

Why we're doing this

- In ESPAM1.1, canal seepage and mixedsource lands refined spatial distribution but did not change the water budget.
- In ESPAM2 w/ "On-Farm" method, these change the water budget.
- Our target date for start of calibration is June 2009....

Why we're doing this

· So....

- In December 2009 the ESHMC directed a refinement of canal-seepage fractions and mixed-source fractions.
- IWRRI assumed this meant we shouldn't go back and re-do a lot of basic data, but that we should expeditiously make ad-hoc adjustments.

It's a tough pull but I'm working on it....

What do we need from ESHMC?

- 1st round ad-hoc adjustments were mailed out for review
- 2nd round will utilize data from Sullivan response
- 2nd round will be mailed out for review
- 3rd round will utilize any further ESHMC input received
- We jolly well better quit at three scheduled calibration start date is June 2009....

(Slide from February ESHMC meeting)

What do we need from ESHMC?

- 1st round ad-hoc adjustments were mailed out for review
- 2nd round will utilize data from Sullivan response
 - 2nd round will be mailed out for review
 - 3rd round wil I'm in the midst of 2nd round, and received
 - We jolly well have not yet calibration s considered Sullivan's data.

(Slide from February ESHMC meeting)

I have looked at Sullivan's data... 6

Interim Report on Progress (2nd Round Ad-hoc Adjustments)

- Current estimates are best available information
 - ET
 - Diversions
 - Returns
 - Mixed source lands
 - location
 - source fraction
 - Canal seepage

- Current estimates are not equally precise
 - ET +/- 5% to 10%?
 - Diversions +/- 5% (watermaster reports), +/- 15% (other methods)?
 - Returns +/- 10% (measured), +/- 30% (estimated)
 - Mixed source lands ??
 - location
 - source fraction
 - Canal seepage ??

- Attempt to do the least violence to "truth"
 - Example: IESW019 Diversions
 - Diversions are remarkably steady except for the one year when they are near zero
 - Unless we can convince ourselves it is real, we will substitute an estimate for that one year.

We implicitly assume a data problem is more likely than a year w/o diversions; we assume making an estimate is a lesser violation of "truth" than keeping the data would be.

- Honor data proportionally to their expected reliability
 - Example: IESW058 Canal seepage
 - Three kinds of data
 - upstream & downstream gauged canal discharge
 - miscellaneous measurements by U of I extension
 - USBOR pre-construction engineering study

- Entity by entity, stress period by stress period, tabulate depths
 - ET
 - Precip
 - Diversions
 - Returns
- Calculate implied residual fraction (Diversion + Precip - Returns - ET) (Diversion)

- Plot the residual fraction over time, by stress period and by irrigation season.
- Carefully consider "reasonableness" and determine if there is a sensible way to partition the residual into canal seepage and in-field percolation.
- This will give On-Farm the opportunity to adjust ET, percolation and returns, given the most probable correct (Divs - Cnl Seep).

- If the residual can't be reasonably partitioned there are three possibilities:
 - There is a condition of excess diversion
 - Deficit irrigation occurs
 - There is a data problem

- If a data problem seems the most probable & reasonable explanation, adjust the data
 - mixed source fraction
- If extreme diversion or deficit irrigation is the most probable and reasonable explanation, let the chips fall where they may

Nuts n Bolts

- Working assumptions:
 - Consumptive use fraction of field-headgate deliveries will be about 0.65
 - Percolation fraction of field-headgate deliveries will be about 0.35
 - This includes effects of field-to-field re-use;
 system (net) runoff has already been
 subtracted via use of existing Return Flows

Nuts n Bolts

- It turns out that:
 - if RF_{div} (residual fraction of diversions) =
 (Div + Pcp Return ET)
 (Div)
 - and PF_{field} (percolation fraction of field delivery) = (0.35),
 - then CF_{div} (canal leakage fraction of diversions) = 1.54 (RF_{div}) 0.54

Preliminary Outcomes

- Results seem reasonable
- Mixed-source fraction needs adjustment
- Other data need adjustment
- Miscellaneous issues
 - monthly precision of data
 - geographic extent of entities
 - truly "mixed-source" entities & On-Farm method

Sample:

- a) Mixed-source Fraction
 Needs Adjustment
 b) Other data pood adjustment
- b) Other data need adjustment

 $CF_{div} = 1.54 (0.75) - 0.54 = 0.62$

Entity TESW019

Yr	GW_only	SW_only	Mixed_Net	Mixed_totEff_	_GW	Eff_SW	MixFrac
Irr_80	0	1184.597	18940.96	22981.53	0	20125.56	0.824182
Irr_86	0	467.395	15894.66	19109.94	0	16362.05	0.831748
Irr_92	0	363.579	18219.51	22191.57	0	18583.09	0.82101
Irr_00	0	257.671	17768.05	21554.97	0	18025.72	0.824313
Irr_06	0	342.744	17444.66	21120.4	0	17787.41	0.825963

IESW019 (Ft. Hall)

- We're checking the one odd year.
- Make GW fraction smaller (MixFrac here larger) to reduce canal seepage somewhat

- CFdiv ~ 0.08
- Reduce MixFrac
- Investigate acreage Irr 00.

BEFORE RED

 $CF_{div} = 0.08 \text{ to } 0.69$?

 CF_{div} = zero to 0.54?

Cross-check w/ Data

- IESW001 (A & B Irrigation District)
 - Sullivan 0.17-0.34
 - Currently 0.15
- IESW010 (Burley Irrigation District)
 - Sullivan 0.35-0.42
 - Currently 0.38
- IESW027 (Milner Irrigation District)
 - Sullivan 0.18-0.20
 - Currently 0.54

New!

Cross-check w/ Data (2)

- IESW028 (Minidoka Irrigation District)
 - Sullivan 0.24-0.35
 - Currently 0.21
- IESW032 (North Side Canal Company)
 - Sullivan 0.33-0.53
 - Anecdotal reports 0.30?
 - Currently 0.31

Cross-check w/ Data (3)

- AFRD#2 (parts of IESW058 & IESW059)
 - Sullivan 0.48
 - Falen 0.69
 - BOR Pre-construction estimate??
 - Currently 0.77 (IESW058; includes seepage on 'pass-through' water)
 - 0.42 (IESW059, including Wood Rivers diversions)

New!

Reality Check

Plan

- Finish round 2
 - compare w/ Sullivan data
 - compare w/ Milner-Gooding seepage meas.
 - abandon fancy algorithm for canals?
- Circulate round 2 for comment
- Finish round 3 based on comments
- Get Allan a water budget to work with

> Definitions:

```
© CU = consumptive use volume from irrigation
```

```
    ○S CNL = canal seepage volume
```

> Definitions:

- CS CUF_{div}
- = consumptive use fraction of diversion volume
- = CU/Div
- S CUF_{field}
- = consumptive use fraction of field headgate volume
- = CU/F

OB PFdiv

- = percolation fraction of diversion volume
- = PERC/Div

Definitions:

OS PF field

= percolation fraction of field headgate volume

= PERC/F

OS FF div

= field headgate fraction of diversion volume

= F/Div

3 CF_{div}

= canal fraction of diversion volume

= CNL/div

> Definitions:

How will we use the Net Residual?

> Assumptions:

$$CUF_{field} = 0.65 + -0.20$$

$$\bigcirc$$
 PF_{field} = 0.35 +/- 0.20

> Calculations:

$$\mathcal{O}$$
 CUF_{field} = 0.65

$$CU/F = 0.65 --> CU = 0.65 F$$

$$CU = 0.65 (CU + PERC)$$

(D8)

(A1)

(D5)

How will we use the Net Residual?

Calculations:

```
OBITS = [(1-0.65)/0.65] CU
```

$$CSICON CONL = R - 0.54 (Div - R)$$

$$CNL = 1.54 R - 0.54 (Div)$$

$$CNL/Div = 1.54 (R/Div) - 0.54$$

$$CF_{div} = 1.54 RF_{div} - 0.54$$

(D6)

(D6)