REPLACEMENT GROUND WATER SUPPLY
FIRST PHASE - LOWER TETON DIVISION
TETON BASIN PROJECT, IDAHO

By
HERBERT H. HAM
Department of the Interior
Bureau of Reclamation
Region 1
Boise, Idaho
October 1968
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>a</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>1</td>
</tr>
<tr>
<td>HYDROGEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>Geologic and Physiographic Setting</td>
<td>3</td>
</tr>
<tr>
<td>Geologic Units and Their Water Bearing Characteristics</td>
<td>3</td>
</tr>
<tr>
<td>Silicic Volcanic Rocks</td>
<td>3</td>
</tr>
<tr>
<td>Snake River Basalt</td>
<td>4</td>
</tr>
<tr>
<td>Lacustrine and Alluvial Deposits</td>
<td>5</td>
</tr>
<tr>
<td>Alluvium</td>
<td>5</td>
</tr>
<tr>
<td>Sand Dunes</td>
<td>6</td>
</tr>
<tr>
<td>GROUND WATER CONDITIONS</td>
<td>7</td>
</tr>
<tr>
<td>Occurrence and Fluctuation</td>
<td>7</td>
</tr>
<tr>
<td>Recharge and Discharge</td>
<td>8</td>
</tr>
<tr>
<td>Present Use of Ground Water</td>
<td>9</td>
</tr>
<tr>
<td>REPLACEMENT WATER SUPPLY</td>
<td>11</td>
</tr>
<tr>
<td>Division Requirements</td>
<td>11</td>
</tr>
<tr>
<td>General Considerations</td>
<td>11</td>
</tr>
<tr>
<td>St. Anthony-Rexburg-Plano Pumping Area</td>
<td>12</td>
</tr>
<tr>
<td>Preliminary Subsurface Investigations</td>
<td>14</td>
</tr>
<tr>
<td>Test Wells</td>
<td>14</td>
</tr>
<tr>
<td>Well Performance</td>
<td>15</td>
</tr>
<tr>
<td>Aquifer Characteristics</td>
<td>15</td>
</tr>
<tr>
<td>Effects on the Perched Aquifer</td>
<td>17</td>
</tr>
<tr>
<td>Quality of Water</td>
<td>18</td>
</tr>
<tr>
<td>Replacement Water Supply Wells</td>
<td>18</td>
</tr>
<tr>
<td>Design and Costs</td>
<td>18</td>
</tr>
<tr>
<td>Location of Facilities</td>
<td>21</td>
</tr>
<tr>
<td>Well Performance</td>
<td>22</td>
</tr>
<tr>
<td>EFFECTS OF REPLACEMENT PUMPING</td>
<td>24</td>
</tr>
<tr>
<td>Local</td>
<td>24</td>
</tr>
<tr>
<td>Regional</td>
<td>25</td>
</tr>
<tr>
<td>American Falls Reservoir</td>
<td>25</td>
</tr>
<tr>
<td>Mud Lake-Market Lake Basins</td>
<td>26</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>28</td>
</tr>
<tr>
<td>Table No.</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of larger wells in basalt of the alluvial lowlands</td>
</tr>
<tr>
<td>2</td>
<td>First phase ground water replacement pumping schedule for period 1928-61</td>
</tr>
<tr>
<td>3</td>
<td>Summary of well construction and performance - Test Wells 1 and 2 and Well 7N/38E-23dbl</td>
</tr>
<tr>
<td>4</td>
<td>Summary of aquifer characteristics - Test Wells 1 and 2 and wells 7N/38E-22dbl and 7N/38E-23db3</td>
</tr>
<tr>
<td>5</td>
<td>Chemical analyses of water from 9 wells and Henrys Fork River</td>
</tr>
<tr>
<td>6</td>
<td>Estimated unit prices and total cost of typical basic well</td>
</tr>
<tr>
<td>7</td>
<td>Estimated pumping lift for 14.8 c.f.s. capacity well</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location map</td>
<td>1</td>
</tr>
<tr>
<td>Geologic map of lower Henrys Fork River area and vicinity</td>
<td>3</td>
</tr>
<tr>
<td>Geologic sections:</td>
<td></td>
</tr>
<tr>
<td>E-E'</td>
<td>3</td>
</tr>
<tr>
<td>B-B'</td>
<td>4</td>
</tr>
<tr>
<td>C-C'</td>
<td>4</td>
</tr>
<tr>
<td>A-A'</td>
<td>4</td>
</tr>
<tr>
<td>D-D'</td>
<td>4</td>
</tr>
<tr>
<td>Water table contour map</td>
<td>7</td>
</tr>
<tr>
<td>Map showing depth to water table and depth to basalt in St. Anthony-Rexburg-Plano area</td>
<td>7</td>
</tr>
</tbody>
</table>
Illustrations

Hydrographs of wells in the regional aquifer:
7N/37E-28ccl, 7N/37E-14cbl, 6N/36E-27bal,
and 5N/36E-21dal ... 7
6N/39E-10bbl, 7N/38E-23db1, and 7N/40E-2bbl 7
7N/42E-8cal and 5N/40E-11bcl 7

Hydrographs of 1948-1967 precipitation at Ashton and Sugar City, recorded runoff of Henrys Fork River and recorded May-September diversions, Henrys Fork basin 8

Hydrograph of Well 7N/38E-23db2 8

Hydrographs of wells in the perched aquifer: 7N/39E-35cdl,
6N/39E-35cb2, 7N/39E-29cd1, 7N/40E-8dd1, and 7N/40E-23ccl. .. 8

Map showing thickness of saturated basalt and depth to saturated basalt in St. Anthony-Rexburg-Plano area 13

Log of Exploratory Hole:
6N/38E-30bal (badl) .. 14
6N/39E-10bb1 .. 14
7N/38E-23db3 .. 14
7N/39E-1ccl and 1cc2 ... 14
8N/40E-21dd1 .. 14
6N/39E-30adl (adc) .. 14
7N/40E-20cd1 .. 14

Log of Test Well 1 .. 15

Log of Test Well 2 .. 15

Log of Observation Wells 1A, 1B, and 1C 15

Log of Observation Wells 2A, 2B, and 2C 15

Yield - drawdown of Test Wells 1 and 2 and Well 7N/38E-23db1 15

Semilog time - drawdown graph of constant yield test -
Test Well 1 .. 16

Log log time-drawdown graph of constant yield test -
Test Well 2 .. 16

Hydrographs of Henrys Fork River level and depth to water table prior to and during pumping tests - Test Well 1 18

Diagram of typical well .. 20
Illustrations

Location of replacement wells 21
Projected drawdown in wells of 12 to 18 c.f.s. capacity .. 22
ABSTRACT

The authorized Lower Teton Division, Teton Basin Project, Idaho, is located along the Henrys Fork River from Ashton to near the mouth and along the lower reaches of the Teton River. The First Phase of the Division will require up to 400 cubic feet per second flow and 175,000 acre-feet per year of ground water on a cyclic basis. The ground water will replace surface water stored and diverted adversely to downstream rights in dry years. Ideally, the ground water should be made available within the Division service area.

The southwestward flowing lower Henrys Fork River divides a predominately silicic volcanic terrace and foothill area on the southeast from basaltic lava terrain of the Snake River Plain on the northwest. Extensive alluvial deposits overlie the silicic volcanic and basaltic rocks in the lower Henrys Fork and lower Teton valleys in the St. Anthony-Rexburg-Plano area. Investigations reveal that the basalt beneath the alluvium is thick and widespread. Generally the silicic volcanics yield water in small to large amounts, whereas the basalt yields very large amounts.

The general slope of regional water table is west-southwestward across the area. Regional static water level depth in the basalt ranges from a few feet near the mouth of the Henrys Fork to more than 125 feet near St. Anthony. Annual recharge to the regional aquifer has been estimated at approximately 725,000 acre-feet. A perched water table, which supports widespread subirrigation and domestic supplies, has developed in the alluvium.

Two test wells have been drilled in basalt of the St. Anthony-Rexburg-Plano area and subsequently pumped at yields up to 11.5 cubic feet per second with less than 6 feet of drawdown. Analysis of test results indicates that transmissibility of the basalt is 1,000 to 2,000 feet²/minute (1 to 2 x 10⁷ gallons per day per foot) and the coefficient of storage is less than 1 x 10⁻⁵.

The transmissibility of the basalt is great enough to support wells of almost unlimited capacity, but practical considerations limit the yield to about 18 cubic feet per second maximum. Provision for 27 wells of 14.8 cubic feet per second each would satisfy the demand for 400 cubic feet per second maximum flow. Wells of this yield will be 24 inches in diameter and about 400 feet in depth including about 225 feet of open hole in basalt. The wells will be located along, and discharge into, the rivers and larger existing canals. Average pumping lift under long-term cyclic conditions will not exceed 70 feet.

Replacement pumping will affect water levels in the basalt aquifer in the Division area and elsewhere in the Snake River Plain. Ground
water inflow to American Falls Reservoir will be depleted and spring flow and ground water levels will decline in the Mud Lake-Market Lake basins. With present level of knowledge of Snake Plain aquifer conditions, a reliable quantitative estimate of the magnitude of the effects of pumping is not feasible. However, available data indicate that increased recharge due to Division operations will nearly offset any adverse effects of pumping.

Perched water levels in the Division area probably will not be markedly affected by replacement pumping.
INTRODUCTION

The Lower Teton Division, Teton Basin Project, Idaho, is somewhat unique among irrigation projects because surface water will be used when plentiful and ground water used indirectly during dry years when surface supplies are fully appropriated. During these dry years, such as occurred in the 1930's, much of the ground water will be pumped into the Henrys Fork River and tributaries to replace river flows depleted by diversions to Division lands.

The Lower Teton Division, First Phase, will require maximum 400 cubic feet per second flow and 175,000 acre-feet annually for direct replacement. During many years, pumping will not be required; the average will be 25,000 acre-feet annually. Ideally, the replacement water should be provided within the service area to maintain optimum operational flexibility and insure physical integrity of the constructed facilities. In addition to operational features, the service area seems to offer very distinctive advantages with respect to availability of ground water and costs associated with developing and utilizing it. However, other well field locations on the Snake River are available if needed.

The present investigation is concerned with substantiating the feasibility of obtaining the required supply of ground water from the Division service area and determining the optimum design and location of the facilities, the costs associated with construction of and the performance of these facilities. In addition, the effects of replacement pumping on ground water conditions locally and regionally are considered.

The Geological Survey has undertaken a reconnaissance cooperative investigation of the ground water aspects of the Division area which has been released as an open-file report (Crosthwaite and others, 1967). Material from this investigation has been cited by Authorizing House Document No. 208 as the basis for the ground water features of the Division. The present report generally upgrades and supplements the work done by the Geological Survey. It substantiates the availability of the ground water and revises earlier estimates on design and costs of facilities. Principal reliance is based on data from an extensive program of subsurface exploration and well testing.

Acknowledgments

The author gratefully acknowledges the assistance provided by personnel of the Geological Survey, other Federal and State agencies, and well owners, drillers, and others who cooperated in collection of data for this report. Special appreciation is extended to Messrs.
John W. Frink, Loren D. Hampton, Robert T. Pittard, and Lyman G. Rogers of the Bureau of Reclamation for their assistance in data collection and report preparation and review.
HYDROGEOLOGY

Geologic and Physiographic Setting

The southwestward trending Henrys Fork River separates the general area into several distinct subareas. (See geologic map.) An alluvial lowland subarea has developed along the margins of the river, especially downstream from St. Anthony. The river presently meanders in a flood plain that is flanked in part by alluvial terraces. To the northwest, Egin Bench, a distinctively flat terrace, lies between the flood plain and a lava plain subarea. To the southeast, the Teton River divides into two forks in crossing alluvial terraces and fans that separate the flood plain from a terrace and foothill subarea to the southeast.

This latter subarea consists of incised, structurally-controlled terraces that rise toward the Big Hole Mountains to the southeast. The subarea is underlain principally by silicic volcanic rocks which overlie older volcanic and sedimentary rocks that comprise the Big Hole Mountains and which are warped beneath the younger rocks to the northwest (Crosthwaite and others, 1967).

The younger rocks to the northwest are principally basaltic lava flows of the Snake River Plain. This plain, which rises unevenly to the north and northwest, is locally highly irregular and partly veneered with windblown silt and sand, including active sand dunes. Protruding above the plain are several prominent features including Menan Buttes, which are twin volcanic cones near the mouth of the Henrys Fork. Northwest of St. Anthony are Juniper Buttes, which, according to Stearns and others (1939, p. 21), are structurally complex arched inliers of older rocks rising above the lava plains.

Elevations in the area range from 4800 feet at the mouth of Henrys Fork to 5300 feet near Ashton and to a maximum of about 6200 feet at the summit of Juniper Buttes.

Geologic Units and Their Water Bearing Characteristics

Silicic Volcanic Rocks

The silicic volcanic rocks that generally underlie the subarea to the southeast of the Henrys Fork lowlands to an unknown depth are also exposed in Big Bend Ridge, near Ashton Reservoir, and in Juniper Buttes (Mundorff and others, 1964). In addition, silicic volcanic rocks were encountered at depths of 584 and 350 feet from the surface in Wells 6N/39E-10bbl and 7N/40E-20cdl, respectively (see geologic section E-E'). Water table conditions indicate that silicic volcanic rocks probably lie near the surface in T. 8 N., R. 41 E. and R. 42 E. northeast of St. Anthony.
EXPLANATION

SAND DUNES - Recent shifting sand, fine-grained, windblown, quartz sand in dunes to over 200 feet high. Absence of water tables.

ILLUSIONS - Recent and older unconsolidated sedimentary deposits of the Lower Henry Fork and Teton Rivers, includes well-stratified and heterogeneous to poorly stratified, interbedded and subaqueous deposits, generally sand and gravel, from a few to over 300 feet thick. Loosely interbedded with sand. Yields small to large quantities of ground water.

LOUSTEXTE AND ILLUSION DEPOSITS - Recent and older unconsolidated sedimentary deposits of the Mud Lake-Lake Keno area, includes interbedded silt-clay-sand deposits, generally sand and gravel, from a few to over 300 feet thick. Loosely interbedded with sand. Yields small to large quantities of ground water.

BASALT - Atypical to gyspiferous basalt of the Snake River Group, includes pyroclastics, cinder, and scoriae to devitrify and are deposited from vesicular to porphyritic basalt. Yields, small to large quantities of ground water.

SCIENCE VOLCANIC ROCK - Unconsolidated pyroclastics flows and interbedded with lesser amounts of basalt and sediments. Yields small to large quantities of ground water.

GEOLLOGIC CONTACT

FAULT

GEOLOGIC SECTION

USBR EXPLORATORY HOLE

USBR DRILL HOLES

USBR TEST WELLS

USBR SHALLOW OBSERVATION WELL

REHABILITATED WELL

SELECTED PRIVATE WELLS

Data from Crosthwaite, Muddoff, and Walker 1967 and modified from Shumake, Bryan, and Conolly 1939.
Aphanitic to porphyritic basalt of the Idaho.

Recent:

Ground Water Investigations

GENERAL GEOLGY

Alluvium: Recent and older unconsolidated sedimentary deposits of the lower Henrys Fork and Teton rivers include unweathered tuffaceous gravel to poorly stratified clastic sediments. These deposits are interbedded with basalt. Yields small to large quantities of ground water.

Soil: Alluvial deposits.

Alluvial Deposits: Recent and older unconsolidated sedimentary deposits of the lower Henrys Fork and Teton rivers include unweathered tuffaceous gravel to poorly stratified clastic sediments. These deposits are interbedded with basalt. Yields small to large quantities of ground water.

Volcanic Rock: Basalt.

Sedimentary Deposits: Alluvial deposits include gravel and sand with locally coarser material. Thicknesses unknown. Locally interbedded with basalt. Yields small quantities of ground water.

Lake-Market Lake Area: Includes lacustrine deposits, alluvium, and eolian deposits. Yields small to large quantities of ground water.

Windblown Sand Dunes: Sand dunes are the product of windblown, quartzose to poorly stratified recent channel fill. Thicknesses ranges from a few to over 300 feet. Locally interbedded with basalt. Yields small quantities of ground water.

Lake-Market Lake Area: Includes lacustrine deposits, alluvium, and eolian deposits. Yields small to large quantities of ground water.

Tetons and Alluvial Deposits: Recent and older unconsolidated sedimentary deposits of the lower Henrys Fork and Teton rivers include unweathered tuffaceous gravel to poorly stratified clastic sediments. These deposits are interbedded with basalt. Yields small to large quantities of ground water.

GEOLOGIC GROSS SECTION E-E'

EXPLANATION

- **General Geology**
- **Wells Logs**
- **USBR Exploration Core Drill Hole**
- **USBR Test Well**
- **Drillers Log**
- **Geophysical Log**
- **Geological Contact**

SCALE OF MILES

WATER SYSTEMS

DEPARTMENT OF THE INTERIOR

GEOLOGIC CROSS SECTION E-E'

DEPARTMENT OF RECLAMATION

TETON BASIN PROJECT - IDAHO, WYOMING

LOWER TETON DIVISION - IDAHO

GROUND WATER INVESTIGATIONS

GEOLOGIC GROSS SECTION E-E'

EXISTING IN SINK HOLE, MORGAN, IDAHO
Presumably, these rocks underlie the basalt and alluvium at depth everywhere northwest of the Henrys Fork. Crosthwaite and others (1967, p. 22) classify the silicic volcanic rocks as lightly compacted to well indurated welded tuff or welded ash flows and interbedded basalt, ash, and sedimentary materials. Examination of drill cores from Wells 6N/39E-10bbl and 7N/40E-20cddl indicate that the silicic volcanic rock encountered consists of rhyodacite porphyry (tuff?) and obsidian porphyry (tuff?). Both rock types are dense but generally moderately to highly jointed.

The silicic volcanic rocks apparently have highly variable water bearing properties. Where significant thicknesses of interbedded ash, basalt, cinders or other similar materials are present, the unit transmits large quantities of water. In the area east and southeast of Rexburg, where logs of wells indicate the presence of these materials, yields of wells ranging up to several thousand g.p.m. (gallons per minute) with a few feet of drawdown are reported (Crosthwaite and others, 1967). However, where the silicic volcanic rocks are relatively unbroken by interbedded materials, as in the Newdale to Ashton area, the yields of wells generally are inadequate for irrigation purposes.

Snake River Basalt

Basalt of the Snake River Group is exposed northwest of the Henrys Fork alluvial lowlands and is interbedded with and overlies silicic volcanic rocks in some areas to the southeast (Crosthwaite and others, 1967, p. 23). In the latter area, much of the basalt apparently originated from local sources and its relationship to the basalt to the northwest is not entirely known.

Results of exploratory and other drilling indicate the basalt underlies the alluvial sediments of the lowlands in an east-southeastward thinning mass that laps upon and possibly is faulted against silicic volcanic rocks of Rexburg Bench and in the Ashton area (see geologic sections B-B' and C-C'). In the latter area and extending downstream nearly to St. Anthony, the basalt appears to be thin and possibly discontinuous. West-northwestward from Rexburg Bench and the Ashton area, the formation thickens so that at Plano it is estimated to be approximately 500 feet thick and at Well 9N/40E-5ddl it is more than 750 feet thick (see geologic section A-A'). To the immediate north of Egin Bench, the basalt is relatively continuous to depths of over 450 feet without interruption by other material except for a very limited lateral extension of sediments that comprise Egin Bench. In the area west of Egin Bench and extending downstream to the mouth of Henrys Fork, the basalt overlies and is interbedded with relatively thick sedimentary beds (see geologic section D-D'). At Well 6N/38E-30bal sedimentary materials comprise about 60 percent of total 638 feet penetrated by drilling. Depth to the top of the uppermost basalt flow ranges from surface outcrop to more than 330 feet near the mouth of Henrys Fork where the basalt is overlain by alluvial material.
EXPLANATION

GEOLOGIC CROSS SECTION C-G

SCALE: GEOLOGY

- Lower Henrys Fork sand and gravel, terraces and channel deposits.
- Teton basalt flows and lavas.
- Alluvium and fans.
- Lacustrine and alluvial deposits.
- Lower Teton Group, pyroclastics, and ash deposits.

WATER...yielded.

BASALT...porphyritic basalt.

SEP...basalt flows and lavas.

SILT...siltstone and sandstone.

SAND...sandstones and conglomerates.

CLAY...clayey siltstone and mudstone.

GEOLOGIC GEOLOGY

SCALE: GEOLOGY

- Lower Henrys Fork sand and gravel, terraces and channel deposits.
- Teton basalt flows and lavas.
- Alluvium and fans.
- Lacustrine and alluvial deposits.
- Lower Teton Group, pyroclastics, and ash deposits.

WATER...yielded.

BASALT...porphyritic basalt.

SEP...basalt flows and lavas.

SILT...siltstone and sandstone.

SAND...sandstones and conglomerates.

CLAY...clayey siltstone and mudstone.

GEOLOGIC CROSS SECTION C-G
- **GENERAL GEOLOGY**: Recent and older unconsolidated sediments are composed of the Lower Teton Park and Teton River sands, including undifferentiated tephra, which are fine-grained, fine-sand-grain, and fine-sand-grain diameter. Above the water table, these sediments yield large quantities of ground water.

- **LACUNE - ALLUVIAL DEPOSITS**: Recent and older unconsolidated sediments include younger tephra and the Leaning Water Lake area, including undifferentiated tephra with younger tephra deposits, generally sand and gravel with water table and thickness unknown. Locally interbedded with basalt, yields small quantities of ground water.

- **BASALT**: Basaltic in pahoehoe basalt of the Snake River area, includes perlite, glass, and tephra, and interbedded with tephra yields very large quantities of ground water from sinter or sinter zones which normally occur in the contact between basalt flows.

- **SILICIC VOLCANIC ROCK - UNDIFFERENTIATED**: Basaltic tephra and tephra with lesser amounts of basalt and sediments. Yields small to large quantities of ground water.

- **GEOLOGIC CONTACT**: Distal where inferred.

- **FAULT**: Distal where inferred.

- **WELL LOGS**: Interpreted from core drill holes.

- **GEOFISICAL LOGS**: Interpreted from drillers' logs and seismic surveys.

- **DISCLAIMER**: Original data in the logs may not be consistent with other interpretations, and the author assumes no responsibility for these interpretations.
The basalt examined in outcrop and drill core generally is a gray, reddish-gray, or reddish-brown, fine-grained, olivine bearing, extrusive rock. The sections cored during exploratory drilling consist of numerous flows that range in thickness from a few feet to more than 40 feet. Each flow is superimposed on the next older flow or flows beneath it. Because of the limited areal extent of some flows and the paucity of distinctive features, subsurface correlation by flow characteristics generally is difficult. A typical flow consists of an upper vesicular, scoriaceous, rubbly or cindery surface, a lower surface that is somewhat vesicular, and an internal mass that is dense but generally jointed. Many flows, however, are entirely composed of highly vesicular or scoriaceous material and/or are highly brecciated, whereas others are dense and massive and exhibit few of the typical characteristics.

In the Mud Lake-Market Lake area, basalt is interbedded with thick sequences of predominantly fine-grained sediments.

The Snake River basalt generally is a highly productive source of ground water. Where wells penetrate cinder-scoriaceous or cavernous basalt, the yields generally range upward to several thousand g.p.m. per foot of drawdown. Where the unit is composed of thick, dense flows and/or fine-grained interbedded sedimentary material, the productivity commonly is much lower.

Lacustrine and Alluvial Deposits

Exposed in the Mud Lake and Market Lake basins are lake bed sediments composed principally of silt and clay which Stearns and others (1939) attribute to lava blocked drainage accentuated by faulting and glacial melt waters in case of the former and overflow from the Snake River in the latter. The lake beds interfinger with basalt and possibly interfinger with, or are an extension of, the coarser alluvium of the Snake and Henrys Fork Rivers to the east and southeast and streams to the north. Because of its fine-grained nature, the lacustrine material would be expected to be relatively impermeable.

Alluvium

Underlying the Henrys Fork lowlands, principally in the area below St. Anthony, are extensive deposits of sand and gravel with lesser silt and clay. This alluvium ranges in thickness from a featheredge, where it pinches out on basalt to the north of St. Anthony, to in excess of 330 feet near the mouth of Henrys Fork. Upstream from St. Anthony, the thickness probably does not exceed a few tens of feet. To the east and southeast, the alluvium pinches out on, or is faulted against, basalt and silicic volcanic rocks. To the west and southwest, alluvium of the lower Henrys Fork area apparently coalesces and interfingers with alluvial material from the Snake River and with basalt. As previously mentioned, it possibly interfingers with lacustrine beds of the Mud Lake-Market Lake basin and also with sediments from streams to the north. In Well 6N/38E-30bal, beds of sand, silt, and clay with minor
gravel have been found interbedded with basalt to a depth in excess of 630 feet. Generally, the alluvium of the lower Henrys Fork is coarsest in the area southeast of the river and becomes progressively finer to the north and west.

Water bearing characteristics of the alluvium are not well known. Although many small diameter wells draw from the alluvium, large capacity installations are not known to be in use. Based on descriptions in well logs, the alluvium would be expected to transmit small to large quantities of water, depending on texture and nature of the material. Where clean, uncemented gravel predominates, the yield to wells would be substantial. On the other hand, wells in fine or cemented material would produce only small quantities.

Sand Dunes

Active sand dunes up to 200 feet high occur several miles north and northwest of St. Anthony and on and around Juniper Buttes. Also, much of the area is veneered with light, windblown silt and fine sand. These materials generally lie above the water table.
GROUND WATER CONDITIONS

Occurrence and Fluctuation

Ground water in the lower Teton area occurs under regional and perched water conditions. The regional water table, which marks the upper limit of uninterrupted saturated subsurface material, generally slopes west-southwestward across the area toward the Mud Lake-Market Lake basins (see water table contour map). In the areas of predominantly silicic volcanic rocks, the water table gradient is relatively high, ranging from 10 to more than 50 feet per mile. Where basalt is the principal rock, the gradient ranges from 2 to 5 feet per mile. A wide, seemingly incongruous area of low gradient occurs in a transition zone of basalt and sedimentary material between the lower Henrys Fork valley and the Mud Lake-Market Lake basins. Between these two basins and extending westward from the former, a zone of very high gradient, known as the Mud Lake barrier, is found. Between Ashton and the Mud Lake-Market Lake basins, the regional water configuration is relatively independent of the ground surface topography and essentially consists of two high gradient steps separated by a wide zone of low gradient.

The depth to the regional water table from the land surface ranges from less than 10 feet near the mouth of the Henrys Fork to over 700 feet northeast of Juniper Buttes and over 500 feet in some of the higher margins of Rexburg Bench. Within the lower Henrys Fork alluvial lowlands, the depth ranges from less than 10 feet to a maximum of about 150 feet (see map of depth to water table and depth to basalt in St. Anthony-Rexburg-Plano area).

Within a portion of the last-named area and extending westward toward the Mud Lake-Market Lake basins, the regional ground water body is partially confined by the mass of alluvial material. The water levels in wells that terminate in basalt overlain by alluvium stand at a regional level which may be up to several hundred feet higher than the buried basalt surface. Elsewhere the regional ground water body apparently is free and the static level varies only slightly with increasing depth.

Continuous observations of the regional water table have been limited to about 10 years duration except Well 7N/37E-14cb, in the Hamer area, which has been observed since 1950 and at several times in the 1920's (see hydrograph of wells in the regional aquifer). In addition, spot readings have been made of many other wells by the Geological Survey. The annual fluctuations in the alluvial lowland area have ranged from about 4 to 8 feet, with the peaks coming in September-October and the lows in April-May. In silicic volcanic rocks of Rexburg Bench, the annual water table range has been less than in the basalt of the lowlands. In the Mud Lake-Market Lake area the fluctuations generally are less than one foot and with the extremes occurring about two months later than in the area to the east. An exception is Well 5N/36E-2ldal, in which the annual fluctuation has been from 3 to 5 feet.
Generally, there has been a rising trend in regional ground water levels since 1961 but with slight declines in 1963 and 1967. The trends appear to be more closely associated with basin runoff than any other factor (see hydrographs of precipitation, runoff, and diversion, Henrys Fork Basin). Near absence of long term observations essentially precludes examination of earlier trends. However, Stearns and others (1939, p. 60) report that prior to the beginning of irrigation of Egin Bench in 1895, the water level stood at more than 100 feet below the surface at Parker and Camas. The levels rose to a few feet and about 20 feet, respectively, but it is not clear whether these are perched or regional water table levels. Undoubtedly, ground water levels have risen appreciably since the advent of irrigation in the lower Teton area, but the magnitude of rise is not known because of the lack of pre-irrigation water level data.

Perched water tables have formed in several areas under differing conditions. In the alluvial lowlands, a perched water table has developed in the alluvium. The configuration of this water table during peak periods resembles that of the land surface. The depth to the perched water ranges from less than one foot to more than 40 feet. The perched and regional water tables seemingly merge somewhere in west one-half of R. 38 E. west of Egin Bench. Eastward, they diverge so that in the St. Anthony and Sugar City areas the regional water tables lies more than 100 and 50 feet, respectively, below the perched water table. In the Ashton area, a perched water table has developed on top of the silicic volcanic rocks that underlie the basalt (Crosthwaite and others, p. 28, 1967). Also, perched water has been encountered during drilling in areas of Rexburg Bench where interbedded sedimentary materials occur. In portions of the Mud Lake-Market Lake area, ground water is found at shallow depths, possibly the result of perching on lacustrine sediments as related by Stearns and others (1939, p. 50) and Mundorff and others (1964 p. 134).

Continuous observations of the perched water table in the lower Teton area have been limited. Stearns and others (1937, p. 62) display hydrographs of several wells on Egin Bench during the period 1921-25. More recently, the Geological Survey has maintained continuous observations of Well 7N/38E-23db3 since 1958 (see hydrograph of Well 7N/38E-23db2) and presently is observing 13 shallow observation wells installed by the Bureau of Reclamation in the Henrys Fork alluvial lowlands. These and other observations indicate that the perched water table fluctuates as much as 35 feet annually from peaks at or very near the land surface to lows greater than 50 feet below the land surface. The former generally occur in September-October, whereas the latter take place in April or May (see hydrographs of wells in the perched aquifer).

Recharge and Discharge

Examination of the water table contour map indicates that the general flow of the regional ground water body is west-southwest following the
HYDROGRAPH OF WELL IN THE PERCHED AQUIFER LOWER HENRYS FORK AREA

7N/38E-23db2
DEPTH - 84 FT. (ORIG-152 FT.) ALLUVIUM

DEPTH TO WATER TABLE IN FEET BELOW LAND SURFACE

HYDROGRAPHS OF WELLS IN THE PERCHED AQUIFER HENRY'S FORK ALLUVIAL LOWLANDS
trend of the prevailing gradient. Recharge to and discharge from the ground water body may occur anywhere within the area depending on geologic, hydrologic, and other conditions.

Crosthwaite and others (1967, p. 28) suggest that an average of approximately 550,000 acre-feet of recharge annually originates as deep percolation from irrigation which enters the perched water table and which ultimately descends to the regional water table. An additional 175,000 acre-feet of recharge is said to originate from infiltration of precipitation that falls within the basin.

Mundorff (1962, p. 24) estimates that average annual ground water discharge by underflow from the lower Henrys Fork area, through the basalt aquifer between Roberts and Hamer, is about 725,000 acre-feet. This estimate is based on flow-net studies described by Mundorff and others (1964, p. 196). Crosthwaite and others (1967, p. 28) suggest that about 325,000 acre-feet of perched ground water and surface return flows enter the river system during an average year.

Present Use of Ground Water

Ground water is widely used in the lower Teton area for domestic and municipal supplies. The larger communities commonly use water from wells in basalt or silicic volcanic rocks whereas the smaller communities and individual farmsteads rely on wells in alluvium.

Widespread use of ground water for irrigation is almost entirely limited to Rexburg Bench where wells tap silicic volcanic rocks and basalt. Crosthwaite and others (1967, p. 37) estimate that the total pumpage on Rexburg Bench during 1962 was 25,000 acre-feet which approximates their estimate of annual recharge for the pumped area. Many irrigation wells have been drilled on Rexburg Bench since 1962, so the annual rate of pumping has undoubtedly increased.

In the alluvial lowlands, few wells of any sizable capacity are used for irrigation. Only three are known to tap the basalt. Large scale industrial use of ground water is limited to a few installations. Table 1 gives details of the known wells of any sizable capacity that presently are drawing water from the basalt beneath the alluvial lowlands.
Table 1. Summary of larger wells in basalt of the alluvial lowlands

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Use</th>
<th>Depth (ft)</th>
<th>Diameter (in)</th>
<th>Yield (gpm)</th>
<th>Specific Capacity (gpm/ft)</th>
<th>Penetration in Saturated Basalt (ft)</th>
<th>Sp. Capacity in Saturated Penetration (gpm/ft)</th>
<th>Static Water Level (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6N/39E-4abl</td>
<td>Irr. (U)</td>
<td>199</td>
<td>18</td>
<td>600</td>
<td>30</td>
<td>41</td>
<td>0.7</td>
<td>10</td>
</tr>
<tr>
<td>-20dal</td>
<td>Irr.</td>
<td>353</td>
<td>20</td>
<td>3500</td>
<td>1400</td>
<td>90</td>
<td>15.6</td>
<td>10</td>
</tr>
<tr>
<td>6N/40E-4db1</td>
<td>P.S.</td>
<td>183</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>-19aal</td>
<td>Ind.</td>
<td>296</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>-30bd1</td>
<td>P.S.</td>
<td>172</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>-30dal</td>
<td>P.S.</td>
<td>142</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>7N/38E-23db1</td>
<td>Test</td>
<td>236</td>
<td>16</td>
<td>1820</td>
<td>440</td>
<td>59</td>
<td>7.5</td>
<td>40</td>
</tr>
<tr>
<td>7N/40E-1acl</td>
<td>P.S.</td>
<td>248</td>
<td>10</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td>45 ?</td>
</tr>
<tr>
<td>-1ad1</td>
<td>P.S.</td>
<td>238</td>
<td>8</td>
<td>850</td>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>-1ad2</td>
<td>P.S.</td>
<td>238</td>
<td>8</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>-22ad1</td>
<td>Irr. (U)</td>
<td>200</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>8N/40E-36dd</td>
<td>P.S.</td>
<td>209</td>
<td>20</td>
<td>2790</td>
<td>5600</td>
<td>66</td>
<td>85</td>
<td>145</td>
</tr>
</tbody>
</table>

Irr. - Irrigation, P.S. - public supply, Ind. - Industrial, (U) - Unused

Refer to Table 3 for data on wells 6N/38E-25ac1 (Test Well 1) and 7N/40E-19ad1 (Test Well 2).
REPLACEMENT WATER SUPPLY

Division Requirements

Estimates made by others (Bureau of Reclamation, 1968, unpublished data) indicate that the maximum requirement for replacement pumping of ground water for Lower Teton Division, First Phase, will be 400 c.f.s. flow and 175,000 acre-feet annually (Table 2). The average annual requirement will be 25,000 acre-feet, and the total requirement for the 34-year period 1928-61 will be approximately 850,000 acre-feet. In order to insure optimum operating conditions, not less than 30 percent of the maximum annual requirement should be made available to the existing distribution system of the Fremont-Madison Irrigation District. The remaining 70 percent could be made available wherever conditions permit.

Table 2. First phase ground water replacement pumping schedule for period 1928-61 (by month and calendar year) Units = 1,000 acre-feet

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1928-30</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1931</td>
<td></td>
<td>9.5</td>
<td>20.0</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.3</td>
</tr>
<tr>
<td>1932</td>
<td>24.6</td>
<td>23.8</td>
<td>24.6</td>
<td>24.6</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121.4</td>
</tr>
<tr>
<td>1933</td>
<td>10.0</td>
<td>15.0</td>
<td>20.0</td>
<td>24.6</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93.4</td>
</tr>
<tr>
<td>1934</td>
<td>24.6</td>
<td>23.8</td>
<td>24.6</td>
<td>24.6</td>
<td>23.8</td>
<td>24.6</td>
<td>9.9</td>
<td></td>
<td></td>
<td>155.9</td>
</tr>
<tr>
<td>1935</td>
<td>20.0</td>
<td>23.8</td>
<td>24.6</td>
<td>23.8</td>
<td>24.6</td>
<td>23.8</td>
<td>10.0</td>
<td></td>
<td></td>
<td>175.2</td>
</tr>
<tr>
<td>1936</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57.2</td>
</tr>
<tr>
<td>1937</td>
<td>24.6</td>
<td>23.8</td>
<td>24.6</td>
<td>24.6</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121.4</td>
</tr>
<tr>
<td>1938-40</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1941</td>
<td></td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.7</td>
</tr>
<tr>
<td>1942-60</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td></td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.4</td>
</tr>
<tr>
<td>Total 1928-1961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>849.9</td>
</tr>
<tr>
<td>Annual Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
</tr>
</tbody>
</table>

General Considerations

Replacement ground water for the Lower Teton Division will be required only during dry years when a water shortage occurs in the Snake River basin above Milner dam. Ground water withdrawn for replacement purposes will have to be tributary principally below Milner dam in order
to minimize depletion of the Snake River in the upper basin. Any such depletion will have to be offset by additional ground water withdrawals unless increased recharge due to Division operations is adequate to overcome the depletion. Thus, an overriding factor in the general location of replacement wells for the Lower Teton Division is the location with respect to depletion, or lack thereof, of the Snake River and tributaries above Milner dam.

In addition, the requirement for ground water replacement pumping of the magnitude involved demands consideration of several other hydrologic and geologic factors that bear directly on economic and engineering feasibility. Field locations, design and construction features, and resultant costs and operation and maintenance features and costs will directly depend on the factors which follow:

1. Presence of an aquifer at reasonable depth that is productive enough to yield ground water in the necessary quantities and at reasonable drawdowns.

2. Adequate storage in and recharge to the aquifer to permit the necessary withdrawals without excessive declines in the water level.

3. Static water levels that are favorable enough to support reasonable well depths and pumping lifts.

4. Field locations of wells that permit diversion of discharge to existing distribution facilities and to the river system without excessive construction of conveyance systems.

5. Areal distribution of sites that would minimize interference between wells, but without sacrificing reasonable spacing for power distribution, access, and other facilities.

6. Presence of ground water that is physically and chemically suitable for irrigation and other uses.

In addition to the above factors which bear directly on economic and engineering feasibility, there are others which must be considered:

1. The effects in the Division area of replacement pumping on ground water conditions on the aquifer under draft and also on other aquifers presently supporting domestic and other supplies, subirrigation, and/or streamflow.

2. The effects on other areas to which the aquifer is tributary.

St. Anthony-Rexburg-Plano Pumping Area

Replacement pumping for the Lower Teton Division could take place anywhere in the upper basin so long as an excessive portion of the ground water is not tributary to the Snake River above Milner dam and the ground
water could be made available where needed to replace adverse diversions from Teton Reservoir. However, location of the replacement wells within the Division area has several distinct advantages, as follow, without consideration of hydrologic and geologic factors:

1. Preservation of the physical integrity of the Division with respect to construction, operation and maintenance, and power facilities.

2. Preservation of potential downstream well sites for future projects requiring replacement ground water.

In addition, the Division area offers conditions which satisfy most of the geologic and hydrologic demands. Investigations described hereafter indicate that within the Division area, the alluvial lowland subarea roughly encompassing the communities of St. Anthony-Rexburg-Plano offers the most appropriate location for replacement wells. The favorable conditions of this subarea are as follows:

1. Presence of highly productive basalt aquifers up to 500 feet thick lying from 100 to 450 feet below the surface (see map of thickness of saturated basalt and depth to saturated basalt in St. Anthony-Rexburg-Plano area).

2. Availability of a large portion of the estimated 550,000 acre-feet of deep percolation from irrigation which enters the basalt within the subarea thus assuring a reliable source of recharge.

3. Presence of static water levels in the basalt that range from less than 10 to about 150 feet below the land surface. In much of the subarea, the static water level is less than 50 feet.

4. Proximity to the river system and existing irrigation distribution system which offers sites that would permit adequate spacing of wells but with a minimum of conveyance and discharge facilities.

5. Presence of ground water of suitable quality.

Crosthwaite and others (1967, unpublished data) state that the best location for pumping of replacement ground water would be that portion of the St. Anthony-Rexburg-Plano area lying north of the South Fork of the Teton River and west of U. S. Highway 191. This estimate is, however, based on relatively few data.

Several other areas within the Division have been suggested as potential pumping sites. The Ashton area is considered unsuitable because of the perched condition of the ground water in the basalt. According to Crosthwaite and others (1967, p. 39), this perched water is tributary to the Henrys Fork; thus, pumping would directly deplete ground water inflow to the river. Some areas of Rexburg Bench are highly productive. However, withdrawals in the area apparently are approaching recharge, and no assurance can be made regarding the effectiveness of
EXPLANATION

---4850--- Regional water table elevation contour
Dashed where estimated
Interval = 10 feet

WELLS USED IN COMPILEATION OF MAP
- Elevation by instrument
- Elevation from topographic sheet

Area of perched water
(From Crosthwaite, Mundell, and Walker, 1967)

Scale of miles

United States
Department of the Interior

Teton Basin Project—Wyoming
Lower Teton Division—Idaho
Ground Water Investigations

Water Table Contour Map
September 18-21, 1967

Copyright 1967 by the U.S. Government
EXPLANATION

- Line of equal depth in feet to regional water table. Dashed where approximated. Interval = 50 feet.
- Line of equal depth in feet to saturated basalt. Dashed where approximated. Interval = 50 feet.
- Well used in compilation of map.

SCALES OF MILES

TETON BASIN PROJECT - IOA, WYO.
LOWER TETON DIVISION - IOAH(?)
GROUND WATER ELEVATIONS
DEPTH TO WATER TABLE SEPTEMBER 18, 1967
AND GENERALIZED DEPTH TO SATURATED BASALT

DRAWN BY H. H. H.
801 SE, IDAHO
549-182-225

FEB 1968
EXPLANATION

100 Line of equal thickness in feet of saturated depth, dotted where approximate interval 50 feet

250 Line of equal depth in feet to saturated depth, dotted where approximate interval 50 feet

- Well used in compilation of map.

SCALE OF MILES

GENERALIZED THICKNESS OF SATURATED BASALT

GENERALIZED DEPTH TO SATURATED BASALT

DRAWN H. H. FEB. 1969

GROUND WATER INVESTIGATIONS

IDAHO BASIN TOP DIVISION

TETON BASIN, IDAHO

SUITE 1802 BOISE, IDAHO 83702

2071 5TH ST. BOISE, IDAHO 83702

2071 5TH ST. BOISE, IDAHO 83702

SCALE OF MILES
recharge by surface water application under the proposed second phase of the Division plan. In addition, static water levels in the areas commonly lie more than 200 feet below the ground surface. Elsewhere in the Division area, aquifers are not productive enough or locations are too remote from existing facilities or the river system to be useful.

Preliminary Subsurface Investigations

Preliminary investigations have been undertaken to determine geologic and ground water conditions in the St. Anthony-Rexburg-Plano area and vicinity. Among the data sought by these investigations were:

1. Thickness, areal extent and nature of the alluvium.
2. Thickness, areal extent and nature of the Snake River basalt.
3. Ground water conditions including levels and fluctuations at successive depths in the alluvium and basalt.
4. Relationship of the alluvial and basalt aquifers.
5. Quality of ground water.
6. Relationship of the basalt and alluvium of the lower Henrys Fork alluvial lowlands to similar material of the Mud Lake-Market Lake basins.

As previously mentioned, 13 shallow observation wells were installed in selected locations in the lowlands area to monitor fluctuations of the perched water table.

Subsequently, eight combination cable tool-diamond drill exploratory holes up to 700 feet deep were drilled to obtain information on the Snake River basalt. Cores were taken wherever feasible in order to obtain maximum data. Completion of each deep hole included installation of permanent piezometers set at successive depths (see logs of exploratory holes).

In addition, three old, unused stock wells located 5 to 15 miles north and northwest of St. Anthony were rehabilitated to facilitate the taking of water level measurements in this remote area.

Six of the exploratory holes and the three rehabilitated wells were subsequently logged by geophysical methods by personnel of the Geological Survey-National Reactor Testing Station staff. Gamma ray logs of the former are shown on the geologic sections.

Test Wells

Following completion and based on findings of the foregoing preliminary investigations, two large capacity test wells and companion
LOG OF WELL

Project: Lower Teton Division - Feature: Exploratory Hole & Piezometer Bank
State: Idaho

Well No: 68/388-30bs I (Site 1) Location: Approx. 230' West and 11120' South of N. & Corner

Static Water Level: 50' Auger Meas. Date: 7/67

Elevation (ground): 4873.1' W.L. Meas. See below

Logged By: L. Hampton Geophysical Log

<table>
<thead>
<tr>
<th>Drilling Date</th>
<th>Pump Tests</th>
<th>Description of Well</th>
<th>Well Diagram</th>
<th>Log</th>
<th>Reading Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Churn drill hole</td>
<td>0.0' - 360.0'</td>
<td>Two 3/4" I.D. B.I. Piezometer pipes installed as shown</td>
<td></td>
<td>50</td>
<td>None</td>
</tr>
<tr>
<td>Wireline diamond drill core hole</td>
<td>360.0' - 638.0' under Spec.</td>
<td>Elevation from top of 3/4" pipe</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>100C-920</td>
<td></td>
<td>B 4874.86</td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Water-surface elevations 9/5/67</td>
<td></td>
<td>B 4874.86</td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>6" Cag. 4783.01</td>
<td></td>
<td>R.P. in concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4373.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6" diam.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packer test 7/27/67</td>
<td></td>
<td>260.0' - 270.0' perforated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole depth 486.9'</td>
<td></td>
<td>6" Cag.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression-type rubber packer @ 381.5'</td>
<td></td>
<td>355' Gravel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water level below packer 36.62'</td>
<td></td>
<td>392' Grout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>above packer 90.75'</td>
<td></td>
<td>430' Gravel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" concrete slab</td>
<td></td>
<td>465' E perforations Piezometer B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>466.0' - 477.0' SAND; yellowish brown, quartzite.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>477.0' - 533.6' BASALT; grayish red purple to gray, amphibolite to equigranular, scoriaceous to dense, jointed to massive.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevations:

- 0.0' - 113.0' - BASALT; no samples.
- 113.0' - 123.0' - GRAVEL; gray, cinders.
- 123.0' - 138.0' - SAND; brownish gray, basaltic, rhyolitic.
- 138.0' - 173.0' - SILTY SAND; gray, rhyolitic, basaltic.
- 173.0' - 178.0' - SAND, GRAVEL; gray, rhyolitic, basaltic.
- 178.0' - 204.0' - SAND; gray, basaltic, rhyolitic.
- 204.0' - 209.0' - SANDY GRAVEL; gray, rhyolitic, basaltic.
- 209.0' - 211.0' - SAND; gray, basaltic, rhyolitic.
- 211.0' - 214.0' - SILTY SAND; gray, rhyolitic, basaltic.
- 214.0' - 271.0' - SAND; gray, rhyolitic, basaltic, quartzite.
- 271.0' - 291.0' - SILTY SAND; gray, rhyolitic, basaltic, quartzite.
- 291.0' - 305.0' - SAND; gray, rhyolitic, quartzite.
- 305.0' - 346.0' - SANDY CLAY; gray.
- 346.0' - 359.0' - SAND; gray, basaltic.
- 359.0' - 466.0' - BASALT; grayish red purple to gray, amphibolite to equigranular, scoriaceous to dense, highly jointed to massive, fresh to decomposed.
- 466.0' - 477.0' - SAND; yellowish brown, quartzite.
- 477.0' - 533.6' BASALT; grayish red purple to gray, amphibolite to equigranular, scoriaceous to dense, jointed to massive.
LOG OF WELL

Project: Lower Teton Division
Feature: Exploratory Hole & Pliocene Water Bank
State: Idaho

Well No: 6H/38X-30Hd 1 (Site 1)
Location: Approx. 230' West and 1120' South of N. 1 Corner

Total Depth: 638'
Begun:
Completed: 8/11/67
Drilling Method: Churn & Rotary Drill

Static Water Level: 50' approx.
Elevation (ground): 4873.1'
Ground Water: Gravel and Gravel-Grain

Logged by: L. Hampton
Geophysical Log: Drilled by Justice Core Drilling Co.

<table>
<thead>
<tr>
<th>Description</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3½" dia. Grout</td>
<td>543.5'</td>
</tr>
<tr>
<td>550</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
</tr>
<tr>
<td>650</td>
<td></td>
</tr>
<tr>
<td>710</td>
<td></td>
</tr>
<tr>
<td>790</td>
<td></td>
</tr>
<tr>
<td>960</td>
<td></td>
</tr>
<tr>
<td>1030</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Scorpiacious, cindery, and highly vesicular zones shown by vertical ticks on log.
LOG OF WELL

<table>
<thead>
<tr>
<th>Description</th>
<th>Well Completion</th>
<th>Log</th>
<th>Core Sample Type</th>
<th>Classification and Physical Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Churn drill hole to 260 ft.</td>
<td></td>
<td></td>
<td></td>
<td>0.0 to 30.0 - SILT and SAND.</td>
</tr>
<tr>
<td>Spec. 100C-577</td>
<td></td>
<td></td>
<td></td>
<td>30.0 to 96.0 - SAND and GRAVEL, coarse.</td>
</tr>
<tr>
<td>Wireline diamond drill core hole</td>
<td></td>
<td></td>
<td></td>
<td>96.0 to 105.0 - SAND, small amount of gravel.</td>
</tr>
<tr>
<td>Spec. 100C-920</td>
<td></td>
<td></td>
<td></td>
<td>105.0 to 161.0 - SAND and GRAVEL.</td>
</tr>
<tr>
<td>Water-surface elevations - 8/28/67</td>
<td></td>
<td></td>
<td></td>
<td>161.0 to 210.0 - BASALT, black, Snake River basalt.</td>
</tr>
<tr>
<td>6" Ceg. - 4816.56</td>
<td></td>
<td></td>
<td></td>
<td>210.0 to 230.0 - CINDERS, black and red Snake River basalt.</td>
</tr>
<tr>
<td>Pleco A - 4817.81</td>
<td></td>
<td></td>
<td></td>
<td>230.0 to 240.0 - BASALT & CINDERS, Snake River basalt.</td>
</tr>
<tr>
<td>4816.35 R. P. in concrete</td>
<td></td>
<td></td>
<td></td>
<td>240.0 to 260.0 - BASALT, black, gray, and red, Snake River basalt.</td>
</tr>
<tr>
<td>4816.36</td>
<td></td>
<td></td>
<td></td>
<td>260.0 to 306.0 - BASALT, gray, brown, purple, and red, Amphibatic to porphyritic. Massive to highly jointed and brecciated. Dense to highly vesicular and scoriaceous. Generally olivine-bearing. Fresh to decomposed. (Snake River Basalt.)</td>
</tr>
<tr>
<td>161 6" Ceg.</td>
<td></td>
<td></td>
<td></td>
<td>306.0 to 366.0 - BASALT, block, Snake River basalt.</td>
</tr>
<tr>
<td>Surface details</td>
<td></td>
<td></td>
<td></td>
<td>366.0 to 468.0 - BASALT, block, Snake River basalt.</td>
</tr>
<tr>
<td>Pleco M. P.</td>
<td></td>
<td></td>
<td></td>
<td>468.0 to 528.0 - BASALT, block, Snake River basalt.</td>
</tr>
<tr>
<td>B 6" Ceg.</td>
<td></td>
<td></td>
<td></td>
<td>528.0 to 657.0 - BASALT, block, Snake River basalt.</td>
</tr>
<tr>
<td>A 6" Ceg.</td>
<td></td>
<td></td>
<td></td>
<td>657.0 to 777.0 - BASALT, block, Snake River basalt.</td>
</tr>
<tr>
<td>A 6" Ceg.</td>
<td></td>
<td></td>
<td></td>
<td>777.0 to 897.0 - BASALT, block, Snake River basalt.</td>
</tr>
<tr>
<td>6" Ceg.</td>
<td></td>
<td></td>
<td></td>
<td>897.0 to 100.0 - BASALT, block, Snake River basalt.</td>
</tr>
<tr>
<td>Temp. Ho Ceg.</td>
<td></td>
<td></td>
<td></td>
<td>100.0 to 200.0 - BASALT, black, Snake River basalt.</td>
</tr>
<tr>
<td>Temp. 4" Ceg.</td>
<td></td>
<td></td>
<td></td>
<td>200.0 to 250.0 - BASALT, black, Snake River basalt.</td>
</tr>
<tr>
<td>260 6" hole</td>
<td></td>
<td></td>
<td></td>
<td>250.0 to 300.0 - BASALT, black, Snake River basalt.</td>
</tr>
<tr>
<td>290 Grout</td>
<td></td>
<td></td>
<td></td>
<td>300.0 to 350.0 - BASALT, black, Snake River basalt.</td>
</tr>
<tr>
<td>319 Perforations Perforations Pleco C</td>
<td></td>
<td></td>
<td></td>
<td>350.0 to 400.0 - BASALT, black, Snake River basalt.</td>
</tr>
<tr>
<td>339 Grout</td>
<td></td>
<td></td>
<td></td>
<td>400.0 to 450.0 - BASALT, black, Snake River basalt.</td>
</tr>
<tr>
<td>379 Perforations Perforations Pleco B</td>
<td></td>
<td></td>
<td></td>
<td>450.0 to 500.0 - BASALT, black, Snake River basalt.</td>
</tr>
</tbody>
</table>

PROJECT Lower Teton Division - Teton Basin Project
LOG OF WELL

Project: Lower Teton Division
Feature: Exploratory Hole and Piezometer Bank
State: Idaho
Well No: 6W/39B-10Bb1 (Site 3)
Location: Corner Section 10, T. 6 N., R. 39 E., W.M.

Total Depth	626.8 ft.	Begun 5/18/67	Completed 6/8/67	Drilling Method	Wireline diamond
Static Water Level	17.3 ft. (general)	Above Meas Pt	Original ground	Date 6/8/67	-
Elevation (ground)	4834.0	W L Meas Pt	See geologic log book, driller's and inspector's reports, and geophysical logs	-	-
Yield	No test	Drawdown	Other Data	-	-

Logged By: H. Ham
Geophysical Log: -
Geophysical Log by H.R.T.E.U.S.G.H.
Drilled By: Justice Core Drilling Co.

<table>
<thead>
<tr>
<th>Drilling Data</th>
<th>Pump Tests</th>
<th>Water Samples</th>
</tr>
</thead>
</table>
| Overview | 543 Gravel | 552 Fish Tape
570 Gravel | 555 Perforations A | 560 Gravel
Hole cased | Bottom of Hx hole | 650

Shale Log:
543.0 to 570.0 - SEDIMENT grading downward into NON-CLAY. Reddish-brown. Some quartz and feldspar sand with fragments of rhyolitic rocks.
570.0 to 584.0 - SANDSTONE grading downward into sand and ROCK FRAGMENTS. Light brown to orange. Quarts and feldspar sand and fragments of rhyolitic rocks.
584.0 to 636.8 - RHYOLITIC ROCKS including alternating layers of OBSIDIAN PORPHYRY and RHYOLITE PORPHYRY, grey and brown. Porphyritic. Massive to highly jolted. Dunes. Phenocrysts of quartz and plagioclase and inclusions of pumice. Fresh to decomposed.
636.8 - Total depth ft.
LOG OF WELL

<table>
<thead>
<tr>
<th>Feature</th>
<th>Exploratory Hole & Piezometer Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Idaho</td>
</tr>
<tr>
<td>Location</td>
<td>Approx. 1,640 ft. West and 730 ft. South of 64° Corner</td>
</tr>
<tr>
<td>Elevation (ground)</td>
<td>4,859.9 ft.</td>
</tr>
<tr>
<td>Static Water Level</td>
<td>40 ft. (general)</td>
</tr>
<tr>
<td>Drilling Method</td>
<td>Core drill & churn drill</td>
</tr>
<tr>
<td>Date Begun</td>
<td>6/10/67</td>
</tr>
<tr>
<td>Date Completed</td>
<td>6/26/67</td>
</tr>
<tr>
<td>Drilled By</td>
<td>Justice Core Drilling Co.</td>
</tr>
</tbody>
</table>

Well Data

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description of Well Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.5</td>
<td>Churn drill hole to 201.5 ft.</td>
</tr>
</tbody>
</table>

Water Samples

<table>
<thead>
<tr>
<th>Well Diagram</th>
<th>Bore</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.5-632.5</td>
<td>Elevation: Top of 17' coupling - 4,860.32</td>
<td>36.0 - 36.0 - SAND</td>
</tr>
<tr>
<td>36.0-175.0</td>
<td>Grout 230</td>
<td>175.0 - 190.0 - BASALT (Snake River Basalt)</td>
</tr>
<tr>
<td>190.0-201.5</td>
<td>Grout 320</td>
<td>190.0 - 195.0 - SAND and Gravel (?)</td>
</tr>
<tr>
<td>201.5-632.5</td>
<td>Perforations 470</td>
<td>195.0 - 201.5 - BASALT, CINDER, GRAVEL</td>
</tr>
<tr>
<td>3.2</td>
<td>Driller's Log</td>
<td></td>
</tr>
<tr>
<td>426</td>
<td>Gravel 470</td>
<td>201.5 - 632.5 - BASALT, gray, brown, purple, and red. Aphanitic to porphyritic. Massive to highly jointed and brecciated. Dense to highly vesicular and scoriaceous. Generally olivine-bearing. Fresh to decomposed (Snake River Basalt).</td>
</tr>
</tbody>
</table>

Surface Details

<table>
<thead>
<tr>
<th>Well Diagram</th>
<th>Bore</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Gravel 313</td>
<td>Scoriaceous, cinder, and highly vesicular zones shown by vertical ticks on log.</td>
</tr>
</tbody>
</table>

Sample Type

- **Bore**: SAND, SILT, BASALT, SAND & GRAVEL
- **Ground**: SAND, SILT, BASALT, GRAVEL

PROJECT

Lower Teton Division - Teton Basin Project

WELL NO. TH/38R-23403 (Site 4)
LOG OF WELL

<table>
<thead>
<tr>
<th>Project</th>
<th>Lower Teton Division</th>
<th>Feature</th>
<th>Exploratory Hole & Piezometer Bank</th>
<th>State</th>
<th>Idaho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well No.</td>
<td>78/288-23683 (Site 6)</td>
<td>Location</td>
<td>Approx. 1,440 ft. West and 730 ft. South of SE Corner, Section 23, T. 7 N., R. 38 E., B.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Depth</td>
<td>632.5 ft.</td>
<td>Began</td>
<td>6/10/67</td>
<td>Completed</td>
<td>6/26/67</td>
</tr>
<tr>
<td>Static Water Level</td>
<td>40 ft. (general)</td>
<td>Drilling Method</td>
<td>Wireline diamond core drill & churn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation (ground)</td>
<td>4859.9 ft.</td>
<td>Date</td>
<td>8/67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield</td>
<td>Drawdown</td>
<td>Other Data</td>
<td>See below: log book, driller's and inspector's reports, and geophysical logs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logged By: H. Ham
Geophysical Log: Geom & Geom-Gem
by H.E.T.S./U.S.G.S.
Drilled By: Justice Core Drilling Co.

Drilling Data
- Pump Tests
- Water Samples
- Description of Well
- Completion
- Well Diagram
- Depth
- Log
- Core Sample Type
- Classification and Physical Condition

<table>
<thead>
<tr>
<th>SAMPLE TYPE</th>
<th>SAND</th>
<th>SILT</th>
<th>BASALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

395 Gravel
613 Grout
625 Piezometer A
Bottom of No Bore

Total depth - 632.5 ft.
LOG OF WELL

Project Lower Teton Division

Feature Observation Wells

State Idaho

Well No 7/39-Sec 1 (Well A) Site 5

Location Approx. 600 ft. East and 161 (Well A) and 151 (Well B)

ft. North of SW corner section 1, T. 7 N., R. 39 E., B.M.

Total Depth 83 ft. Begun 6/23/67 Completed 7/5/67

Drilling Method Air rotary

Static Water Level 2 – 38 ft. (above) Meas Pt Original ground Date 8/67

Elevation (ground) 4906.3 W L. Meas. Pt See below

Yield Drawdown

Other Data See driller's and inspector's reports

Logged By Driller Geophysical Log Drilled By Cope Drilling Co.

Drilled under Water Samples

Spec. 100C-920

Water-surface elevations 8/28/67

Well A 6831.9

B 6875.3

Puddled surface seal

6” I.D. Casing

55 8” Hole

6” I.D. Casing

84.3 w/shoe

122 8” hole

Elevations

Well A - Top of Cag. 4904.86

Well B - Top of Cag. 4903.41

Classification and Physical Condition

D 0.0 - 16.0 - TOPSOIL and SAND.

16.0 - 55.0 - BASALT and CINDERS; red and grey.

(Snake River Basalt)

55.0’ - 68.0’ - CLAY; soft.

68.0’ - 122.0’ - BASALT and CINDERS; grey.

(Snake River Basalt)

Total depth - 122 ft.

Cinder zones shown by vertical ticks on log.

SAMPLE TYPE

CR = Core

CT = Cuttings

D = Driller's Log

PROJECT Lower Teton Division - Teton Basin Project

WELL NO 7/39-Sec 1 & (Site 5)
BUREAU OF RECLAMATION - REGION 1

LOG OF WELL

<table>
<thead>
<tr>
<th>Project</th>
<th>Feature</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Teton Division</td>
<td>Exploratory Hole and Pleasometer Bank</td>
<td>Idaho</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well No</th>
<th>Location</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/40R-2iddi (Site 6)</td>
<td>T. B. B. R. 40 R. B. M.</td>
<td>Idaho</td>
</tr>
</tbody>
</table>

Total Depth

- **450'**
 - **Began** 6/26/67
 - **Completed** 8/10/67

Drilling Method

- Microlam diamond core drill and air rotary

Static Water Level

- **132 ft. (general)**
 - **Below** Meas Pt
 - **Original ground**

Elevation (ground)

- **4062.7 ft.**
 - **W L Meas. Pt**
 - **See below**

Log of Well

<table>
<thead>
<tr>
<th>Drilling Data Pump Tests</th>
<th>Water Samples</th>
<th>Description of Well Completion</th>
<th>Well Diagram</th>
<th>Log</th>
<th>Core Sample Type</th>
<th>Classification and Physical Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air rotary hole to 163.5</td>
<td>Three - 3/4" B.I. Pleasometer pipes installed in 6" and clay hole</td>
<td>Backfill</td>
<td>50</td>
<td>B</td>
<td>0.0 - 3.0 - Topsoill 18.0 - 27.0 - BASALT; grey (Snake River Basalt). 27.0 - 160.5 - BASALT; grey and brown (Snake River Basalt).</td>
<td></td>
</tr>
<tr>
<td>to 450.0</td>
<td>Plesasometer pipes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spec.</td>
<td></td>
<td>Elevation</td>
<td></td>
<td></td>
<td></td>
<td>163.5 - 450.0 - BASALT; grey, red, and purple. Aphanitic; massive to highly jointed and brecciated. Dense to highly vesicular and scoriaceous. Generally olivine bearing. Fresh to moderately decomposed. (Snake River Basalt.)</td>
</tr>
<tr>
<td>Water-surface elevations</td>
<td>Top of pipe Plesasometer A 4964.57</td>
<td>R.P. (conc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/28/67</td>
<td>Pieze A 4930.98</td>
<td>Perforations 4953.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Pieze C 4964.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>105 Grout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temp. 6", 4", 6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>142.7 Cag.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>175 Grevel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>192 Grout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pieze B 110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perforations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" concrete slab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geophysical Log by N.E.T. U.S.G.S.

Drilled By

- Cope Drilling Co.
- Justice Core Drilling Co.

Logged By

- E. Hett
- Geophysical Log by N.E.T. U.S.G.S.

PROJECT

- Lower Teton Division - Teton Basin Project

WELL NO

- 09/40R-2iddi (Site 6)
LOG OF WELL

Project: Lower Teton Division
Feature: Exploratory Hole and Placermat Bank
State: Idaho

Well No.: 68/398-30ad (Site 7)
Location: Approx. 607' North & 1197' West of the B. & C Camp

Total Depth: 699.7'

Static Water Level:
- Meas. Pt.: (above) 1.8
- Meas. Pt.: (below)

Elevation (ground): 4816.8

Yield:
- No test
- Drawdown

Logged By: L. Hampton

Geophysical Log:
- Geophys. Log

Drilled By: Justice Core Drilling Co.

Original private water well 295.0' I.D. Placermat deep drilled by pipes installed J. Alexander 1962, as shown.

Wireline diamond
drill core hole
295.0' - 699.7'

Specs. 100C-920
Top of 1/4'
coupling 4818.92'

No pump test

Elevation
top of 3/4' pipes 295.0' - 699.7'
Pleasant A 4816.26'
B 4815.62'
6" Casing 4817.05'

Water-surface elevations 9/5/67
- B 699.7'
casing
- Temp. 52°F
- Cond. 516 E x 106

297' gravel

263' 6" blank

Attemted packer tests in open hole with compression type packer, generally unsuccessful.

250.0' - 262.0' - Pea gravel and sandy yellow clay.

385.0' - 381.0' - Silty sand; light gray, rhyolitic, basaltic, quartzose.

385' Groat

406' Gravel

Piezometer B
440' 6" of 5'
perforations

384.5' - 384.3' - Sandy Silty; yellowish brown.
384.3' - 413.1' - Basalt; gray to grayish red-purple, aphanitic, highly vesicular to dense, jointed to massive, olivine common.
413.1' - 431.2' - Sand;
431.2' - 447.1' - Basalt; gray to grayish red-purple, aphanitic to equigranular, scoriaceous to dense, jointed to massive.
Continued from page 1.

647.1' - 670.0' - GRAVEL; gray, porphyritic basalt, angular, clayey.

670.0' - 699.7' - BASALT; grayish red to gray, porphyritic (plagioclase), moderately vesicular, moderately fractured.

Note: Scoriaceous, cindery, and highly vesicular zones shown by vertical ticks on log.
LOG OF WELL

Project: Lower Teton Division
Feature: Exploratory Hole and Piezometer Bank
State: Idaho

Well No.: TM/408-20c1 (Site B)
Location: Approx. 842' West and 78' North of A & C Corner

Total Depth: 399.6 ft.
Begun: 8/2/67
Completed: 8/22/67
Drilling Method: Churn & Rotary Drill

Static Water Level: 36 ft. approx.
Elevation (ground): 6475.6 ft.

Yield:
- **Original ground**
- **Top of 3/4" pipe**

Geologist detail log book, driller's and inspector's reports, and geophysical logs

Logged By: L. Hampton
Geophysical Log: Geoma & Geoma-Gema

Drilled By: Justice Core Drilling Co.

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0' - 8.0'</td>
<td>SILT SAND AND GRAVEL.</td>
<td></td>
</tr>
<tr>
<td>8.0' - 37.0'</td>
<td>SAND.</td>
<td></td>
</tr>
<tr>
<td>37.0' - 66.0'</td>
<td>SANDY GRAVEL.</td>
<td></td>
</tr>
<tr>
<td>66.0' - 103.0'</td>
<td>SAND.</td>
<td></td>
</tr>
<tr>
<td>103.0' - 124.3'</td>
<td>BASALT; medium gray.</td>
<td></td>
</tr>
<tr>
<td>124.3' - 171.0'</td>
<td>BASALT; grayish red-purple to gray, equigranular, scoriaceous to dense, jointed and massive.</td>
<td></td>
</tr>
<tr>
<td>171.0' - 177.8'</td>
<td>BASALT; light brown.</td>
<td></td>
</tr>
<tr>
<td>177.8' - 222.0'</td>
<td>BASALT; medium gray, equigranular (1 mm), moderately vesicular to dense; jointed to massive.</td>
<td></td>
</tr>
<tr>
<td>222.0' - 226.0'</td>
<td>SILT GRAVEL; moderate pink, basaltic.</td>
<td></td>
</tr>
<tr>
<td>226.0' - 257.8'</td>
<td>CLAY, SILT GRAVEL; brown to gray, basaltic.</td>
<td></td>
</tr>
<tr>
<td>302.8' - 380.1'</td>
<td>CLAY GRAVEL.</td>
<td></td>
</tr>
<tr>
<td>380.1' - 400.0'</td>
<td>BASALT; grayish red-purple to gray, porphyritic plagioclase crystals to 10 mm, scoriaceous to vesicular, highly to slightly jointed.</td>
<td></td>
</tr>
<tr>
<td>400.0' - 450.0'</td>
<td>BASALT.</td>
<td></td>
</tr>
<tr>
<td>450.0' - 500.0'</td>
<td>BASALT.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Scoriaceous, cindery, and highly vesicular nites shown by vertical ticks on log.

PROJECT: Lower Teton Division - Teton Basin Project
WELL NO.: TM/408-20c1 (Site B)
observation wells were drilled in the St. Anthony-Rexburg-Plano area. These wells, Test Well 1 (6N/38E-25ac1) and Test Well 2 (7N/40E-19ad1), were drilled specifically to obtain the following data:

1. General well performance.
2. Aquifer characteristics.
3. Reaction of the perched water table to withdrawals in the basalt aquifer.
4. Design and construction criteria.
5. Operational criteria.

Well Performance

The test wells were cased through the alluvial overburden and penetrated several hundred feet of saturated basalt (see logs of test wells). Each was accompanied by an observation well of similar depth and by two observation wells terminating in the overburden (see logs of observation wells). Following completion of drilling, each test well was developed by pumping and surging. Prior to testing, water level recorders and a barograph were installed to obtain pre-test conditions. Testing of the wells consisted of a step-drawdown test of five steps of 90 to 120 minutes per step and a constant yield test of 48 hours duration (see yield-drawdown graph).

Included with the analysis of the test wells are data from the testing of Well 7N/38E-23dbl which was drilled under contract by the Bureau of Reclamation as a part of the Snake Plain Recharge Project investigations of the late 1950’s. Data on Wells 7N/38E-23dbl and db3 included in this report are taken from Mundorff (1960).

Well performance analyses, taken principally from step-drawdown tests, show that wells drilled several hundred feet into saturated basalt would have a specific capacity of more than 1,000 gallons per minute per foot of drawdown at yields up to 5,000 g.p.m. (Table 3).

Aquifer Characteristics

Constant yield tests were conducted on Test Wells 1 and 2 principally to determine aquifer characteristics and reaction of the perched aquifer to withdrawals from the basalt aquifer. Each test was run continuously for 48 hours at a constant yield of approximately 5,000 g.p.m. During the tests, water level in the test wells was measured periodically by tape; recorders were operated on companion observation wells. Water level data were subsequently corrected for seasonal trends and barometric influence.
LOG OF WELL

Project: Lower Teton Division
Location: T. 6 N., R. 35 E.

Well No: SN/3, RE-294 (Test Well 1)
Approx. Location: 2150 ft. West and 1900 ft. South of the NE Corner Section 2

<table>
<thead>
<tr>
<th>Total Depth</th>
<th>Begin Date</th>
<th>Completed Date</th>
<th>Drilling Method</th>
<th>See Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>688 ft.</td>
<td>6/16/68</td>
<td>6/18/68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Supply

- **Static Water Level:** 18.05 ft.
- **Elevation (ground):** 4825.4 ft.
- **Yield:** See Below
- **Drawdown:** See Below

Logging Dates
- **Logged By:** K. Rasmussen
- **Geophysical Log:** Dore and Pump Co.

Geophysical Log

- **Dated:** 6/16/68
- **Logged:** 6/18/68

Well Diagram

- **Depth:** 150 ft.
- **Description of Well Completion:**
 - 1 1/2 in. pipe steel ring
- **Completed:** 40 in. hole 0.0 to 41 in., cement 0.0 to 6.0, cement 1.0 to 30
- **Continuous test:** 120 min. per step.
- **Step drawdown test:** 6/15/68
- **Piech:** 0.25 ft.
- **Transmissibility:** 1.3 x 10^3 to 2.1 x 10^-6 ft. /min.
 - **Coefficient of storage:** 0.01 x 10^-5
 - **Quality sample:** 6/17/68
- **pH:** 7.72
- **Spec. Cond.:** 4890
- **Cl: 0.45 mc./l.
- **SAR: 0.4**

Water Analysis

- **Calculation and Physical Condition:**
 - **6.0 to 7.0:** SILTY SAND; tan
 - **5 to 1:** BASALT; dark gray, spherulitic, dense to vesicular, olivine-bearing (Snake River Basalt)
 - **3:104:** SAND; gray, fine-grained, basalt and quartz with silicic volcanics, few gravel.
 - **29 to 9:** BASALT; dark gray, spherulitic, dense, olivine bearing, (Snake River Basalt)
 - **29 to 6:** SAND AND GRAVEL; sub-rounded to sub-angular olivine porphyry with basalt and other silicic volcanics, decreasing olivian and increasing quartz sand content with depth.
 - **65 to 163:** SAND; gray, fine to coarse grained, quartz and silicic volcanics with basalt, few gravel of similar composition.
 - **163 to 184:** SILTY CLAY; tan, plastic, sticky.
 - **184 to 195:** SILTY CLAY; gray, plastic, sticky.
 - **195 to 201:** SILTY SAND; tan, very fine-grained near top and bottom.
 - **201 to 259:** SAND; tan, medium to coarse grained, quartz with silicic volcanics, few gravel possibly partly cemented.
 - **259 to 299:** SAND; tan and gray, very fine to fine grained, micaceous quartz with silicic volcanics, tan top and bottom.
 - **299 to 269:** SILTSTONE; tan, sandy, moderately indurated, distinct bedding planes, upper part, contains angular fragments of dark gray, vesicular basalt 299-269.
 - **269 to 300:** BASALT; dark gray, spherulitic, dense to moderately vesicular, olivine bearing (Snake River Basalt)
 - **300 to 345:** SAND AND SAND AND GRAVEL; tan, interbedded, fine to coarse quartz sand, sub-rounded to sub-angular silicic volcanics gravel.
 - **345 to 400:** SILTY SAND; tan fine to medium grained quartz sand with basalt.
 - **400 to 435:** SILTY SAND; tan, contains very fine-grained quartz sand.
 - **435 to 670:** BASALT; gray to brown to red, spherulitic, dense to acoherence, olivine bearing (Snake River Basalt)
LOG OF WELL

<table>
<thead>
<tr>
<th>Feature</th>
<th>Test Well</th>
<th>State</th>
<th>Idaho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well No</td>
<td>6N/38E-2hacl (Test Well 1)</td>
<td>Location</td>
<td>2.0 R., R. & E. 35</td>
</tr>
<tr>
<td>Total Depth</td>
<td>685</td>
<td>Begun</td>
<td>10-68</td>
</tr>
<tr>
<td>Completed</td>
<td></td>
<td>6-18-68</td>
<td></td>
</tr>
<tr>
<td>Drilling Method</td>
<td></td>
<td>See Below</td>
<td></td>
</tr>
<tr>
<td>Static Water Level</td>
<td>18.05 ft.</td>
<td>Meas Pl</td>
<td>Top of casing, SW side</td>
</tr>
<tr>
<td>Elevation (ground)</td>
<td>4825.4</td>
<td>W L Meas Pl</td>
<td>4826.1</td>
</tr>
<tr>
<td>Yield</td>
<td>See Below</td>
<td>Drawdown</td>
<td>See Below</td>
</tr>
<tr>
<td>Other Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilled By</td>
<td>H. Ham</td>
<td>Geophysical Log</td>
<td></td>
</tr>
</tbody>
</table>

Logged By: H. Ham
Geophysical Log
Drilled By: Donto Drilling Co.

Well Log

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description of Well Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>685</td>
<td>Bottom of 23 in. hole</td>
</tr>
</tbody>
</table>

Notes:

- 670 (t) to 675 (t) SILTY SAND: tan, fine grained quartz, clayey
- 675 to 685, BASALT: dark gray to black, lathy textured, scoriaceous to vesicular, olivine bearing, caving reported (Snake River Basalt)

Total Depth: 685 ft.
LOG OF WELL

BUREAU OF RECLAMATION - REGION 1

Project: Lower Teton Division
Feature: Test Well
State: Idaho

Well No: 78/408-19ak41 (Test Well 2)
Location: Approx. 415 ft. North and 7000 ft. West of the SE corner Section 19, T. 7 N., R. 40 E., B.M.

Total Depth: 394.7
Began: 5/9/68
Completed: 8/2/68
Drilling Method: Cable tool

Static Water Level: 30.63 ft.
Elevation (ground): 4857.0

Yield: See below
Drawdown: See below
Other Data: See driller's and inspector's reports and geologic yield log.

Logged By: R. Ham
Geophysical Log: Drilled By Drilling Co.

<table>
<thead>
<tr>
<th>Drilled under Sperc. 1000-998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed by surfing with test pump for 10 hrs. at 3000 gpm max.</td>
</tr>
<tr>
<td>Step drawdown test 7/30/68.</td>
</tr>
<tr>
<td>Max. Dr. 1000 gpm 0.69 ft</td>
</tr>
<tr>
<td>2000 1.26</td>
</tr>
<tr>
<td>3000 2.31</td>
</tr>
<tr>
<td>4000 3.83</td>
</tr>
<tr>
<td>5000 5.76</td>
</tr>
<tr>
<td>Continuous test 90 min. per step Constant yield test 7/31/68 - 8/2/68.</td>
</tr>
</tbody>
</table>
| Transmissibility 2.7 X 105 ft.2/sq.
| 1.7 to 2.9 X 105 gpd./ft. |
| Coefficient of storage less than 1.0 X 10-5 |
| Quality sample 8/1/68 |
| pH - 7.96 |
| Sperc. Cond.-290 X 10-6 who |
| H2O - 0.06 gpm |
| Residual Na CO3 - 2.89 mm. |
| Residual Ca CO3 - 0.12 mm. |
| SAR - 0.3 |
| Sediment after pumping C.Y. for 48 hrs. less than 0.01 m. |

Well Diagram: CT

Drill 3 1/2 in. hole 0.0 to 60. 3/4 in. csg. 3 1/2 to 40. cement grout 2 to 48.
30 in. in. hole 40 to 121 in. cement grout 2 to 100. 124 in. hole 124 to 160.

34 in. pipe grout 3/4 in. csg.

394.7 Bottom of 19 in. hole.

0.0 to 42 SAND, GRAVEL AND COBBLES, rounded to subangular basalt, urtite and silicic volcanics up to 150 cm. basalt and quartz sand increasing with depth, silt 7042.
42 to 51, BASALT, light gray, asphalitic, coarse dense, olivine-bearing (Shake River Basalt).
51 to 52 SAND AND GRAVEL, similar to that at 0 42.
52 to 142 BASALT, gray, brown, asphalitic, dense to highly vesicular, olivine-bearing. Driller reports sand 120-123 (Shake River Basalt).
142 to 152 SILTY SAND, reddish brown, fine to coarse grained, principally subrounded to sub-angular quartz and silicic volcanics.
153 to 194 BASALT, similar to 52 to 142. Thin zones of SILTY SAND near 173-180 (Shake River Basalt).
194 to 197 SILTY SAND, reddish-brown, fine-grained, principally quartz.
197 to 236 BASALT, gray, lathy with few phenocrysts grading to asphalitic, dense to scoriaceous, olivine-bearing (Shake River Basalt).
236 to 281 SANDY SILT, reddish-brown, fine of coarse grained quartz and basalt sand, numerous fragments of basalt and alteration material.
241 to 302 BASALT, gray, asphalitic, dense to vesicular olivine-bearing (Shake River Basalt).
302 to 307 SANDY SILT, dark brown, fine grained quartz and basalt sand, numerous basalt fragments and alteration material.
307 to 354.7 BASALT, gray, reddish, asphalitic, dense to scoriaceous, olivine-bearing, much alteration material at 394 (Shake River Basalt).
394.7 - Total Depth
LOG OF WELL

Project: Lower Teton Division
Location: 5N., R. 18 E.

Well No: 6N/3BE-25ac1 & ac2

Total Depth: 261 ft...
Begun: 12-20-67
Completed: 6-18-68
Drilling Method: Cable Tool

Static Water Level: 10 ft
See below (above) Meas Pr See below (below)

Elevation (ground): Average 4826.7
WL Meas: Pr

Yield: Drift

Logged By: Test Well No. 1

Geophysical Log

Well Description

Drilled under:
Spec. 1000-998
Developed by:
surging with

Dredging

Well IC
8 in. I.D. .277
in. wall ceg. +
0.5 + .277
4 1.0
2.0 ft. - 4 in.
I.D. blank ceg.
with lead wedge

Well IB
8 in. I.D. .277
wall ceg. + 1.0

to 237 ceg. set
in backfilled
1 in. hole to
150
236.7
2.0 ft. - 4 in.
I.D. blank ceg.
with lead wedge

Well IB
8 in. I.D. .277
w.
set
in

BASALT
Cobble
Rocks

AXE
CLAY
SILT
SAND
GRAVEL
BASALT

PROJECT: Lower Teton Division

WELL NO: 6N/3BE-25ac1 & ac2

Obs. Wells IA, IB & IC
LOG OF WELL

Project: Lower Teton Division
Feature: Observation Wells at Test Well Site 1
State: Idaho

Well No: 68/382-3502, 68/382-3503 & 68/382-3510
Location: T6N, R18E, Sec 6, NW

Total Depth: 681 ft.
Begun: 12-26-67
Completed: 6-18-68
Drilling Method: Cable Tool

Static Water Level:
1A - 270 ft.
1C - 59 ft.

Elevation (ground):
Average - 4836.7

Yield:

Logged:
Well No. 1

Log:
Geophysical

Logged By: Ralph C. Denton Drilling Co.

<table>
<thead>
<tr>
<th>Stringed</th>
<th>Description of Well Formation</th>
<th>Well</th>
<th>Log</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1A Cont'd.</td>
<td>1A</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Temp. 10 In s.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 6 ft. 12 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 270. 10 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 439 - all removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El. O.C. - 4826.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>top of cag. - 6827.4 s.a.l.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6/16/68 18.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(El. 4806.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radius - 39.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>483.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom of 8 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cag. and grout</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>681.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom of 8 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hole.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classes of Material and Physical Condition

- CLAY
- SAND
- MUD
- GRAVEL
- DANDRIFT

PROJECT: Lower Teton Division
WELL NO: 68/382-3502, 68/382-3503 & 68/382-3510
LOG OF WELL

Project: Lower Teton Division
Feature: Observation Wells at Test Well Site 2
State: Idaho

<table>
<thead>
<tr>
<th>Well No</th>
<th>Location</th>
<th>Total Depth</th>
<th>Began</th>
<th>Completed</th>
<th>Drilling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A, 2B, 2C</td>
<td>Approx. 615 ft. North and 230 ft. West of the E. 1/4 corner</td>
<td>2A: 235.0 ft, 2B: 224.0 ft, 2C: 220.7 ft</td>
<td>3/28/68</td>
<td>5/7/68</td>
<td>Cable tool</td>
</tr>
</tbody>
</table>

Static Water Level: See below (above)
Elevation (ground): Average 4856.7

Logged By: Ralph C. Denton
Drilled By: Drilling Co.

Drilled under Specs. 1000-958
- Developed by surging with bailer.
- **Wall 2C:** 8 in., 277 ft wall ceg. 0.9 to 11.3 ft in screen assembly 9.0 ft.
 - 20.5 ft #12 slot screen 13.5 to 18.5 ft lead swedge seal, steel plate bottom.
 - El. 0.0 -4857.1
 - El. top of ceg. -4858.02, s.w.l.
 - 7/31/68, 3.11
 - El. 4854.91
 - Radius = 31.8 ft.

Wall 2B
- 8 in., 277 ft wall ceg. 0.9 to 11.3 ft in screen assembly 29.0 ft to 40.0 ft #12 slot screen 33.5 to 38.5 ft lead swedge seal, steel plate bottom.
- El. 0.0 -4856.4
- El. top of ceg. -4857.29, s.w.l.
- 7/31/68, 13.72
- El. 4853.55
- Radius = 29.4 ft.

Wall 2A
- 10 in. hole 0 to 102, 10 in. temp ceg. 0 to 41 (0.18.8 remaining), 8 in. 277 ft ceg. 0.7 to 107, 8 in. hole 102 to 355, 6 in. ceg. 0.9 to 144, grout 135 to 144.
- El. 0.0 -4856.3
- El. top of 6 in. ceg. -4857.17, s.w.l.
- 7/31/68, 26.82 (El. 4826.38)
- Radius = 31.0 ft.

Refer to log of Well T/4SE-1941d (Test Well 2) for approximate classification and physical condition. Graphic log at left taken from Well T/4SE-1942d.
YIELD - DRAWDOWN GRAPHS OF TEST WELLS 1 AND 2 AND WELL 7N/38E - 23 dbl

YIELD (G.P.M.)

TEST WELL 1

TEST WELL 2

WELL 7N/38E - 23 dbl
Table 3. Summary of well construction and performance, Test Wells 1 and 2 and Well 7N/38E-23db1

<table>
<thead>
<tr>
<th></th>
<th>Test Well 1</th>
<th>Test Well 2</th>
<th>Well 7N/38E-23db1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total depth (feet)</td>
<td>685</td>
<td>395</td>
<td>236</td>
</tr>
<tr>
<td>Depth and diameter of casing (feet-inches)</td>
<td>450-24</td>
<td>198-24/20</td>
<td>177-20/16</td>
</tr>
<tr>
<td>Penetration in saturated basalt - open hole (feet)</td>
<td>235</td>
<td>197</td>
<td>59</td>
</tr>
<tr>
<td>Range of yield during testing (g.p.m.)</td>
<td>1,115-5,125</td>
<td>1,000-5,000</td>
<td>1,080-1,820</td>
</tr>
<tr>
<td>Range of drawdown during testing (feet)</td>
<td>0.25-3.87</td>
<td>0.67-5.76</td>
<td>1.69-4.20</td>
</tr>
<tr>
<td>Yield per foot of penetration per foot of drawdown - at 1,000 and 5,000 g.p.m. (g.p.m./ft.²)</td>
<td>23.6-5.46</td>
<td>7.25-4.41</td>
<td>12.3-</td>
</tr>
</tbody>
</table>

The relationship of drawdown in the several wells to yield of the test well in terms of time and distance was analyzed. (See semilog time-drawdown graph of Test Well 1 and log log time-drawdown graph of Test Well 2.) Aquifer characteristics considered are transmissibility (the ability of the aquifer to transmit water) and coefficient of storage (the ability to release water from storage). Determination of such characteristics seldom is precise because the ideal conditions imposed by the analytical methods are not found in nature. The Snake River basalt aquifer in the St. Anthony-Rexburg-Plano area is especially difficult to analyze because of several characteristics, some of which follow:

1. Extremely high transmissibility.
2. Anisotropy and large variations in permeability.
3. Great aquifer thickness.
4. Extremely low coefficient of storage.

Despite the difficulties, a relatively reliable range of transmissibility, as summarized in Table 4, has been determined. However, the only reliable rate of coefficient of storage originated from the test of Wells 7N/38E-23db1 and 7N/38E-23db2. No indications of boundary conditions
SEMILOG TIME-DRAWDOWN GRAPH OF CONSTANT YIELD TEST-TEST WELL 1

TIME (MIN)

OBSERVATION WELL A
(RADIUS - 39.5 FT.)

TEST WELL I

DRAWDOWN (FT.)
LOG LOG TIME–DRAWDOWN GRAPH OF CONSTANT YIELD TEST—TEST WELL 2

TEST WELL 2

OBSERVATION WELL 2A
(RADIUS – 31 FT.)

TIME (MIN.)

DRAWDOWN (FT.)

0.1 1.0 10 100 1,000 10,000

0.1 1.0

0.1
were detected during the testing of Test Wells 1 and 2. Boundaries possibly were encountered; but the effects were slight enough so as to be masked by barometric influences, variations in pumping rates, or other factors.

Table 4. Summary of aquifer characteristics, Test Wells 1 and 2 and Wells 7N/38E-22dbl and 7N/38E-23db3

<table>
<thead>
<tr>
<th></th>
<th>Test Well 1</th>
<th>Ob. Well 1A</th>
<th>Test Well 2</th>
<th>Ob. Well 2A</th>
<th>Well 7N/38E-23dbl</th>
<th>Well 7N/38E-23db3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmissibility</td>
<td>1200-2100 (1.3 - 2.3 x 10^7)</td>
<td>1400-1450 (1.5 - 1.6 x 10^7)</td>
<td>1500-1640 (1.6 - 1.8 x 10^7)</td>
<td>1740-2170 (1.9 - 2.4 x 10^7)</td>
<td>520 (5.7 x 10^6)</td>
<td>1000-1250 (1.08 - 1.35 x 10^7)</td>
</tr>
<tr>
<td>ft.²/min. and (g.p.d./ft.)</td>
<td>1 x 10⁻¹¹</td>
<td>1 x 10⁻⁸</td>
<td>6.0 x 10⁻⁸</td>
<td>6.0 x 10⁻¹¹ - 1.6 x 10⁻¹³</td>
<td>6.5 x 10⁻³</td>
<td>1.6 - 1.8 x 10⁻⁵</td>
</tr>
</tbody>
</table>

The pumping tests and subsequent analysis reveal that the basalt underlying the St. Anthony-Rexburg-Plano area has a transmissibility in excess of 1,400 feet²/min. (1.5 x 10^7 g.p.d./ft.) which is extremely high and generally comparable to much of the rest of the Snake Plain aquifer. The coefficient of storage, which probably is less than 1.0 x 10⁻⁵ is very small and evidently reflects the confined nature of aquifer in the area as contrasted to a free or semiconfined condition elsewhere. With these characteristics, wells drawing from the basalt aquifer will yield large volumes of water with very small drawdowns. The zone of influence created in the aquifer by withdrawal from wells will be fast moving, widespread, and proportionally large in comparison to the drawdown in the well.

Effects on the Perched Aquifer

During the testing of Test Wells 1 and 2, the perched water table was monitored by means of tape measurements and recorders. At each test site two observation wells were drilled into the alluvial overburden. One well was bottomed a few feet below the perched water table, whereas the other was drilled to a deeper level. The test sites were selected to reduce, insofar as possible, outside influences on the perched aquifer during the tests. However, despite the precautions, fluctuations of the Henrys Fork River during a period of flooding did significantly affect the perched aquifer at Test Well 1. Fortunately, river level records were available from a nearby gaging station so the influence of the river was recognizable.
Hydrographs of water table depths in the basalt and perched aquifers at Test Well 1 and of the river level indicate an absence of measurable influence on the perched aquifer from pumping from the underlying basalt aquifer. (See hydrographs of Henrys Fork River level and water table depths - Test Well 1.)

At Test Well 2 the perched water did not vary more than a few hundredths of a foot during the period prior to and during the test pumping, thus indicating an absence of measurable influence of this site also.

Quality of Water

Laboratory analyses have been made of samples of water from eight wells in basalt that underlies the alluvial lowlands, one well in alluvium between Henrys Fork and Mud Lake-Market Lake basins, and one from the Henrys Fork River near its mouth (Table 5). The analyses indicate that the ground water samples from basalt is suitable for irrigation and is slightly corrosive to corrosive to ferrous metals.

Ranges of important characteristics are as follows:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°F.)</td>
<td>51 to 56</td>
</tr>
<tr>
<td>pH</td>
<td>6.99 - 7.98</td>
</tr>
<tr>
<td>Specific Conductance (10^-6 mho)</td>
<td>182 - 516</td>
</tr>
<tr>
<td>Boron (ppm)</td>
<td>0.02 - 0.08</td>
</tr>
<tr>
<td>HCO₃ (meq/l)</td>
<td>1.72 - 4.06</td>
</tr>
<tr>
<td>Residual NaCO₃ (meq/l)</td>
<td>(-)0.60 - 0.92</td>
</tr>
<tr>
<td>SAR</td>
<td>0.29 - 0.91</td>
</tr>
<tr>
<td>Langelier Index</td>
<td>(-)1.62 - (+)0.34</td>
</tr>
</tbody>
</table>

Replacement Water Supply Wells

Design and Costs

Results of pumping tests as previously described and data from other sources indicate that an adequate source of ground water is available in the St. Anthony-Rexburg-Plano area. Because of the extremely high transmissibility, the aquifer is capable of supplying wells of almost unlimited capacity with reasonable drawdowns. There are, however, several factors which tend to limit the size and capacity of wells in the area. Among these are:

1. Ability of drilling contractors to drill and case extra large wells without specialized equipment.

2. Rapidly rising costs associated with drilling extra large wells.

3. Pump limitations as explained below.
HYDROGRAPH OF HENRY'S FORK RIVER LEVEL AND WATER TABLE DEPTHS PRIOR TO AND DURING PUMPING TEST - TEST WELL 1

JUNE 1969

HENRY'S FORK RIVER AT REXBURG

OBSERVATION WELL IC
(DEPTH - 50 FT) (RADIUS - 273 FT)

TEST WELL 1
(DEPTH - 685 FT)

OBSERVATION WELL IB
(DEPTH - 244 FT) (RADIUS - 250 FT)

STEADY DRAWDOWN TEST

CONSTANT YIELD TEST

DEPTH TO WATER TABLE IN FEET BELOW CEMENTED CASING

CASE READINGS (ft.)

12 13 14 15 16 17 18

0.0 10.0

8.0 9.0

6.0 7.0

4.0 5.0

2.0 3.0

1.0 2.0

0.0
Table 5. Chemical analyses of water from 9 wells and Henrys Fork River

<table>
<thead>
<tr>
<th>Source</th>
<th>Well No.</th>
<th>Date</th>
<th>Temp. °F.</th>
<th>pH</th>
<th>E.C. x10^6</th>
<th>B ppm</th>
<th>CO₃ ppm</th>
<th>HCO₃ ppm</th>
<th>Cl ppm</th>
<th>SO₄ ppm</th>
<th>NO₃ ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henrys Fork</td>
<td>6N/38E-25acl</td>
<td>6/17/68</td>
<td>7.72</td>
<td>469</td>
<td>0.07</td>
<td>0.00</td>
<td>4.06</td>
<td>0.37</td>
<td>0.88</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>6N/38E-30ba2</td>
<td>6/22/67</td>
<td>7.58</td>
<td>271</td>
<td>0.09</td>
<td>0.00</td>
<td>2.46</td>
<td>0.17</td>
<td>0.15</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>6N/39E-30adl</td>
<td>7/20/67</td>
<td>7.98</td>
<td>516</td>
<td>0.04</td>
<td>0.00</td>
<td>4.04</td>
<td>0.35</td>
<td>0.98</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>6N/40E-30bdl</td>
<td>7/6/67</td>
<td>7.66</td>
<td>410</td>
<td>0.06</td>
<td>0.00</td>
<td>3.91</td>
<td>0.18</td>
<td>0.24</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>7N/38E-23dbl</td>
<td>6/22/67</td>
<td>7.68</td>
<td>249</td>
<td>0.08</td>
<td>0.00</td>
<td>2.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>7N/40E-19adl</td>
<td>8/1/68</td>
<td>7.96</td>
<td>290</td>
<td>0.06</td>
<td>0.00</td>
<td>2.89</td>
<td>0.19</td>
<td>0.10</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>7N/40E-20cdl</td>
<td>8/10/67</td>
<td>6.99</td>
<td>182</td>
<td>0.02</td>
<td>0.00</td>
<td>1.43</td>
<td>0.13</td>
<td>0.22</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>8N/40E-21ddl</td>
<td>7/6/67</td>
<td>7.78</td>
<td>246</td>
<td>0.06</td>
<td>0.00</td>
<td>2.06</td>
<td>0.14</td>
<td>0.21</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>8N/40E-36dd</td>
<td>7/6/67</td>
<td>7.40</td>
<td>204</td>
<td>0.06</td>
<td>0.00</td>
<td>1.72</td>
<td>0.16</td>
<td>0.12</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Near North Fork Bridge</td>
<td>7/20/67</td>
<td>69</td>
<td>8.04</td>
<td>209</td>
<td>0.04</td>
<td>0.00</td>
<td>1.92</td>
<td>0.07</td>
<td>0.14</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

* From Alluvium
Experience gained in the drilling of Test Wells 1 and 2 indicate that drilling of wells in excess of 24 inches probably would not be practicable nor justified from a cost standpoint. In addition, the depth of overburden which must be cased off is a major construction and cost item. In view of these factors, wells should be limited to a maximum of 24-inch diameter and not more than about 200 feet of overburden.

Wells of 24-inch diameter will yield 20 c.f.s. or more with reasonable drawdown. The pump capacity of this size well is, however, the limiting factor. The maximum reasonable pump capacity utilizing 16-inch coupled column is about 18 c.f.s. Beyond this, flanged column, which is costly and requires an overly large casing, must be used.

An expected range of well and pump capacities using 16-inch column would be 12 to 18 c.f.s. with an average of about 15 c.f.s. Based on the requirement for 400 c.f.s. maximum flow, 27 wells of 14.81 c.f.s. each would satisfy the demand. The yields would not have to be adjusted for a given service area, but would only have to meet the total demand in the river or supplement to an existing canal. Thus, all or a major share of the wells and pumps could be standardized to about 15 c.f.s. Where high yielding areas with low pumping lifts are found, the yields could be increased to the maximum to meet emergency or other unexpected demands.

The provision for the 27 wells includes Test Wells 1 and 2 which are adaptable to production use and any additional test wells which may be drilled subsequent to this report.

Basic maximum, average, and minimum construction features of a typical well based on dimensions of 25 wells located as described hereafter are shown below.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter - hole for pump chamber</td>
<td>27 in.</td>
</tr>
<tr>
<td>Pump chamber casing</td>
<td>24 in.</td>
</tr>
<tr>
<td>Open hole in basalt</td>
<td>23-19 in.</td>
</tr>
<tr>
<td>Total depth - average</td>
<td>400 feet</td>
</tr>
<tr>
<td>Maximum</td>
<td>450 feet</td>
</tr>
<tr>
<td>Minimum</td>
<td>325 feet</td>
</tr>
<tr>
<td>Pump chamber casing depth - average</td>
<td>175 feet</td>
</tr>
<tr>
<td>Maximum</td>
<td>225 feet</td>
</tr>
<tr>
<td>Minimum</td>
<td>125 feet</td>
</tr>
<tr>
<td>Open hole in basalt</td>
<td>225 feet</td>
</tr>
</tbody>
</table>

A diagram of a typical well is included hereafter and cost estimate is given in Table 6. The cost estimate includes partial cost of the two completed test wells in the total for 27 wells.
DIAGRAM OF TYPICAL WELL

Ground Surface

Grout

Typical Static Water Level

Oversize Hole

Alluvial Overburden

100

Pump Chamber Casing

24 in. O.D.

Grout And Shoe

200

Basalt

Open Hole In Basalt

23 in. And Smaller

300

400
Table 6. Estimated unit prices and total cost of typical basic well

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity and Unit</th>
<th>Unit Price</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moving in and removing equipment</td>
<td>one move</td>
<td>$250.00</td>
<td>$250.00</td>
</tr>
<tr>
<td>Drilling hole in overburden to accommodate 24-inch O.D. casing</td>
<td>150 lin. ft.</td>
<td>37.50</td>
<td>5,625.00</td>
</tr>
<tr>
<td>Drilling hole in basalt to accommodate 24-inch O.D. casing</td>
<td>25 lin. ft.</td>
<td>32.00</td>
<td>800.00</td>
</tr>
<tr>
<td>Drilling the following minimum diameter holes in basalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-inch</td>
<td>125 lin. ft.</td>
<td>24.00</td>
<td>3,000.00</td>
</tr>
<tr>
<td>19-inch</td>
<td>100 lin. ft.</td>
<td>20.00</td>
<td>2,000.00</td>
</tr>
<tr>
<td>Furnishing and installing 24-inch: O.D. -.500-inch wall thickness</td>
<td>175 lin. ft.</td>
<td>20.00</td>
<td>3,500.00</td>
</tr>
<tr>
<td>casing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnishing and installing 24-inch: casing shoe</td>
<td>one shoe</td>
<td>210.00</td>
<td>210.00</td>
</tr>
<tr>
<td>Grouting around casing</td>
<td>6 c.y.</td>
<td>50.00</td>
<td>300.00</td>
</tr>
<tr>
<td>Sterilizing well with HTH</td>
<td>50 pounds</td>
<td>0.70</td>
<td>35.00</td>
</tr>
<tr>
<td>Furnishing, installing, and removing test pump</td>
<td>one pump</td>
<td>2,500.00</td>
<td>2,500.00</td>
</tr>
<tr>
<td>Surging and test pumping wells</td>
<td>32 hours</td>
<td>30.00</td>
<td>960.00</td>
</tr>
<tr>
<td>Disposal of water</td>
<td>one site</td>
<td>500.00</td>
<td>500.00</td>
</tr>
<tr>
<td>Standby time</td>
<td>24 hours</td>
<td>20.00</td>
<td>480.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$20,140.00</td>
</tr>
<tr>
<td>For 27 wells</td>
<td></td>
<td></td>
<td>$543,780.00</td>
</tr>
</tbody>
</table>

The aforementioned estimate covers the direct contract unit cost of a basic well as described. Not included are pumping or electrical equipment, discharge facilities, land or right-of-way, overhead, or contingencies. Unit prices are based principally on the three low bid prices received for drilling Test Wells 1 and 2 with modifications as justified by field experience.

Location of Facilities

Based on the requirement for 30 percent delivery of replacement ground water into existing irrigation facilities and the several advantages of location of wells along major streams, the following general distribution of facilities is proposed:

1. Eighteen streamside wells located in four well fields of four wells each and two single wells. (See location map of replacement wells.) Discharge would be directly into the Henrys Fork River or tributary thereof.
PROPOSED GENERAL LOCATION OF WATER REPLACEMENT WELLS

- Canal - Side Well Area
- Stream - Side Well Field
- Stream - Side Single Well
2. Nine canalside wells located within the general areas shown and with discharge into major canals.

These sites have been selected to meet the following criteria in addition to the requirement for 30 percent discharge into canals.

1. Presence of an adequate thickness of saturated basalt.
2. Maximum overburden depth of 200 feet.
3. Minimum static water levels consistent with other criteria.
4. Proximity to a stream or to a canal of adequate capacity.

Streamside wells would require the following sites and appurtenant facilities.

1. Two singly located wells – about 1,000 lin. ft. of discharge pipe each with related valves, meters and inlet facilities. Site – one acre each with right-of-way for discharge pipe and access.

2. Four fields of four wells each – about 660 lin. ft. of discharge pipe or open channel with inlet facilities. Each well within the field – about 75 lin. ft. of discharge pipe each with related valves and meters. Site – two acres each with right-of-way for discharge and access.

Canalside:

Nine individually located wells – about 25 lin. ft. of discharge pipe, each with related valves, meters, and inlet facilities. Site – one-quarter acre with right-of-way for discharge and access.

Well Performance

Under long-term operating conditions, pumping lifts of replacement wells will be the sum of a number of components, some of which are related to well characteristics, whereas others depend on aquifer characteristics and/or recharge conditions. These components are as follows:

1. Static water level – observed depth to static water taken from depth to water table map. Static water levels at each well field are weighted to obtain an average.

2. Short-term drawdown – based on projection of observed drawdown of Test Wells 1 and 2 up to an average yield of 14.8 c.f.s. (See graph of projected drawdown for wells with yields 12 to 18 c.f.s.) Includes weighted mutual interference within multiwell fields.

3. Seasonal drawdown – based on projection of observed drawdown in Test Wells 1 and 2 to 14.8 c.f.s. average yield and 270 days pumping time.
PROJECTED SHORT TERM DRAWDOWN FOR WELL WITH YIELD 12 TO 18 CFS
4. Seasonal decline in static water level - taken from observed seasonal fluctuations in the static water level as shown on hydrographs.

5. Long-term decline in static water level - an arbitrary estimate given in absence of data on long-term cyclic fluctuations of the static water level.

6. Long-term drawdown - based on estimates of the effect of mutual interference between wells and well fields and the resultant creation of an area-wide zone of influence. Taken principally from unpublished analog model studies support by results of independent calculations.

Pumping lift components and total for an average well of 14.8 c.f.s. capacity are summarized in Table 7. Maximums and minimums generally are observed or computed values. Averages are based on weighted values where practicable and on judgment elsewhere.

<table>
<thead>
<tr>
<th></th>
<th>Maximum</th>
<th>Minimum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Static water level</td>
<td>80</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>2. Short-term drawdown</td>
<td>12</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3. Seasonal drawdown</td>
<td>1</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>4. Seasonal decline in static water level</td>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5. Long-term decline in static water level</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6. Long-term drawdown</td>
<td>12</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Subtotal</td>
<td>121.0</td>
<td>32.3</td>
<td>60.6</td>
</tr>
<tr>
<td>TOTAL (+10% & rounded)</td>
<td>135</td>
<td>35</td>
<td>70</td>
</tr>
</tbody>
</table>
EFFECTS OF REPLACEMENT PUMPING

Barring existence of serious unforeseen conditions, it is evident that the Snake River basalt aquifer underlying the alluvial lowlands in the St. Anthony-Rexburg-Plano area is capable of yielding on a sustained basis the necessary volumes of replacement ground water with reasonable construction and operational costs. As stated previously, however, the consequences of replacement pumping on existing conditions and uses within the pumping area, and also regionally, should be considered.

Local

The effect on the basalt aquifer within the area will be limited to moderate cyclic declines in the static water level. This reaction could cause water level declines up to 10 feet in municipal wells in St. Anthony, Sugar City and Rexburg in addition to a limited number of domestic, irrigation, and industrial wells. Generally, these could be offset by lowering of pumps where well depths are adequate. Conceivably, where the thickness of saturated basalt is marginal, some wells could undergo serious reductions in yield. Wells of this type probably are very limited in number.

The basalt aquifer is not known to discharge ground water to streams within or in the immediate vicinity of the Division area. Local stream depletion, therefore, will not be a factor in replacement pumping in the Division area.

Generally, the data at hand indicate that significant local problems will not be encountered with respect to existing ground water conditions in the basalt aquifer or depletion of discharge therefrom caused by replacement pumping from the basalt in the Division area.

Locally, the potentially unfavorable influences on the perched aquifer from replacement pumping could include interference with sub-irrigation, water level decline in domestic wells, and depletion of return flows. The above would result from any significant decline in the perched water level caused by pumping from the basalt aquifer. The relationship of the perched and regional aquifers is imperfectly known. Thus, a quantitative estimate based on present data of the reaction of the water level in the former to withdrawals from the latter is not practicable. However, present relationships between the two aquifers and the previously described results of test pumping tend to indicate qualitatively that withdrawal from the basalt aquifer will influence the perched aquifer to only a minor extent. Principal among the relationships is the hydraulic separation between static water levels in the two aquifers which ranges from a few feet to more than 100 feet.
Throughout the lowland area the perched water level lies above the regional water level, thus indicating the existence of a zone of hydraulic discontinuity with accompanying disruption of vertical flow. Under such conditions the rate of percolation would depend principally on the vertical permeability of the material and would be relatively independent of the separation between the two water levels.

Regional

Withdrawal of replacement ground water from the alluvial lowlands of the Division area will affect ground water levels everywhere within the zone of influence of the pumping. The nature and magnitude of change will be dependent principally on the rate and duration of withdrawals, characteristics of the aquifer, and distances involved. In areas where discharge from the aquifer occurs, the influence from replacement pumping will cause a decline in discharge. Elsewhere the influence will be in the form of a decline in water level in the aquifer.

American Falls Reservoir

The principal areas of discharge reduction will be in the Twin Falls-Hagerman and Blackfoot-American Falls reaches of the Snake River. In the former reach, flows presently exceed needs and rights so it is not hereafter considered. In the latter, however, reduction of aquifer discharge will result in adverse depletion of inflows to American Falls Reservoir.

Mundorff (1962) in connection with artificial recharge studies estimates that increase in discharge from the Snake Plain aquifer resulting from an increase in recharge in the Roberts-Plano area would be divided about 60 percent to the Twin Falls-Hagerman reach of the Snake River and about 40 percent to the Blackfoot-American Falls reach. Since withdrawals of the same magnitude would have equal but opposite reaction on water levels, Crosthwaite and others (1967) suggest that similar percentages would hold true for depletion by pumping. They estimate that the reduction in inflow to the Blackfoot-American Falls reach after pumping 600 c.f.s. for 6 months annually for 5 consecutive years in the lower Henrys Fork valley would be about 60 c.f.s. or about 2.3 percent of average inflow. The Division First Phase requirements as previously shown vary somewhat in total volume and timing. Since the depletion would be generally in proportion to withdrawals, those due to First Phase pumping would certainly be somewhat less than 60 c.f.s.

Crosthwaite states, however, that the depletion would be much less than the computed amount because the average annual withdrawals would be less than the maximum. In addition, increased recharge due to Division operations would tend to offset aquifer depletion caused by pumping. Estimates made by others (Bureau of Reclamation, 1968, unpublished data) indicate that increased recharge to the basalt aquifer
due to Division operations would nearly offset depletion of American Falls inflow. The maximum annual depletion based on combined Phase 1 and 2 operations would be about 3,700 acre-feet or 10 c.f.s. flow for 6 months.

With present state of knowledge of ground water flow conditions in the Snake Plain aquifer, a precise, reliable estimate of the effects of Lower Teton Division replacement pumping on ground water inflows to American Falls Reservoir is not feasible. However, the data at hand indicate the effects will be minor if not negligible. Fortunately, because of unusually favorable ground water conditions in the St. Anthony-Rexburg-Plano area, flexibility can be built into the replacement facilities to permit the pumping of up to 10 percent more than the Division First Phase requirement at small additional construction and operational costs if such becomes necessary.

Mud Lake-Market Lake Basins

In addition to the two aforementioned reaches of the Snake River, natural discharge from the basalt aquifer also occurs as springs in the Mud Lake and Market Lake basins which lie 10 to 25 miles west of the Henrys Fork lowlands. According to Stearns and others (1939) the two basins were relatively dry prior to the beginning of irrigation in the lower Henrys Fork valley in about 1895. Following this irrigation, ground water levels rose over much of the two basins to near the ground surface and, in addition, numerous springs appeared.

The ground water conditions beneath the Mud Lake and Market Lake basins, which lie astride the Mud Lake ground water barrier, are relatively unknown. The basins presently support large irrigation developments based partially on ground water and, in addition, contain United States and State waterfowl management facilities.

Stearns and others (1939) attribute the barrier effect to the presence of a perched water table in the lacustrine beds of the Mud Lake basin and presumably the Market Lake basin. This perched water is said to lie 250 to 275 feet above the regional water level of the basalt aquifer south of the barrier. Mundorff and others (1964) presume that the barrier is related to the presence of extensive lacustrine interbeds which lie with the basalt in the area. Parallel fault traces have been found and these are also presumed to be related to the origin of the barrier.

Results of unpublished analog model studies indicate that ground water levels in the Mud Lake area above the barrier will decline as much as 6 feet as a result of replacement pumping in the St. Anthony-Rexburg-Plano area, which is at a distance of about 27 miles. This is about 60 percent of the decline that will be experienced at a distance of about 6 miles from the pumping area. However, inspection of well hydrographs in the pumping area and in the Mud Lake area indicates
that the wave resulting from annual recharge in the pumping area is greatly dampened by the time it reaches Mud Lake. Since a decline due to pumping would have a similar but opposite effect, it would appear that the magnitude of decline produced by the analog is not reliable. This probably is due to invalid duplication of aquifer conditions in the model resulting from inadequate data on subsurface geologic and hydrologic conditions in the area between the lower Henrys Fork valley and the Mud Lake-Market Lake basin. Until these conditions are determined, a precise estimate of the effects of replacement pumping on ground water conditions in the Mud Lake-Market Lake basins is not feasible.
REFERENCES

