occur within the management area.

Recommendations
Based on the coverage of the current monitoring wells, it is recommended that at least one more monitoring well be incorporated into the northern portion of the monitoring network between Grand View and Bruneau to replace a discontinued well. One or more additional wells in the northwestern portion of the GBGWMA would provide more complete monitoring of the aquifer throughout the management area.

References

APPENDIX A

HYDROGRAPHS OF CURLEW VALLEY MONITORING NETWORK
Grandview-Bruneau Hydrographs – West Area

HYDROGRAPH LEGEND

TD: Total Depth

OP: Interval that well is open to aquifer

VOLCANICS: Water Bearing Lithology

--- Indicates more than one month between measurements

06S03E-14BCB1

TD: 1,324 ft

DP: 375-1,342 ft

SEDIMENTS

07S05E-33BCC1

TD: 1,390 ft

DP: 245-517 ft

VOLCANICS

07S05E-18BCD1

TD: 409 ft

DP: 382-402 ft

SEDIMENTS

06S05E-33DBB1

TD: 142 ft

DP: NA

Grandview-Bruneau Hydrographs – East Area

HYDROGRAPH LEGEND

TD: Total Depth
OP: Interval that well is open to aquifer
VOLCANICS: Water Bearing Lithology

--- Indicates more than one month between measurements

07S05E-13CBB1

TD: 1,954 ft
OP: 180-720, 1,070, 1,180, 1,360-1,680 ft
VOLCANICS, SEDIMENTS

07S06E-29BBA1

TD: 1,984 ft
OP: 184-186 ft
VOLCANICS

07S06E-29BBA2

TD: 364 ft
OP: 246-364 ft
VOLCANICS

06S05E-35CBD1

TD: 480 ft
OP: 294-480 ft
VOLCANICS

07S06E-09BAD2

TD: 360 ft
OP: NA
SEDIMENTS

07S06E-268DA1

TD: 1,200 ft
OP: 171-1,200 ft
VOLCANICS
Grandview-Bruneau Hydrographs – Bathtub Area

HYDROGRAPH LEGEND

TD: Total Depth
OP: Interval that well is open to aquifer
VOLCANICS: Water Bearing Lithology

--- Indicates more than one month between measurements