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Background 

The Eastern Snake Hydrologic Modeling Committee (ESHMC or “Committee”) has been 

investigating the matter of uncertainty in the Eastern Snake Plain Aquifer Model (ESPAM or 

“Model”).  This investigation stems from goals identified by the Committee in 2007, from 

findings made by Hearing Officer Schroeder in 2008, and from questions asked by IDWR 

Director Tuthill in 2009.  Interim Director Spackman has more recently solicited input on the 

topic.   

A previous White Paper on Model Uncertainty was assembled in 2009 from contributions by 

various Committee members and by IDWR staff.  I provided two contributions to this earlier 

effort: “Comments on Model Uncertainty” dated January 2009, and “Comments on Trimline and 

Model Uncertainty” dated July 2009.  At its December, 2011, meeting, the Committee agreed to 

update the 2009 White Paper. 

The comments herein are my contribution to this update.  I have tried to avoid repetition of my 

previous contributions, though some of this is inevitable. 

 

Some Definitions and Distinctions 

There is no universally applicable definition of uncertainty in the field of environmental 

modeling (of which groundwater modeling is a subset).  Where modeling is used to support 

regulatory decision-making, uncertainty can be viewed as a property of the information upon 

which a decision is based or as a manifestation of the confidence that the decision-maker has in 

that information (Refsgaard, et. al., 2007).  The present discussion of ESPAM uncertainty is 

focused on the former, though arguably the latter is the more important for policymaking. 

Uncertainty can be classified as reducible or irreducible (Matott, et. al., 2009).  Reducible 

uncertainty can, at least theoretically, be diminished by further efforts at data acquisition, 

refinement of model structure, more extensive calibration, etc.  Irreducible uncertainty, such as 
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that associated with prediction of future outcomes, cannot be so diminished because we simply 

cannot know the future state of all the factors and forces reflected in the model.  The present 

discussion of ESPAM uncertainty focuses on the former, though the latter is inevitably present. 

Uncertainty is often thought of in terms of accuracy and precision.  Accuracy is the degree to 

which a measurement or model result reflects the “true” value or nature of the underlying 

parameter or process.  In practice, many of the effects we seek to represent with ESPAM cannot 

be measured directly, so the model’s ability to accurately simulate them is inherently uncertain.   

 Precision is the degree to which a procedure can repeatedly achieve the same result given the 

same inputs.  Since the groundwater model is a deterministic model, it is, in this sense, perfectly 

precise.  The term precision often is also used to describe the level of detail with which a model 

result can be expressed.  Because the model code carries out computations to many decimal 

places, it is possible to display model results using far greater precision than is present in the 

underlying spatial and temporal data used as model input.   

This data precision issue is related to the concept of scale.  The model is populated with data that 

is collected and represented at various spatial and temporal scales, many of the different from the 

scales represented in the model.  For example, precipitation is measured daily (or at even shorter 

durations) at a handful of specific locations, while modeling the aquifer requires estimates of 

monthly precipitation everywhere on the Plain.  Aquifer transmissivity is assumed to be constant 

throughout a model cell, though fractures and interfaces may significantly affect individual water 

level observations and spring flows.  The spatial and temporal resolution of input data and 

parameters must be considered in evaluating confidence in model results. 

 

 Sources of Model Uncertainty 

As highlighted in my earlier submittals, model uncertainty arises from a number of sources.  

Most generally these can be lumped as pertaining to the model (structure and parameters) and to 

the data used in the model.  The figure on the following page depicts where uncertainties arise 

and how they flow through to modeling results. 

Uncertainty related to model structure (sometimes referred to as conceptual uncertainty) is 

seldom evaluated.  It is costly and time-consuming to do so, and it is difficult to ascertain 

whether the set of plausible models has been fully explored (Refsgaard, et.al., 2007).  In the vast 

majority of cases, this dimension of model uncertainty is ignored in favor of optimizing a chosen 

model structure (Neuman and Weirenga, 2003). 

In the case of the ESPA, the chosen model structure is that of a single-layered, homogeneous, 

isotropic porous medium.  While this may be adequate for regional-scale analyses, it does not 
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represent the governing equations of fracture or conduit flow which may dominate site-specific 

phenomena, such as flows from particular spring outlets. 

 
 

Source: Li and Wu, 2006. 

Model parameterization is also a source of uncertainty.   The model structure dictates the 

structure of the parameters, and initial parameter estimates are adjusted through a process of 

history-matching (“calibration”) that tries to minimize the difference between model results and 

historical observations.  Increased computing power has permitted the use of more parameters, 

which can often lead to better calibration (Hunt and Doherty, 2007).  However, increased 

parameterization brings increased risk that the calibrated parameter set is non-unique (Doherty 

and Johnston, 2003), that is, that other combinations of parameters will result in similarly 

acceptable matches to historical observations.   

That the risk of non-unique calibration solutions is endemic to modeling is well established (e.g., 

Konikow and Bredehoeft, 1992; Beven, 2006).  Furthermore, if model structure is not a separate 

subject of uncertainty evaluation, the calibration process may conflate error in both model 

structure and parameterization in achieving an acceptable match (Beven, 2006).  It is not 

sufficient that a model work well, it must “…work well for the right reasons” (Klemes, 1986).   

The ESPAM can be considered moderately to highly parameterized.  In addition to 

transmissivity and storativity terms, calibrated parameters include streambed and drain 

conductances, drain elevations, and a host of factors influencing the aquifer water budget.  This 
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has led to a relatively well-calibrated model.  The use of multiple calibration targets has probably 

reduced, though it has not eliminated, the risk that parameter solutions are non-unique. 

Uncertainty is also introduced via the data used in the model.  Data quality issues can include 

sample bias and measurement error, error stemming from interpolation and extrapolation to 

derive intermediate or missing data points, and use of data collected at different spatial and 

temporal scales than that required by modeling (Li and Wu, 2006).  While considerable care has 

been taken with data gathering for the ESPAM, many important input data sets reflect rough 

estimates rather than measurements (e.g., tributary underflows) and reflect extrapolation from 

coarse spatial and temporal scales to the relatively fine scale of the model (e.g., crop distribution 

data is collected only at a county level, yet the county average is assumed to be valid for every 

irrigated cell in the county). 

Data uncertainty also stems from natural variability.  This is related to the concepts of irreducible 

uncertainty and of scale discussed at the outset of these comments. 

Overall model uncertainty is a function of all of these.  Model uncertainty may be different for 

different scenarios depending, for example, on how well the model represents aquifer 

hydrogeology in different locations or how different the water budget terms (e.g., aquifer 

stresses) are between scenarios.  It is also likely that uncertainty increases with the level of detail 

being sought.  This stems in part from the issue of scale discussed previously, and suggests that 

less confidence be placed in more detailed predictions. 

 

Evaluating Uncertainty 

Because it arises from so many sources, rigorous exploration of uncertainty in groundwater 

modeling is extremely difficult.  Even with a costly and time-consuming effort, only a portion of 

model uncertainty will be illuminated. 

Approaches for comprehensive uncertainty evaluation have been proposed (e.g., Pappenberger 

and Beven, 2006; Refsgarrd, et. al., 2007).  However, conventional practice usually adopts a 

much more limited scope (Neuman and Weirenga, 2003).  Post-audits of model performance 

have been recommended (Anderson, 1992) as a means of assessing model validity, with mixed 

results (Konikow, 1986). 

 The uncertainty evaluation being carried out for the ESPAM is termed a “predictive uncertainty 

analysis.”   It focuses primarily on the degree to which relatively constrained changes in 

parameter values will alter key model predictions.  Model and parameter structure are assumed 

fixed, as are many data inputs.  This approach is valuable in illuminating those parameters for 
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which further investigation could reduce the uncertainty of the chosen model (James, et. al., 

2009), but does not address larger questions of model uncertainty described above. 

More exhaustive evaluation approaches, such as Monte Carlo simulation, may shed greater light 

on the probability distributions of model errors.  However, unless such approaches address all the 

dimensions of model uncertainty they too will be incomplete. 

 

Conclusions 

The Committee, IWRRI and IDWR have made significant effort to develop the ESPAM in a 

transparent and objective way.  There have been many instances in which collaborative thought 

and deeper investigation have led to significant model improvements.  However, the 

development process has been inevitably constrained by time and available resources.  Even with 

such resources it is not likely to be possible to fully explore and quantify model uncertainty, and 

not possible to unambiguously derive policy from such a quantification.  The use of the ESPAM 

in policymaking and administration will always require exercise of discretion and judgment by 

decision-makers.  
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