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Key Questions

1. For the eastern Snake Plain Aquifer (ESPA), are
conditions approaching those of a Critical Ground
Water Area (CGWA)?

What is a CGWA and what is a Ground Water Management
Area (GWMA)?

Where are the CGWAs and GWMASs?

What are the physical characteristics of the eastern Snake
River Plain and the ESPA?

What are the hydrologic trends in the ESPA?
Why are the trends downward?
What has been the impact of downward trends?
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Key Questions

2. Should a GWMA, if formed, include tributary basins?

What is a tributary basin?
How do we know the boundaries of tributary basins?
How much ESPA water comes from tributary basins?

What generally are the hydrologic impacts of consumptive
groundwater pumping in tributary basins?

What specifically are the hydrologic impacts of consumptive
groundwater pumping in this area?
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What is a CGWA and a GWMA?

e Critical Ground Water Area

supply for irrigatior vated lands, or other uses in the basin
at the then current rates of withdrawal or rates of withdrawal
projected by consideration of valid and outstanding applications
and permits, as may be determined and designated, from time to
time, by the director of the department of water resources.”
(emphasis added)

* Ground Water Management Area

— |.C. § 42-233b: “any ground water basin, or designated part
thereof, which the director of the department of water resources
has determined may be approaching the conditions of a critical
ground water area.”



Where are the CGWAs and GWMASs?
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What are the physical characteristics of the ESRP and
the ESPA?A

Abv nr Blackfoot A

nr Blackfoot - Minidoka
Kimberly - King Hill
Eastern Snake Plain Aquifer
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What are the hydrologic trends?
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ESPA Water Levels
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ESPA Water Levels
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ESPA Water Levels
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ESPA Water Levels
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ESPA Water Levels
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Water Level Change - Spring 1980 To Spring 2013
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Why are aquifer trends since the 1950s downward?

e Declining water levels and aquifer discharge are
attributed to three primary factors:
1. The onset of significant groundwater irrigation.
2. More efficient surface water irrigation practices.

3. Periods of drought.




ESPA Cumulative Aquifer Storage Change (million acre-feet)

What has been the impact of downward trends?
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What is a tributary basin?

“...a basin tributary to the Snake River represents a
geographical area with a stream or other body of
water, surface or underground, that contributes
water to the Snake River, even in small or

intermittent quantities.” (emphasis added, Lovell and
Johnson, 1999, p. 21)
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How do we know tributary basin boundaries?

e We know the surface water basin boundaries because
the U.S. Geological Survey mapped drainage basins
across the United States in the 1970s and 1980s.




Upper Snake River Basin (Lovell and Johnson, 1999)
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How do we know tributary basin boundaries?
(cont’d)

 We know the groundwater basin boundaries because
surface and groundwater basin boundaries generally
coincide in the upper Snake River Basin.




Tributary basin geology (adapted from Lewis &
s, 2012)
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How much ESPA water comes from tributary basins?

(from IDWR, 2013)

ESPA Recharge (KAF/yr)

B TributaryUnderflow
B Tributary Seepage

Recharge from Surface Water Irrigation

M Direct Precipitation on the Eastern Snake
River Plain

5,300
(69%)
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What are the hydrologic impacts of consumptive
groundwater use in tributary basins?

“Every acre-foot of water consumptively used in
basins tributary to the Snake River ultimately reduces
the flow of the Snake River” (Ralston and others,
1984, p. 10)




What are the hydrologic impacts of consumptive groundwater
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Hailey

B Kimberly-King Hill
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What are the hydrologic impacts? = timing

Model Cell Nearest to Hailey
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Summary

* The vast majority of the water in the ESPA comes from tributary
basins.

 Consumptive groundwater use in a tributary basin either
reduces flow in the tributary stream or underflow to the ESPA.

 ESPA water levels and discharge have been trending downward
since the 1950s.

e Starting in 1993, water delivery calls have been filed by senior
ESRP water users alleging insufficient water supplies.
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Questions?
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Arco
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What are the hydrologic impacts? = timing

Model Cell Nearest to Arco
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Mud Lake
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What are the hydrologic impacts? = timing

Model Cell Nearest to Mud Lake
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Rexburg
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What are the hydrologic impacts? = timing

Model Cell Nearest to Rexburg
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Pocatello
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What are the hydrologic impacts? = timing

Model Cell Nearest to Pocatello
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Blackfoot
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What are the hydrologic impacts? = timing

Model Cell Nearest to Blackfoot
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Downey
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What are the hydrologic impacts? = timing

Model Cell Nearest to Downey
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Malta
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What are the hydrologic impacts? = timing

Model Cell Nearest to Malta
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Burley
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What are the hydrologic impacts? = timing

Model Cell Nearest to Burley
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What are the hydrologic impacts? = magnitude and location

Long Term Reach Allocation for Model Cell Nearest to Jerome
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What are the hydrologic impacts? = timing

Model Cell Nearest to Jerome
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