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Key Questions 

1. For the eastern Snake Plain Aquifer (ESPA), are 
conditions approaching those of a Critical Ground 
Water Area (CGWA)? 

– What is a CGWA and what is a Ground Water Management 
Area (GWMA)? 

– Where are the CGWAs and GWMAs? 

– What are the physical characteristics of the eastern Snake 
River Plain and the ESPA? 

– What are the hydrologic trends in the ESPA? 

– Why are the trends downward? 

– What has been the impact of downward trends? 

 

 



Key Questions 

2. Should a GWMA, if formed, include tributary basins? 

– What is a tributary basin? 

– How do we know the boundaries of tributary basins? 

– How much ESPA water comes from tributary basins? 

– What generally are the hydrologic impacts of consumptive 
groundwater pumping in tributary basins? 

– What specifically are the hydrologic impacts of consumptive 
groundwater pumping in this area? 

 

 

 

 



What is a CGWA and a GWMA? 

• Critical Ground Water Area 
– I.C. §42-233a: “any ground water basin, or designated part thereof, 

not having sufficient ground water to provide a reasonably safe 
supply for irrigation of cultivated lands, or other uses in the basin 
at the then current rates of withdrawal or rates of withdrawal 
projected by consideration of valid and outstanding applications 
and permits, as may be determined and designated, from time to 
time, by the director of the department of water resources.” 
(emphasis added) 

 
• Ground Water Management Area 

– I.C. § 42-233b: “any ground water basin, or designated part 
thereof, which the director of the department of water resources 
has determined may be approaching the conditions of a critical 
ground water area.” 

 
 



Where are the CGWAs and GWMAs? 
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What are the physical characteristics of the ESRP and    
the ESPA? 
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What are the hydrologic trends? 

1952 – 2016: -13 million acre-feet 



ESPA Water Levels 



ESPA Water Levels 

~40 ft since 1957 



ESPA Water Levels 



ESPA Water Levels 

~11 ft since 1959 
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ESPA Water Levels 

~20 ft since 1975 



ESPA Water Levels 



ESPA Water Levels 

~7 ft since 1975 



ESPA Water Levels 



ESPA Water Levels 

~35 ft since 1970 
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ESPA Water Levels 

~7 ft since 1951 



Water Level Change - Spring 1980 To Spring 2013 
with Well Locations 
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Why are aquifer trends since the 1950s downward? 

• Declining water levels and aquifer discharge are 
attributed to three primary factors: 

1. The onset of significant groundwater irrigation.  

2. More efficient surface water irrigation practices. 

3. Periods of drought. 
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Year 

SWC D.C. 

1st Rangen D.C. 

B. Wood/L. Wood D.C. 

Spring Delivery Calls* 

2nd A&B D.C. 

Conj. Mgt. Rules 

 2nd Rangen D.C. 

*2005: Billingsley Creek Ranch, Blue Lakes, Clear Springs (x2), John Jones 
**2012: Jones, Lee, Lyncliff Farms, and Seapac of Idaho 

More Spring Delivery Calls** 

Musser D.C. 

What has been the impact of downward trends? 

1st A&B D.C. 



What is a tributary basin? 

 

“…a basin tributary to the Snake River represents a 
geographical area with a stream or other body of 
water, surface or underground, that contributes 
water to the Snake River, even in small or 
intermittent quantities.” (emphasis added, Lovell and 
Johnson, 1999, p. 21) 

 

 

 

 



How do we know tributary basin boundaries?   

 

• We know the surface water basin boundaries because 
the U.S. Geological Survey mapped drainage basins 
across the United States in the 1970s and 1980s. 

 

 

 

 

 

 

 



 Upper Snake River Basin (Lovell and Johnson, 1999) 

King Hill 



How do we know tributary basin boundaries? 
(cont’d)   

 

• We know the groundwater basin boundaries because 
surface and groundwater basin boundaries generally 
coincide in the upper Snake River Basin. 

 

 

 

 

 

 

 



Tributary basin geology (adapted from Lewis & 
Others, 2012) 
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How much ESPA water comes from tributary basins? 
 (from IDWR, 2013) 
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Direct Precipitation on the Eastern Snake 
River Plain 
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What are the hydrologic impacts of consumptive  
groundwater use in tributary basins?  

 

 “Every acre-foot of water consumptively used in 
basins tributary to the Snake River ultimately reduces 
the flow of the Snake River” (Ralston and others, 
1984, p. 10) 

 

 

 

 

 

 



What are the hydrologic impacts of consumptive groundwater 
pumping in this area?  magnitude, location, timing 
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What are the hydrologic impacts?  magnitude and location 

• 
• 
• 



What are the hydrologic impacts?  timing 
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Summary 

• The vast majority of the water in the ESPA comes from tributary 
basins. 

 

• Consumptive groundwater use in a tributary basin either 
reduces flow in the tributary stream or underflow to the ESPA. 

 

• ESPA water levels and discharge have been trending downward 
since the 1950s. 

 

• Starting in 1993, water delivery calls have been filed by senior 
ESRP water users alleging insufficient water supplies. 

 

 



Questions? 
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What are the hydrologic impacts?  timing 
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What are the hydrologic impacts?  timing 
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