Mapping Evapotranspiration in Idaho with Landsat

William J. Kramber, Idaho Dept. of Water Resources
Dr. Richard G. Allen and Dr. Ricardo Trezza
University of Idaho
Anthony Morse, Spatial Analysis Group (ret. IDWR)

Stanford Water in the West Uncommon Dialogue on Groundwater Technology, April 20, 2012
Why is measuring Evapotranspiration (ET) important

- ET is the water consumed by irrigated agriculture
- Important for administration, management, and planning of water resources
- Irrigated agriculture in Idaho
 - 3.4 million acres
 - Accounts for over 90% of the water consumed
- Irrigation in the US
 - 50 million acres agriculture, 32 million acres recreational
 - Accounts for over 80% of the water consumed
Ground-based ET

- **Potential ET** using crop coefficients
 - Needs crop type acres and stage of growth
 - Produces one ET value per county

Satellite-based ET

- **Actual ET** from Landsat using METRIC
 - No crop information required
 - ET per pixel can be summed by field
Landsat

- USGS/NASA mission
- L5 launched 1984 (halted November 2011)
- L7 launched 1999 (anomaly May 2003)
- 30 meter pixels
- 16 day cycle
- 100 by 100 miles
- Free

Landsat 8 will launch in January 2013
Landsat 9?
Why not use other satellites

- MODIS: 500 meter pixels
- AVHRR: 1000 meter pixels
- SPOT: no thermal band
- IRS AWiFS: no thermal band
- Aster: for research
Landsat Thermal Band

- Required for surface temperature
- Landsat is the only operational satellite with a “thermal band” and a pixel size small enough to map ET for individual fields!
METRIC

Mapping EvapoTranspiration at high Resolution with Internalized Calibration

- Satellite-based energy balance model that computes and maps actual ET
- Internalized Calibration ties down ET to weather data
- Over 90% accuracy compared to precision weighing lysimeter
Energy Balance for ET

ET is calculated as a “residual” of the energy balance

$$ET = R_n - G - H$$

The energy balance includes all major sources (R_n) and consumers (ET, G, H) of energy.
Energy balance computes “actual” ET

Can ‘see’ impacts on ET caused by:

- water shortage
- disease
- crop variety
- planting density
- cropping dates
- salinity
- management
- wet soil
Weather Data

In METRIC, Weather Data are used for:

Wind speed for sensible heat flux calculation

Reference ET for calibrating the Energy Balance

Reference ET to extrapolate ET
 - 24-hour period
 - Days between images
Landsat, south-central Idaho (8/14/2000)

- Thousand Springs
- Twin Falls
- Burley
- Wood River Valley
- Craters of the Moon
- Lake Walcott

- Dairy area (corn, alfalfa)
- recent burn
- basalt
Net Radiation (8/14/2000)

- Thousand Springs
- Twin Falls
- Burley
- Wood River Valley
- Dairy area (corn, alfalfa)
- recent burn
- basalt
- Craters of the Moon
- Lake Walcott

Legend:
- R_n: Net Radiation (W/m2)
- H: Soil Heat flux
- ET: Evapotranspiration
- G: Ground Heat flux

Net Radiation (W/m2)
- 0
- 200
- 400
- 600
- 800+

Recent Burn Area:
- Wood River Valley
- Thousand Springs
- Twin Falls
- Burley
- Lake Walcott

Dairy Area:
- Wood River Valley
- Thousand Springs
- Twin Falls
- Burley
- Lake Walcott

Basalt Area:
- Wood River Valley
- Thousand Springs
- Twin Falls
- Burley
- Lake Walcott

Craters of the Moon:
- Thousand Springs
- Twin Falls
- Burley
- Lake Walcott

Lake Walcott:
- Thousand Springs
- Twin Falls
- Burley

Dairy Area (corn, alfalfa):
- Thousand Springs
- Twin Falls
- Burley
- Lake Walcott
Ground Heat Flux (8/14/2000)

Soil Heat Flux (W/m\(^2\))

Rn, H, ET

Thousand Springs
Twin Falls
Burley
Craters of the Moon
Wood River Valley
Dairy area (corn, alfalfa)
recent burn
basalt
Lake Walcott

Soil Heat Flux (W/m\(^2\))

0
50
100
150
200+
Heat Flux to Air (8/14/2000)

Sensible Heat \((W/m^2) \)

Recent burn
Dairy area (corn, alfalfa)
Basalt
Craters of the Moon
Wood River Valley
Thousand Springs
Lake Walcott
Burley
Dairy area
Twin Falls

0
100
200
300
400+

\(R_n \)
\(H \)
\(ET \)
\(G \)
Instantaneous ET (8/14/2000)

Thousand Springs
Twin Falls
Burley

Wood River Valley
Craters of the Moon
Lake Walcott

Dairy area (corn, alfalfa)
recent burn
basalt

Latent Heat (W/m²)

0
100
200
300
400+

N
24-hour ET (8/14/2000)

- Thousand Springs
- Twin Falls
- Burley
- Wood River Valley
- Craters of the Moon
- Dairy area (corn, alfalfa)
- recent burn
- basalt
- Lake Walcott

Evapotranspiration (mm/day)
- 0.0
- 1.5
- 3.0
- 4.5
- 6.0
- 7.5
- 8.2

100 miles
Comparison with Lysimeter Measurements

Lysimeter at Kimberly (Wright) 1968-1991
Seasonal ET for sugar beets at the Kimberly Research Station, April to September, 1989.
Applications in Idaho

- Hydrologic modeling
- Water planning
- Water administration
Hydrologic Modeling

Eastern Snake Plain Aquifer Model
Developing METRIC ET data from 1986 to present
Eastern Snake Plain Aquifer Model

METRIC ET data

- More accurately calibrate the groundwater model
- Improve accuracy of depletions and recharge estimates
- Shows long term trends in ET
METRIC ET for Irrigated Land by Irrigation Entity

<table>
<thead>
<tr>
<th>Irrigation Entity</th>
<th>Mean ET mm</th>
<th>Acres</th>
<th>ET Volume ac-ft</th>
<th>ET ac-ft/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Falls Reservoir Dist #2</td>
<td>815</td>
<td>86,932</td>
<td>232,592</td>
<td>2.68</td>
</tr>
<tr>
<td>North Side Canal Co LTD</td>
<td>859</td>
<td>204,558</td>
<td>576,611</td>
<td>2.82</td>
</tr>
<tr>
<td>Irrigation Entities Overlap Area</td>
<td>828</td>
<td>5,146</td>
<td>13,971</td>
<td>2.72</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>296,636</td>
<td>823,175</td>
<td>2.78</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Falls Reservoir Dist #2</td>
<td>657</td>
<td>97,590</td>
<td>210,332</td>
<td>2.16</td>
</tr>
<tr>
<td>North Side Canal Co LTD</td>
<td>768</td>
<td>210,827</td>
<td>530,939</td>
<td>2.52</td>
</tr>
<tr>
<td>Irrigation Entities Overlap Area</td>
<td>779</td>
<td>5,389</td>
<td>13,775</td>
<td>2.56</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>313,805</td>
<td>755,046</td>
<td>2.41</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Falls Reservoir Dist #2</td>
<td>796</td>
<td>100,004</td>
<td>261,306</td>
<td>2.61</td>
</tr>
<tr>
<td>North Side Canal Co LTD</td>
<td>831</td>
<td>215,011</td>
<td>586,337</td>
<td>2.73</td>
</tr>
<tr>
<td>Irrigation Entities Overlap Area</td>
<td>837</td>
<td>5,385</td>
<td>14,795</td>
<td>2.75</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>320,399</td>
<td>862,438</td>
<td>2.69</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Falls Reservoir Dist #2</td>
<td>843</td>
<td>91,441</td>
<td>252,816</td>
<td>2.76</td>
</tr>
<tr>
<td>North Side Canal Co LTD</td>
<td>915</td>
<td>206,796</td>
<td>620,615</td>
<td>3.00</td>
</tr>
<tr>
<td>Irrigation Entities Overlap Area</td>
<td>927</td>
<td>5,109</td>
<td>15,545</td>
<td>3.04</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>303,346</td>
<td>888,975</td>
<td>2.93</td>
</tr>
</tbody>
</table>

Potential METRIC Processing ESPA

1984 - too sparse
1985 - too sparse
1986 - yes (METRIC in Progress)
1987 - not as populated as 1986, but possible for METRIC
1988 - no April-May for METRIC on path 40
1989 - no Sept-Oct for METRIC on path 40, poor on path 39
1990 - possible METRIC on 40, not on 39
1991 - no
1992 - possible METRIC for 40 and 39
1993 - possible for METRIC, no April-May on 39
1994 - no May-June for METRIC path 40
1995 - no
1996 - yes (METRIC DONE)
1997 - yes, iffy METRIC for June-July on 39
1998 - no May for METRIC on 40 and 39
1999 - no for METRIC in spring
2000 - yes (METRIC DONE)
2001 - yes for METRIC on both paths
2002 - yes (METRIC DONE)
2003 - iffy for METRIC for both paths (path 40 DONE through August (no images after that))
2004 - yes for METRIC on both paths
2005 - iffy for METRIC
2006 - yes (METRIC DONE)
2007 - possible, but challenging for METRIC on path 40
2008 - yes (METRIC DONE)
2009 - yes (METRIC in Progress)
2010 - yes (METRIC in Progress)
2011 - yes for METRIC on both paths
Water Planning
ET by Land Use

- Used for estimates of future water demand
- Year 2000 land use data analyzed with year 2000 seasonal ET data
Water Administration
Litigation

- A&B Irrigation District water call
- Clear Springs Foods water call
Water Law Terms

- Water Right
 - Authorization to use water
 - Includes priority date and rate of flow/volume

- Call
 - When a senior water right holder experiences a water shortage they may place a call

- Curtailment Order
 - Defines how the state directs junior water right holders to stop diverting water in response to a call

- Mitigation Plan
 - Junior users response to a curtailment order
A&B Irrigation District Water Call

- A&B claimed that certain fields were short of water in 2006 due to diversions from junior ground water users

- METRIC ET showed that the fields had ET rates as high as surrounding fields that were not identified as water short
Year 2006: Mean Daily Evapotranspiration (ET)
Year 2006: Ratio of ETrF and NDVI (ET per amount of vegetation)
A&B Irrigation District Water Call

Summary

- Director issued order denying the call
- Hearing Officer agreed with the Director’s decision
- District Court affirmed the Director’s decision
- Idaho Supreme Court
 - Argued on February 28, 2012
 - Waiting for decision
Clear Springs Foods Water Call

Idaho Business News

Water curtailment ordered in Magic Valley

POSTED: 11:13 MDT Thursday, July 23, 2009
By IBR Staff

Idaho Department of Water Resources Interim Director Gary Spackman on July 22 issued a curtailment order to about 250 holders of 315 junior water rights in south central Idaho’s Magic Valley. The curtailment order is part of a continuing response to a water delivery call made in 2005 by senior water right holder Clear Springs Foods.

State goes ahead with first large-scale well closure of more than 300 water rights in M.V. 7/31/2009

Water districts have limited options, could file a stay
By Nate Poppino
Times-News writer

The Idaho Department of Water Resources will go forward this morning with a plan to shut off more than 300 water rights irrigating just less than 9,000 acres of Magic Valley farmland, the first wide-scale well curtailment to actually be carried out by the state.
Clear Springs Foods, Inc.
Annual Water Consumption = 4 million acre feet/year
(3 Trillion gallons; 5 Trillion liters)
Clear Springs Foods Water Call

Summary

- ESPA GW model used METRIC ET data
 - For model calibration
 - To select water rights to curtail

- No complaints from junior users about GW model or METRIC ET data
Aquifer Depletion
Aquifer Depletion

ESPA has ~ 4,000 monitored irrigation wells

What is the most efficient monitoring method?

Present method: power consumption coefficients

Alternative method: METRIC and Landsat

Compared 180 well-field combinations
Result

PCC
Cost: $119 per well

METRIC
Cost: $32 per field
Other states using METRIC

- Nevada
 - Water transfers to Reno and Las Vegas

- Nebraska
 - Over pumping of the Ogallala Aquifer

- Colorado
 - Kansas vs. Colorado over Arkansas River
 - Nebraska vs. Colorado over S. Platte River

- Wyoming
 - Nebraska vs. Wyoming over N. Platte River

- Oregon
 - Klamath Basin water shortages

- California
 - Imperial Irrigation District: water consumption by irrigation

- New Mexico
 - Middle Rio Grande: water consumption by agriculture and riparian systems

- Montana
 - Flathead Indian Reservation and ground water areas east of Helena: for improved irrigation water management and management of total depletion
Cost of METRIC

- About one year to develop monthly ET for 100,000 square kilometers (4 Landsat images)
- Cloudy areas require extra effort
- Other costs if you do it yourself
 - training
 - image processing and GIS software
 - disks for processing and storage
Concern about Landsat’s future

- Landsat 5 is 28 years old
 - Imaging halted November 2011 due to electronic component problem
- Landsat 7 is 13 years old
 - Scan line corrector failed March 2003
 - About 22% of each image is missing
 - Missing areas are filled in using ArcGIS tools
- Landsat 8 scheduled to launch January 2013
- Funding for Landsat 9 is uncertain
The Landsat Archive

- USGS EROS Data Center, Sioux Falls, SD
- ~ 3 million scenes
- July 1972 to present (thermal since 1984)
- Free
- http://earthexplorer.usgs.gov/
Summary

- METRIC computes “Actual ET”
 - Over 90% accurate
 - ET at the field level
 - ET by day, month, and year
 - ET from bare soil and vegetation
- Idaho and other states use METRIC operationally
- Landsat is the best satellite for mapping ET at the field level
More Information

www.idwr.idaho.gov/GeographicInfo/METRIC/et.htm
www.kimberly.uidaho.edu/water/metric
www.idwr.idaho.gov/geographicinfo/landsat/LandsatConcerns.htm
www.westernstatesetworkshop.com

Seasonal METRIC ET for 2000