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State of Idaho

Department of Water Resources
322 E Front Street, P.O. Box 83720, Boise, Idaho 83720-0098
Phone: (208) 287-4800 Fax: (208) 287-6700

Date: 6 January 2012

To: ESHMC , -

From: IDWR flpn W 7/&[

cc: S‘/Sean Vincent, Rick Raymondi 4 <

Subject: IDWR contribution to the Uncertainty White Paper

This memo is prepared in response to a request to discuss the predictive uncertainty
protocol and determine whether the current process has value. This memo will discuss: 1)
the reasons for conducting a predictive uncertainty analysis, 2) how the current procedure
was developed, 3) the current procedure selected by the Eastern Snake Hydrologic
Modeling Committee (ESHMC), and 4) the results of the analyses conducted to date.

Reasons for conducting a predictive uncertainty analysis

Ground water models have been used in hydrologic studies for several decades. Many
post audits during that time show that model predictions are not always accurate due to
use of inaccurate data during model calibration and parameter correlations resulting in
non-unique calibrations (Konikow, 1986; Steward and Langevin, 1999; Andersen and Lu,
2003). One way to evaluate this problem is to conduct a predictive uncertainty analysis.
The suite of analyses proposed for version two of the Eastern Snake Plain Aquifer Model
(ESPAM?) will estimate predictive uncertainty. Predictive uncertainty analyses are
conducted to: 1) establish the precision for key model predictions (Meyer and others,
2007); 2) help identity where more data can reduce predictive uncertainty (Dausman and
others, 2010) and; 3) document the limitations of the model (Doherty and others, 2011).
Along with these technical reasons to conduct a predictive uncertainty analysis, the
ESHMC received requests from others. Hearing Officer Schroeder (2008) requested an
uncertainty analysis, Director Tuthill requested an uncertainty analysis during the January
2009 ESHMC meeting, and Director Spackman requested an uncertainty analysis in his
June 9, 2011 letter to the EHSMC.

Doherty and others (2011) indicate that there are two sources of error in ground water
models:

1) Measurement noise — Noise is inherent in all measurements and observations used
for calibration. This includes components of the water budget, river gains, spring
discharges, aquifer water levels, etc.

2) Failure to capture the more important components of the hydrogeologic system
integral to key predictions — The simplifications inherent in creating ground water



models due to incomplete or inaccurate knowledge of the system can contribute to
predictive uncertainty.

During model development, efforts were made to reduce model uncertainty by including
calibration targets, or field observations, that the ESHMC thought would constrain the
adjustable parameters. There are numerous calibration targets within the model, and the
committee has reviewed modeled vs. measured data to assess the general success of
calibration. Of course even with the calibration targets, there is still some degree of
model uncertainty, but model uncertainty is only a problem if it significantly impacts an
important prediction. For example, parameter correlations may result in a non-unique
calibration, however, if none of the predictions from the suite of models with an
acceptable calibration are significantly different, then the non-uniqueness does not pose a
problem. Thus a model may have a high degree of uncertainty, but low predictive
uncertainty. The ESHMC chose to evaluate predictive uncertainty, the uncertainty in key
predictions due to poorly constrained parameters, not model uncertainty. Doherty and
others (2011) state that predictive uncertianty analyses are “fundamental to the use of
modeling in support of decision making”.

How the current procedure was selected

In 2007, the ESHMC identified goals for development and calibration of ESPAM?2 and
individual committee members ranked the components that they considered most
important. That exercise resulted in the ranking shown in Figure 1. An uncertainty
analysis was ranked as the third most important improvement to ESPAM2. In the
November 2009 meeting, the ESHMC chose to evaluate predictive uncertainty using
PEST (Doherty, 2010) following the procedure outlined by Doherty (2003). This decision
was modified to use the nonlinear analysis proposed by James and others (2009) in the
February 2010 meeting. During the March 2011 meeting, the ESHMC unanimously
agreed to proceed with a predictive uncertainty analysis immediately after calibration of
ESPAM?2 was complete. In the June 2011 meeting, the committee chose to reduce the
scope of the analysis because an exhaustive analysis of a complex model like the
ESPAM?2 would take far too long. The committee chose a limited predictive uncertainty
analysis that involved imposing a stress at the centroid within each of eight water districts
and determining uncertainty for the impact of the stress on each of four spring/river
reaches. The eight water districts are Water District 100, 110, 120, 130, 140, 33, 34, and
the Rexburg Bench. The four spring/river reaches are Clear Lakes, Blue Lakes, nr
Blackfoot to Minidoka, and Ashton to Rexburg.
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Figure 1. Ranking of proposed improvements for ESPAM2. (From Contor 2008)

The analysis chosen by the ESHMC will interrogate the collective impact of the
following components of the ESPAM2 model on predictive uncertainty: 1) uncertainty in
adjustable components of the water budget, 2) physical parameter uncertainty, and 3)
measurement uncertainty. During calibration PEST is allowed to adjust many
components of the water budget, so the contributions to predictive uncertainty from the
adjustable components of the water budget are incorporated in the predictive uncertainty
analysis. All physical properties adjustable during calibration are also adjustable during
the predictive uncertainty analysis (e.g. transmissivity, specific yield, drain conductance,
riverbed conductance, etc), so the contribution to predictive uncertainty by physical
properties also is included in the analysis. The ESHMC often assigned weights for field
observations based on their confidence in the measurements. Weighting more uncertain
measurements less allows for more misfit between model output and field observations.
Thus, to the extent that the weighting scheme takes into account measurement
uncertainty, measurement uncertainty’s contribution is also incorporated in the predictive
uncertainty analysis.

The procedure
The following is the procedure used to prepare a PEST predictive uncertainty run to
identify how correlations in adjustable parameters can impact the selected predictions.
1) Identify the centroid of the irrigated lands within the water district (this can be
done in GIS).
2) Prepare the model files necessary to run the prediction, including a well file
constructed using the 3x3 cell centriod identified in step one (1).
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3) Make a copy of the PEST control file. The PEST control file contains all of the
adjustable parameters and their bounds, and all the field observations. Since we
are copying the control file, every parameter adjustable in our calibration run will
also be adjustable in our predictive uncertainty analysis, and every field
observation used as a calibration target will also be used as a target in our
predictive uncertainty analysis. The following adjustments (items 4 — 12) need to
be made to the PEST control file.

4) Replace the word ‘regularization’ with the word ‘prediction’ on the third line.

5) Increase the number of observations by one (1) because the prediction will be a
new observation.

6) Increase the number of observation groups by one (1) because there will now be
an observation group ‘predict’.

7) Increase the number of instruction files by one (1) because PEST will now be
required to monitor the prediction.

8) Add ‘predict’ to the list of observation groups.

9) Add an additional observation to the observation section. At this time I expect
these will be called ‘Predict_CRL’ for the Clear Lakes impact, ‘Predict_BLK’ for
the Blue Lakes impact, and ‘Predict_nBMin’ for impact to the nr Blackfoot-
Minidoka reach. Any weight and target observation value can be provided
because PEST ignores the weight and target observation value for any observation
in the ‘predict’ group when it is run in predictive analysis mode.

10) Change the model command line to reflect the name of the batch file used to run
the model and the prediction.

11) Add the name of the new instruction file and the output file it will read to the list
of files used to read model output. I expect the instruction file will be called
‘Predict.ins’ and the file it will read will be called ‘Predict.smp’

12) Add a ‘predictive analysis’ section to the control file. This will include
NPREDMAXMIN, PDO, PD1, and PD2. NPREDMAXMIN tells PEST whether
to maximize (+1) or minimize (-1) the prediction of interest. PDO is a value of the
objective function (phi) which is considered calibrated. Naturally, PDO must be
greater than phi for the calibrated model, but only a little greater. Because the
shape of the PDO envelope can be complex, it is extremely hard for PEST to find
a parameter set which lies exactly on the boundary. The value supplied for PD1
(which must be slightly higher than PDO) is a value PEST will consider “close
enough”. If the sum of the squared residuals is above PD2, PEST tries to
minimize the objective function until the objective function is below PD2, at
which point PEST begins searching for either the maximum or minimum value
for the prediction at PDO.

Thus, during a predictive uncertainty analysis run PEST will: A) run MKMOD, B) run
MODFLOW, C) compare model output with field observations exactly like in a
calibration run, D) compare the sum of the squared residuals (phi) from this run with
PDO, E) make a model run in superposition mode containing only the 3x3 well file
constructed during steps 1 and 2, F) collect the predicted impact at the target spring or
river reach, and G) compare this prediction with the previous maximum (or minimum)



prediction and save the value if it is a new maximum (or minimum) and phi for this run is
less than PD1.

The Doherty (2010) recommends that phi from the calibrated model <PD0 < PD1 < PD2
and further states that PDO should only be slightly larger than phi for the calibrated model
(lor 2% larger), and PD1 should only be slightly larger than PDO (1 or 2% larger), and
PD2 is generally 1.5 to 2 times PDO. Functionally, assigning PD0 and PD1 values a little
larger than the calibrated phi allows PEST enough elbow room to explore parameter
space and locate correlated parameters that potentially could impact the selected
prediction.

Results

As of December 2011, three analyses have been completed using calibration run
E110712A_002. Once calibration is complete, at least some of these analyses will be
checked with the updated model. The completed analyses are: centroid of WD130 to
Clear Lakes, centroid of WD110 to Clear Lakes, and centroid of WD120 to Clear Lakes
(Figure 2).

i Water District
WD110 Centroid

s N

igure 2. Locations of centroids and spring evaluated to date.

Thus far, the analyses have not identified any significant issues. Largely unknown
parameters such as tributary valley underflow have not significantly impacted predictive
uncertainty in any of the analyses conducted to date. Table 1 shows the variability in the
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impact each centroid can have on Clear Lakes Spring. Figure 3 shows the change in the
calibrated discharge at Clear Lakes Spring. Figure 3 emphasizes that the calibration is
nearly unchanged when the model maximizes or minimizes the impact because of
correlations in adjustable parameters. An alternative perspective is that the more
important parameters tend to be constrained by relevant field observations.

Table 1. Predicted impact at Clear Lakes as percentage of applied stress.

Calibrated Maximized Minimized
Centroid Impact Impact Impact

WwD110 0.170% 0.170% 0.164%
WD120 0.450% 0.930% 0.390%
WD130 7.110% 7.360% 6.930%
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Figure 3. Measured and calibrated discharge, and modeled discharge when impact is maximized and
minimized for Clear Lakes.
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