Eastern Snake Plain Aquifer
Water Budget

Presentation to the
Idaho Water Resource Board
ESPA Management Plan
Advisory Committee

5 June 2007

Idaho Water Resources Research Institute
B. Contor
Outline

• Overview of Water Budget
• Relative Magnitudes
• Uncertainty
• Individual Detail
 – calculation methods
 – data sources
• Questions
Goezins – Goezouts = Change in Storage
Goezins – Goezouts = Change in Storage

- Percolation from irrigation
- Seepage from Snake River
- Canal leakage
- Seepage from other streams
- Percolation from precipitation
- Underflow from tributary basins
- Percolation from septic systems

- Discharge to springs
- Discharge to Snake River
- Discharge to non-Snake water bodies
- Pumping from wells
- Phreatophytes
Goezins – Goezouts = Change in Storage

- Percolation from irrigation
- **Seepage from Snake River**
- Canal leakage
- Seepage from other streams
- Percolation from precipitation
- Underflow from tributary basins
- Percolation from septic systems

- Discharge to springs
- Discharge to Snake River
- Discharge to non-Snake water bodies
- Pumping from wells
- Phreatophytes

“Net Recharge” + **Targets** = Change in Storage
Targets

- Seepage from Snake River
- Discharge to Snake River
- Discharge to Springs
“Net Recharge”

• Some components combined for convenience:
 • Percolation from irrigation
 • Canal leakage
 • Seepage from other streams
 • Percolation from precipitation
 • Underflow from tributary basins
 • Percolation from septic systems
 • Discharge to non-Snake water bodies
 • Pumping from wells
 • Phreatophytes
 • Perched-river seepage
 • Tributary underflow
 • Fixed-point pumping
 • Offsite pumping
 • Non-irrigated-lands recharge
 • Canal leakage
 • Irrigated lands calculation
 • Precipitation
 • Irrigation entities
 • Diversions & Returns
 • Irrigated lands
 • Evapotranspiration
Relative magnitudes from draft report.

Figure 42. Bar graph of the components of recharge for steady state model.
Uncertainty (From old “Base Case” Scenario)

Recharge uncertainty is estimated from subjective assessment of range of uncertainty of individual components of recharge, at one estimated standard deviation. Reach gain uncertainty is estimated to be 5% of average gains.

Imbalance = 150,000 AF/yr

Figure 3. Recharge Uncertainty Estimates Relative to 22-year Average Recharge and Discharge (ESPAM v1.1)
Uncertainty (Qualitative Assessment by Component)

This is not necessarily the uncertainty in the underlying data but our uncertainty in the derived water-budget components.

The length of the bars is conceptual and not based on formal quantification.
Calculation and Data Details

- Data
 - Perched River Seepage
 - Tributary Underflow
 - Fixed-Point Pumping
 - Offsite Pumping
- Gory Details
 - Non-Irr Recharge
 - Canal Seepage
 - Irrigation (long)
 - Irrigation (short)
- Snake Reach Gains
- Snake Reach Losses
- Spring Discharge
Questions?

Bcontor@if.uidaho.edu
208 282 7846
(Animation Break)
Targets - Snake River Gains/Losses

• Individual reach water budget
 Surface Goezins – Surface Goezouts = Net to Aquifer

 – Goezins: Upstream gage, tributary inflows, SW irrigation return flows
 – Goezouts: Downstream gage, SW diversions
(Animation Break)
Targets - Springs

• Entire reach: Kjelstrom method
 • compatible w/ gage records
 • confirmed w/ Covington & Weaver

• partial-reach targets also used in calibration but these are incomplete for water-budget purposes
(Animation Break)
• Seepage from perched rivers (not Snake River) estimated from USGS gage records
(Animation Break)
Tributary Underflow Relationship

- Total volume estimated from prior studies
 - based on water-budget analysis
 - confirmed w/ “sense-check” recalculation
- Annual variation scaled from Silver Creek
(Animation Break)
Fixed Point Sources and Withdrawals Relationship

- Withdrawal (negative) or Recharge (positive) independent of other calculations
- Used for upper-valley exchange wells
- Used for corrections
 - wetlands
 - Richfield tract
(Animation Break)
Off-site Groundwater Pumping Relationship

- Withdrawal (negative) where the well is located
- Volume is added to canal-co diversions for irrigation calculations
- Used for Jefferson Irr, Monteview CC, Producers CC
(Animation Break)
Recharge on Non-irrigated Lands Relationship

- Depth of recharge calculated from precipitation
- Calculation depends on general soil type
- Non-irrigated recharge is calculated for every cell but was only used on non-irrigated lands
- Wetlands, dryfarms and cities were also represented in this data set
(Animation Break)
For largest leaky canals, seepage is estimated as a fraction of diversions.

For other canals, seepage is implicitly part of irrigation percolation calculation.
(Animation Break)
The next several slides illustrate calculation of irrigation impacts
Precipitation Relationship

- PRISM precipitation data from Oregon State University
- “Departures from Normal” from NOAA
- Precipitation is applied as an input in irrigation calculations
Irrigation Entities Relationship

Spatial relationship will be represented in .iar analysis

- An “entity” is a block of irrigated lands with similar characteristics
- Source of water is identified as surface or ground water
- Surface-water entities are associated w/ diversions & returns
- Percentage of sprinkler use for each period is shown
• Volumes of diversions and returns are represented for each surface water entity
• \((\text{Diversion} – \text{Returns}) = \text{net application, used in irrigation calculations}\)
Irrigated Agriculture Relationship

- GIS maps of irrigated agriculture were obtained from satellite images (1980, 2000) and aerial photos (1987-1992)
- Water-rights & Adjudication data identified water source
Irrigation Discount Relationship

Nominal irrigated polygon

Actual irrigated polygon

\[
1 - \left(\frac{\text{Actual}}{\text{Nominal}} \right) = \text{Reduction for non-irrigated inclusions}
\]

• Because not all the area in a nominal polygon is irrigated a reduction proportion is applied for non-irrigated areas

• Different reduction factors can be applied for sprinkler and gravity non-irrigated areas
Irrigated Lands Evapotranspiration Relationship

- Evapotranspiration = Reference ET x Crop Coefficient
- Reference ET from weather-station calculations
- Crop coefficient from U of I “Allen Brockway” report
- Coefficients applied according to crop mix from USDA/Idaho Ag Statistics Service annual reports
Calculation of Net Extraction Due to GW Irrigation

- Stress = (Precipitation – (ET x Adj))
 - If ET is bigger than precip (typical) this is negative
 - Negative means water from the aquifer
- Calculation is performed for each 1-mile cell that has GW-irrigated lands
Calculation of Net Recharge Due To SW Irrigation

- Stress = (Diversions + Offsite – Canal leakage – Return flows + Precipitation – (ET x Adj))
 - If ET is bigger than supply (unusual) this is negative
 - Negative means water from the aquifer
 - Without a well, this is impossible; corrections applied in “fixed point” data set

- Calculation is performed for each 1-mile cell that has SW-irrigated lands
Calculation of Net Impact with Mixed-source Irrigation

• Stress = (GW calculation x GW fraction) + (SW calculation x SW fraction)
 – Sometimes negative, sometimes positive
 – Errors in fraction only change spatial distribution, not total net stress

• Calculation is performed for each 1-mile cell that has Mixed-source lands
(Animation Break)
Data Sources
(Animation Break)
Where to Find Gory Details

- web search: “IWRRI Idaho Falls Water Budget Reports”
More Gory Details

• Go to “ftp://ftp.state.id.us/idwr/Outgoing/”
(Animation Break)